Filter Design in Thirty Seconds
|
|
|
- 超谦瞽 都
- 8 years ago
- Views:
Transcription
1 Application Report SLOA093 December 2001 Filter Design in Thirty Seconds Bruce Carter High Performance Analog ABSTRACT Need a filter fast? No theory, very little math just working filter designs, and in a hurry? This is the right document. Contents 1 Introduction Low Pass Filter High Pass Filter Narrow (Single Frequency) Band Pass Filter Wide Band Pass Filter Notch (Single Frequency Rejection) Filter Band Reject Filter...9 Appendix A Standard Resistor and Capacitor Values...12 Appendix B Filter Notes (for the More Technically Minded)...13 Figures Figure 1. Low Pass Filter...2 Figure 2. High Pass Filter...2 Figure 3. Narrow (Single Frequency) Band Pass...3 Figure 4. Wide Band Pass...3 Figure 5. Notch Filter Single Frequency Rejection...3 Figure 6. Band Reject Filter...4 Figure 7. Low Pass Filter for ± Supplies...4 Figure 8. Low Pass Filter for a Single Supply...4 Figure 9. High Pass Filter for ± Supplies...5 Figure 10. High Pass Filter for a Single Supply...5 Figure 11. Narrow Band Pass Filter for ± Supplies...6 Figure 12. Narrow Band Pass Filter for a Single Supply...6 Figure 13. Wide Band Pass Filter for ± Supplies...7 Figure 14. Wide Band Pass Filter for a Single Supply...7 Figure 15. Narrow Band Pass Filter for ± Supplies...8 Figure 16. Narrow Band Pass Filter for a Single Supply...9 Figure 17. Band Reject Filter for ± Supplies...10 Figure 18. Band Reject Filter for a Single Supply
2 1 Introduction This document is intended for designers that do not have the time to check filter theory in old college textbooks and try to translate transfer equations into something that can be put into production. This is like looking at the back of the textbook for the answer. Speaking of the back of the book Appendix B contains a brief introduction to the filter circuits given here, and the limitations of this quickie approach to design. To design a filter, four things must be known in advance: The power supplies available: positive / negative or only positive (single supply) The frequencies that need to be passed, and those that need to be rejected. A transition frequency, the point at which the filter starts to work or a center frequency around which the filter is symmetrical. An initial capacitor value pick one somewhere from 100 pf for high frequencies to 0.1 µf for low frequencies. If the resulting resistor values are too large or too small, pick another capacitor value. Ready? Let s design the filter. Pick the filter type from one of the following 6 options that represents the frequencies to be passed (shaded area): Figure 1. Low Pass Filter Go to Section 2 Figure 2. High Pass Filter Go to Section 3 2 Filter Design in Thirty Seconds
3 Figure 3. Narrow (Single Frequency) Band Pass Go to Section 4 Figure 4. Wide Band Pass Go to Section 5 Figure 5. Notch Filter Single Frequency Rejection Filter Design in Thirty Seconds 3
4 Figure 6. Band Reject Filter 2 Low Pass Filter Supply Supply Figure 7. Low Pass Filter for ± Supplies Supply Supply R3 Cin R4 Cout Figure 8. Low Pass Filter for a Single Supply Design Procedure: Pick : Calculate = * 2: 4 Filter Design in Thirty Seconds
5 Calculate and = Appendix A) * π * * Frequency SLOA093 : (pick a standard value from For the single supply case only: Calculate Cin = Cout = 100 to 1000 times (not critical): DONE 3 High Pass Filter Supply Supply Figure 9. High Pass Filter for ± Supplies Supply Cout Supply / 2 Design Procedure: Pick = : Figure 10. High Pass Filter for a Single Supply Calculate : Appendix A). 1 : (pick a standard value from 2 * π * * Frequency Filter Design in Thirty Seconds 5
6 Calculate : Appendix A). 2 1 : (pick a standard value from 2 * π * * Frequency For the single supply case only: Calculate Cout = 100 to 1000 times (not critical): DONE 4 Narrow (Single Frequency) Band Pass Filter NOTE: These circuits include a gain of 10 (20 db) at the center frequency. Supply R3 R4 Supply Figure 11. Narrow Band Pass Filter for ± Supplies Supply Cin R3 R4 Cout Supply / 2 Design Procedure: Figure 12. Narrow Band Pass Filter for a Single Supply Pick = : 6 Filter Design in Thirty Seconds
7 Calculate = R4: Appendix A). 1 : (pick a standard value from 2 * π * * Frequency Calculate R3 = 19 * Calculate = 19 For the single supply case only: Calculate Cin = Cout = 100 to 1000 times (not critical): DONE 5 Wide Band Pass Filter NOTE: The start and ending frequencies of the band should be at least five times different. Supply Supply Supply Supply Figure 13. Wide Band Pass Filter for ± Supplies Supply Supply Cout Supply / 2 Design Procedure: Figure 14. Wide Band Pass Filter for a Single Supply Go to Section 3, and design a high pass filter for the low end of the band. Filter Design in Thirty Seconds 7
8 Go to Section 2, and design a low pass filter for the high end of the band. For the single supply case only: Calculate Cin = Cout = 100 to 1000 times in the low pass filter section (not critical): DONE 6 Notch (Single Frequency Rejection) Filter Supply R3 Supply Supply R4 R5 Supply R6 Figure 15. Narrow Band Pass Filter for ± Supplies 8 Filter Design in Thirty Seconds
9 Supply Cin Cout R3 Supply R4 Supply / 2 R5 R6 Figure 16. Narrow Band Pass Filter for a Single Supply Design Procedure: Pick = : Calculate R3 = R4: Appendix A). 1 : (pick a standard value from 2 * π * * Frequency Calculate = = 20 * R3 For the single supply case only: Calculate Cin = Cout = 100 to 1000 times (not critical): 7 Band Reject Filter DONE NOTE: The start and ending frequencies of the band to be rejected should be at least fifty times different. Filter Design in Thirty Seconds 9
10 Supply Supply Supply Supply Supply Supply Figure 17. Band Reject Filter for ± Supplies Supply Cin Supply Supply Cout Supply / 2 Supply / 2 Figure 18. Band Reject Filter for a Single Supply 10 Filter Design in Thirty Seconds
11 Design Procedure: Go to Section 3, and design a high pass filter for the low end of the upper band. Go to Section 2, and design a low pass filter for the high end of the lower band. For the single supply case only: Calculate Cin = Cout = 100 to 1000 times in the low pass filter section (not critical): DONE Filter Design in Thirty Seconds 11
12 Appendix A Standard Resistor and Capacitor Values E12 Resistor / Capacitor Values 1.0, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, and 8.2; multiplied by the decade value. E24 Resistor / Capacitor Values 1.0, 1.1, 1.2, 1.3, 1.5, 1.6, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9, 4.3, 4.7, 5.1, 5.6, 6.2, 6.8, 7.5, 8.2, and 9.1; multiplied by the decade value. E96 Resistor Values 1.00, 1.02, 1.05, 1.07, 1.10, 1.13, 1.15, 1.18, 1.21, 1.24, 1.27, 1.30, 1.33, 1.37, 1.40, 1.43, 1.47, 1.50, 1.54, 1.58, 1.62, 1.65, 1.69, 1.74, 1.78, 1.82, 1.87, 1.91, 1.96, 2.00, 2.05, 2.10, 2.15, 2.21, 2.26, 2.32, 2.37, 2.43, 2.49, 2.55, 2.61, 2.67, 2.74, 2.80, 2.87, 2.94, 3.01, 3.09, 3.16, 3,24, 3.32, 3.40, 3,48, 3.57, 3.65, 3.74, 3.83, 3.92, 4.02, 4.12, 4.22, 4,32, 4.42, 4,53, 4.64, 4.75, 4.87, 4.99, 5.11, 5.23, 5.36, 5.49, 5.62, 5.76, 5.90, 6.04, 6.19, 6.34, 6.49, 6.65, 6.81, 6.98, 7.15, 7.32, 7.50, 7.68, 7.87, 8.06, 8.25, 8.45, 8.66, 8.87, 9.09, 9.31, 9.53, 9.76; multiplied by the decade value. 12 Filter Design in Thirty Seconds
13 Low Pass Filter Appendix B Filter Notes (for the More Technically Minded) The filter selected is a unity gain SallenKey filter, with a Butterworth response characteristic. Numerous articles and books describe this topology. High Pass Filter The filter selected is a unity gain SallenKey filter, with a Butterworth response characteristic. Numerous articles and books describe this topology. Narrow Band Pass Filter The filter selected is a modified Deliyannis filter. The Q is set at 10, which also locks the gain at 10, as the two are related by the expression: R3 R4 2 = Q = Gain A higher Q was not selected, because the op amp gain bandwidth product can be easily reached, even with a gain of 20 db. At least 40 db of headroom should be allowed above the center frequency peak. The op amp slew rate should also be sufficient to allow the waveform at the center frequency to swing to the amplitude required. Wide Band Pass Filter This is nothing more than cascaded SallenKey high pass and low pass filters. The high pass comes first, so energy from it that stretches to infinite frequency will be low passed. Notch Filter This is the Fliege Filter topology, set to a Q of 10. The Q can be adjusted independently from the center frequency by changing and. Q is related to the center frequency set resistor by the following: R 1 = = 2 * Q * R3 The Fliege filter topology has a fixed gain of 1. The only real possibility of a problem is the common mode range of the bottom amplifier in the single supply case. Band Reject Filter This is nothing more than summed SallenKey high pass and low pass filters. They cannot be cascaded, because their responses do not overlap as in the wide band pass filter case. Filter Design in Thirty Seconds 13
14 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Mailing Address: Texas Instruments Post Office Box Dallas, Texas Copyright 2001, Texas Instruments Incorporated
15 易迪拓培训 专注于微波 射频 天线设计人才的培养网址 : 射频和天线设计培训课程推荐 易迪拓培训 ( 由数名来自于研发第一线的资深工程师发起成立, 致力并专注于微波 射频 天线设计研发人才的培养 ; 我们于 2006 年整合合并微波 EDA 网 ( 现已发展成为国内最大的微波射频和天线设计人才培养基地, 成功推出多套微波射频以及天线设计经典培训课程和 ADS HFSS 等专业软件使用培训课程, 广受客户好评 ; 并先后与人民邮电出版社 电子工业出版社合作出版了多本专业图书, 帮助数万名工程师提升了专业技术能力 客户遍布中兴通讯 研通高频 埃威航电 国人通信等多家国内知名公司, 以及台湾工业技术研究院 永业科技 全一电子等多家台湾地区企业 易迪拓培训课程列表 : 射频工程师养成培训课程套装该套装精选了射频专业基础培训课程 射频仿真设计培训课程和射频电路测量培训课程三个类别共 30 门视频培训课程和 3 本图书教材 ; 旨在引领学员全面学习一个射频工程师需要熟悉 理解和掌握的专业知识和研发设计能力 通过套装的学习, 能够让学员完全达到和胜任一个合格的射频工程师的要求 课程网址 : ADS 学习培训课程套装该套装是迄今国内最全面 最权威的 ADS 培训教程, 共包含 10 门 ADS 学习培训课程 课程是由具有多年 ADS 使用经验的微波射频与通信系统设计领域资深专家讲解, 并多结合设计实例, 由浅入深 详细而又全面地讲解了 ADS 在微波射频电路设计 通信系统设计和电磁仿真设计方面的内容 能让您在最短的时间内学会使用 ADS, 迅速提升个人技术能力, 把 ADS 真正应用到实际研发工作中去, 成为 ADS 设计专家... 课程网址 : HFSS 学习培训课程套装该套课程套装包含了本站全部 HFSS 培训课程, 是迄今国内最全面 最专业的 HFSS 培训教程套装, 可以帮助您从零开始, 全面深入学习 HFSS 的各项功能和在多个方面的工程应用 购买套装, 更可超值赠送 3 个月免费学习答疑, 随时解答您学习过程中遇到的棘手问题, 让您的 HFSS 学习更加轻松顺畅 课程网址 : `
16 易迪拓培训 专注于微波 射频 天线设计人才的培养网址 : CST 学习培训课程套装该培训套装由易迪拓培训联合微波 EDA 网共同推出, 是最全面 系统 专业的 CST 微波工作室培训课程套装, 所有课程都由经验丰富的专家授课, 视频教学, 可以帮助您从零开始, 全面系统地学习 CST 微波工作的各项功能及其在微波射频 天线设计等领域的设计应用 且购买该套装, 还可超值赠送 3 个月免费学习答疑 课程网址 : HFSS 天线设计培训课程套装套装包含 6 门视频课程和 1 本图书, 课程从基础讲起, 内容由浅入深, 理论介绍和实际操作讲解相结合, 全面系统的讲解了 HFSS 天线设计的全过程 是国内最全面 最专业的 HFSS 天线设计课程, 可以帮助您快速学习掌握如何使用 HFSS 设计天线, 让天线设计不再难 课程网址 : MHz NFC/RFID 线圈天线设计培训课程套装套装包含 4 门视频培训课程, 培训将 13.56MHz 线圈天线设计原理和仿真设计实践相结合, 全面系统地讲解了 13.56MHz 线圈天线的工作原理 设计方法 设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体操作, 同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试 通过该套课程的学习, 可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹配电路的原理 设计和调试 详情浏览 : 我们的课程优势 : 成立于 2004 年,10 多年丰富的行业经验, 一直致力并专注于微波射频和天线设计工程师的培养, 更了解该行业对人才的要求 经验丰富的一线资深工程师讲授, 结合实际工程案例, 直观 实用 易学 联系我们 : 易迪拓培训官网 : 微波 EDA 网 : 官方淘宝店 : 专注于微波 射频 天线设计人才的培养易迪拓培训官方网址 : 淘宝网店 :
ANSYS 在航空航天器电磁兼容、电磁干扰分析中的应
易迪拓培训 专注于微波 射频 天线设计人才的培养网址 :http://www.edatop.com 射频和天线设计培训课程推荐 易迪拓培训 (www.edatop.com) 由数名来自于研发第一线的资深工程师发起成立, 致力并专注于微波 射频 天线设计研发人才的培养 ; 我们于 2006 年整合合并微波 EDA 网 (www.mweda.com), 现已发展成为国内最大的微波射频和天线设计人才培养基地,
usbintr.PDF
USB(Universal Serial Bus) USB( ) USB, USB PCI PC USB (host) USB (device) USB 1 PC PC USB PC 2 Plug-and-Play PC Plug-and- Play USB Plug-and-Play 3 PC / USB (USB 2.0 480Mb/s) USB USB 1 1 USB Toplogy USB
,,: 65,A - 10A, 9, M1A1, 85 %: 148,35 72,1/ 6, 17 % (20 15 %) [1 ] ;1994,, 2 2,;2001, ; , ; ; F - 16 ;2 ;; F - 15 ; ;, :,,,, ,,,, M
2004 6 32 3 MODERN DEFENCE TECHNOLOGY J une 2004 Vol. 32 No. 3 Ξ,, (, 264001) :, :,,,,,,4 :; ;; : TN95911 + 7 ; TN957151 :A :10092086X(2004) 0320064205 Present situation, development and enlightenment
Ω Ω 75Ω
18 A A A 0.1 AWG10 0.001 0.7m 1 0.083 m 1 90 RC=/Kρ /P /F N+R RC K ρ / 2 1 1 ρ 2.54 P / 2 F N R 0 A 1. 2. 3. 4. 5. 1.0 0.1 0.05Ω 10 100Ω 75Ω 50Ω 12 100 0.1A 1.0V 1.0A 10V 1.0A 10V I 2 R 100V 50A 100V 1.
PCB a 2.5mm b 4.0mm A mm W/cm 3 PCB PCB 2.0mm 1.5mm PCB PCB
1. PCB PCB PCB PCB EMC EMI 2. PCB PCB PCB 3. via Blind via Buried via Through via Component hole Stand off 4. / TS S0902010001 TS SOE0199001 TS SOE0199002 IEC60194 > > > > Printed Circuit
PCB Layout using ADS November 29, 2005 PCB Layout using ADS Dr. B. Frank Department of Electrical and Computer Engineering Queen's University Slide 1
Dr. B. Frank Department of Electrical and Computer Engineering Queen's University Slide 1 Motivation Need circuit more reliable than breadboard? Working at RF/microwave frequencies? Printed circuit board
CAM350 CAM350 CAM350 CAM350 Export Gerber 274D 274X Fire9000 Barco DPF NC Drill Mill Excellon Sieb Meyer IPC D 350 IPC D A Modification CAM/Ger
CAM350 CAM350 CAM350 PCB CAM CAM350 CAM350 Fabrication Modules C350-750 C350-460 C350-260 C350-110 C350-050 Import X X X X X Information X X X X X Export X X X X Opt. Modification X X X X Opt. Optimization
, V m 3,, I p R 1 = ( I p + I 1 ) / R 0 I p, R 1 / 4, R m V d, 1. 1 Doherty MRF6P21190 LDMOS,,, Doherty B Freescale M6P21190 ADS 2 Doherty 3 Doherty,
TN702 A 1009-2552(2007) 03-0045 - 06 Doherty, (, 430074) Doherty WCDMA ADS, 35 (45. 4dBm), ACLR - 55dBc WCDMA ; ; Doherty ; ; PAE Design of linearized Doherty power amplifier GENG Zhi, GUO Wei (Department
Design System Designer RF Analog - Designer Ptolemy Simulator System level - Designer E D A - s Modelsim RTL EDGE GSM WLAN Numeric Ptolemy Timed NC-Ve
Content Reprint Advanced Design System for Designer E D A 21 GPRS WCDMA TDS-CDMA IEEE 802.11a IEEE 802.11b IEEE 802.11g PDA CICeNews-23 CIC Agilent Advanced 1 Design System Designer RF Analog - Designer
3.1.doc
SMEMA FIDUCIAL MARK STANDARD Standard 3.1 1.0 SCOPE: This SMEMA standard is for fiducial marks. It was developed to facilitate the accurate placement of components on printed circuit boards. SMEMA standards
DATASHEET SEARCH SITE |
2 18 GHz Ultra Low Noise Pseudomorphic HEMT Technical Data ATF-3677 Features PHEMT Technology Ultra-Low Noise Figure:.5 db Typical at 12 GHz.3 db Typical at 4 GHz High Associated Gain: 12 db Typical at
Microsoft Word - AN95007.doc
Understanding VCO Concepts OSCILLATOR FUNDAMENTALS An oscillator circuit can be modeled as shown in Figure 1 as the combination of an amplifier with gain A (jω) and a feedback network β (jω), having frequency-dependent
DSCHA Jun 06
CHA3666 RoHS COMPLIANT 6-17GHz Low Noise Amplifier GaAs Monolithic Microwave IC Description The CHA3666 is a two-stage self biased wide band monolithic low noise amplifier. D1 D2 The circuit is manufactured
( ) T arget R ecogn ition),,,,,,, ( IFF, Iden tification F riend o r Foe),,,,,,, ( N CTR, N on2 Cooperative T arget R ecogn ition), (
V o l. 33, N o. 11 N ovem ber, 2008 F ire Contro l and Comm and Contro l 33 11 2008 11 : 100220640 (2008) 1120005203 1, 1, 1, 2, 1 (11, 100072, 21, 100072) :,,,, g :,,, : TN 97111 : A The Iden tif ication
Yageo Chip Antenna Sum V doc
1 Yageo - Chip Antenna Version :Step. 2010 Features : Embedded antenna - small antennas with moderate gain and efficiency performance Ultra compact - various sizes (2012, 3012, 3216, 4018, 5010, 5320,
第1讲-电磁兼容导论.ppt
Advanced EMC +62784709 13601024327 [email protected] 1 1 1.1 1.2 1.3 1.4 1.5 1.6 EMC 2 1 166.111.63.4:1021 emc 303 3 1975 7 14 25 26 50 700 21 4 0 400GHz EMC 1994 25 5 6 1.1 Electromagnetic Compatibility
amp_b3.PDF
San Jose State University Department of Electrical Engineering ELECTRICAL ENGINEERING SENIOR PROJECT Microwave Amplifier Design (part 3) by Steve Garcia Jaime Cordoba Inderpreet Obhi December 15, 2003
untitled
( RF Application list Application Wireless mouse Wireless Keyboard Wireless joystick FRS (Family Radio Service) Remote control Car alarm Home security Cordless phone Video sender Wireless earphone microphone
PowerPoint Presentation
Sizing Handbook I 6 to 10 10w, w or 5w (3 to 4), w < Note: Port sizing guidelines are not inviolable rules true in all cases. For example, if meeting te eigt and widt requirements outlined result in a
APPLI002.DOC
SIEGET 25 Silicon Bipolar- Dielectric Resonator Oscillator (DRO) at 10 GHz Oscillators represent the basic microwave energy source for all microwave systems such as radar, communications and navigation.
Microsoft PowerPoint - Pres_ansoft_elettronica.ppt
1,5-40 GHz Meander Spiral Antenna Simulation and Design Presenter: Fabrizio Trotta Ansoft Corporation Application Introduction Design Specification Antenna Topology Numerical Method Approach Design Methodology
BranchLine Coupler - Quadrature
of 3 () Branchine oupler - Quadrature Zo Zo λ/4 90 NOTE This device is sensitive to load mismatches. () ange oupler (Quadrature) Output oupled φ90 Broadband coupling 3dB 0dB Quadrature Input λ/4 Directive
Balun Design
1 of 6 Balun Design In the design of mixers, push-pull amplifiers, baluns are used to link a symmetrical (balanced) circuit to a asymmetrical (unbalanced) circuit. Baluns are designed to have a precise
Presentation - Advanced Planar Antenna Designs for Wireless Devices
2003-11 Ansoft Workshop Advanced Planar Antenna Designs for Wireless Devices 翁金輅 (Kin-Lu Wong) 國立中山大學電機系 Dept. of Electrical Engineering National Sun Yat-Sen University Kaohsiung 80424, Taiwan E-mail:
TB215.doc
2 1 C5 10uF +28 V C4 R3 3.9k C8 R5 1k C18 R10 3.9k C23 10uF D1 5.6V D2 5.6V C11 10uF D3 5.6V L6 B P1 10k L3 P2 10k L5 P3 10k L7 B R2 9.1k R4 C6 SP201 C7 T1 R6 9.1k C9 R8 C12 L4 C13 T2 C16 T3 T4a R11 9.1k
Microsoft PowerPoint - seminaari 26_5_04_antenniteknologiat.ppt
Antenna technologies Antenna technologies Current status trends Outlook to different antenna solutions, examples Summary, challenges for the future Current status trends dual-band GSM tri-band GSM GPS
A Miniature GPS Planar Chip Antenna Integrated with Low Noise Amplifier
A Miniature GPS Planar Chip Antenna Integrated with Low Noise Amplifier 1 Chao-Wei Wang*, Yen-Ming Chen, Chang-Fa Yang Department of Electrical Engineering, National Taiwan University of Science and Technology
pages.pdf
A Novel Dual-Band Microstrip Antenna for WLAN Application R.J. Lin, M. Ye School of Communication and Information Engineering, Shanghai University, Shanghai 200072, China Keywords: dual-band; microstrip
SGS-Apache BQB proposal_04_11_2003
BQB qualification FCC/CE/e-mark/ITA service 2003 Apr. 11, 2003 BQB Qualification Service Apache/SGS Bluetooth Products Qualification Service SIG Cat. A standard be performed since Jan., 2003 All of RF
CSTHandOut
CST DESIGN STUDIO TM, CST PARTICLE STUDIO TM - 1 - Linking MATLAB and CST STUDIO USER NOTE This user note is centered on the use of CST MICROWAVE STUDIO (CST MWS) with MATLAB. MATLAB is a scientific computing
Novel 2-D Photonic Bandgap Structure For Microstrip Lines - IEEE Microwa ve and Guided Wave Letters
IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 8, NO. 2, FEBRUARY 1998 69 Novel 2-D Photonic Bandgap Structure for Microstrip Lines Vesna Radisic, Student Member, IEEE, Yongxi Qian, Member, IEEE, Roberto
AWT6166_Rev_0.3.PMD
FEATURES Integrated Vreg (regulated supply) Harmonic Performance 25 High Efficiency (PAE) at Pmax: GSM850, 54% GSM900, 56% DCS, 53% PCS, 51% +35 GSM850/900 Output Power at 3.5 V +33 DCS/PCS Output Power
書名:
8 I/O Circuit Package 8-2 VLSI / 8.1 I/O Circuit Schematic entry Layout I/O Circuit I/O IC [33] IC µm IC mm Bonding wire Bonding wire µm IC 8-1 Dual In line Package (DIP) Die Bonding Pad Bonding Wire Bonding
A stair-shaped slot antenna for the triple-band WLAN applications
of the constructed prototype at 5800 MHz (center frequency of the 5.8-GHz band), and similar directional radiation patterns are also obtained. Figure 5 shows the measured peak antenna gain for operating
Antenna Matching for the TRF7960 RFID Reader
Application Report SLOA135 May 2009 Antenna Matching for the TRF7960 RFID Reader John Schillinger... 1 Introduction This paper describes the design method for determining an antenna matching circuit. While
FSA W Low Voltage Dual DPDT Analog Switch
0.4: Low Voltage Dual DPDT Analog Switch General Description The FSA2467 is a Dual Double Pole Double Throw (DPDT) analog switch. The FSA2467 operates from a single 1.65V to 4.3V supply. The FSA2467 features
Directional Couplers.doc
Directional ouplers [] THE QUADRATURE (90 ) HYBRID The Hybrid coupler is often made of microstrip or stripline as shown in Figure. The microstrip form is also pictured in Figure 2. These couplers are 3
Microsoft Word - SLVU2.8-4 Rev04.doc
Low Capacitance TVS Array Description The is low capacitance transient voltage suppressor for high speed data interface that designed to protect sensitive electronics from damage or latch-up due to ESD
Integrated microstrip and rectangular waveguide in planar form - IEEE Microwave and Wireless Components Letters [see also IEEE Microwave and Guided Wave Letters]
68 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 11, NO. 2, FEBRUARY 2001 Integrated Microstrip and Rectangular Waveguide in Planar Form Dominic Deslandes and Ke Wu, Fellow, IEEE Abstract Usually
Full Band Waveguide-to-Microstrip Probe Transitions - Microwave Symposium Digest, 1999 IEEE MTT-S International
THlB-5 Full Band Waveguide-to-Microstrip Probe Transitions Yoke-Choy Leong' and Sander Weinreb2 'Department of Electrical and Computer Engineering University of Massachusetts, Amherst, MA 01003 Jet Propulsion
untitled
Compact Metamaterial High Isolation MIMO Antenna Subsystem Cheng-Jung Lee, Maha Achour, and Ajay Gummalla Rayspan Corporation, San Diego, CA, USA [email protected] Introduction The use of multiple antennas
Special Materials in CST STUDIO SUITE 2012
Modelling Thin Materials in CST STUDIO SUITE 2012 Lossy Metal Ohmic Sheets Tabulated Surface Impedance Thin Panel Various Material Types Material types Available in which solvers? * FIT TLM *Apart from
HFSS Antenna Design Kit
Ansoft HFSS Antenna Design Kit Arien Sligar 2007 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Overview of HFSS Antenna Design Kit GUI-based wizard tool Automates geometry creation, solution
3152 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 52, NO. 11, NOVEMBER 2004 (c) Fig. 2. y z plane radiation patterns ofoma computed using FDTD
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 52, NO. 11, NOVEMBER 2004 3151 An Omnidirectional Planar Microstrip Antenna Randy Bancroft and Blaine Bateman Abstract A new omnidirectional printed
Microsoft Word - Differential Circuit Comparison App note_B.doc
Sisonic and ECM in Circuits Date: Author: 20.Jan.2005 Bill Ryan Benefits of Circuits amplifiers are desirable to use in audio applications, especially those where signal levels are very low such as those
Combline Cavity Filter Design in HFSS
Presented by Jim Reed of Optimal Designs 3 Pole Cavity Combline Filter to be used in Demonstration for Filter Tuning Simulated / Measured Data for Real World Example, Compliments of Sierra Microwave Technologies
Hybrid of Monopole and Dipole Antennas for Concurrent 2.4- and 5-GHz WLAN Access Point
Hybrid of Monopole and Dipole Antennas for Concurrent 2.4- and 5-GHz WLAN Access Point Saou-Wen Su 1, Jui-Hung Chou 2 Network Access Strategic Business Unit Lite-On Technology Corp., No. 9, Chien I Road,
4.2 DC Bias
1 of Microwave Bipolar/FET Bias circuits F/Microwave transistors/fet s require some form of circuit to set the correct bias conditions for a particular F performance. There are two main types used an active
lumprlc.fm
Ansoft HFSS Engineering Note Lumped RLC Elements in HFSS Version 8 In Ansoft s High Frequency Structure Simulator (HFSS), a specified impedance boundary condition has always referred to field values because
Balun Design
1 of 6 Balun Design In the design of mixers, push-pull amplifiers, baluns are used to link a symmetrical (balanced) circuit to a asymmetrical (unbalanced) circuit. Baluns are designed to have a precise
RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS Qizheng Gu Nokia Mobile Phones, Inc. Q - Springer
RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS Qizheng Gu Nokia Mobile Phones, Inc. Q - Springer Gu, Qizheng, 1936- RF system
High-Q RF-MEMS Tunable Evanescent-Mode Cavity Filter
High-Q RF-MEMS Tunable Evanescent-Mode Cavity Filter Sang-June Park, Isak Reines, and Gabriel Rebeiz Qualcomm Incorporated San Diego, CA 92121 University of California San Diego La Jolla, CA 92093 Abstract
Application Note template form-tc-004f
_äìé`çêé» Optimising Current Consumption in CSR Products October 2006 CSR Cambridge Science Park Milton Road Cambridge CB4 0WH United Kingdom Registered in England 4187346 Tel: +44 (0)1223 692000 Fax:
CBW = Ri BW = - n*gd Table 3. Normalized coupling matrix for filter Wire diameter: 0.075inch I R1 =0.9
High Performance Helical Resonator Filters Ming Yu and Van Dokas COM DEV Ltd, 155 Sheldon Dr., Cambridge, Ontario, Canada, NIR 7H6 [email protected] Abstract - Complex filter functions are realized using
50 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 16, NO. 1, JANUARY 2006 Fig. 2. Geometry of the three-section PSL power divider. Fig. 5. Schem
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 16, NO. 1, JANUARY 2006 49 A Wideband Compact Parallel-Strip 180 Wilkinson Power Divider for Push Pull Circuitries L. Chiu, Student Member, IEEE, T.
Triple-band triangular-shaped meander monopole antenna with two coupled lines
TRIPLE-BAND TRIANGULAR-SHAPED MEANDER MONOPOLE ANTENNA WITH TWO COUPLED LINES Horng-Dean Chen Department of Electronic Engineering Cheng-Shiu Institute of Technology Kaohsiung, Taiwan 833, R.O.C. Received
ims2001_TUIF_28_1659_CD.PDF
Bias Circuits for GaAs HBT Power Amplifiers Esko Järvinen, Sami Kalajo, Mikko Matilainen* Nokia Mobile Phones, Itämerenkatu 11-13, FIN-00180, Helsinki, Finland *Nokia Research Center, Itämerenkatu 11-13,
Practical RF Printed Circuit Board Design
PRACTICAL RF PRINTED CIRCUIT BOARD DESIGN Geoff Smithson. Overview The electrical characteristics of the printed circuit board (PCB) used to physically mount and connect the circuit components in a high
untitled
ICSP006 Proceedings Analysis and Simulation of UHF RFID System Jin Li, Cheng Tao Modern Telecommunication Institute, Beijing Jiaotong University, Beijing 100044, P. R. China Email: [email protected] Abstract
Vortrag Arpad.ppt
RF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology June 11, 21 Contents Basic Amplifier Concepts Class A,
PADS Router PADS Router (KGS Technology Ltd.) Mentor ( Innoveda-PADS) PADS PowerPCB APLAC DPS CAD KGS 1989 PADS CAE/CAD/CAM EDA PCB PCB PCB PCB PCB PA
PADS2005 PADS Router ( BlazeRouter) www.kgs.com.hk PADS Router PADS Router (KGS Technology Ltd.) Mentor ( Innoveda-PADS) PADS PowerPCB APLAC DPS CAD KGS 1989 PADS CAE/CAD/CAM EDA PCB PCB PCB PCB PCB PADS
ý ý ý ý ý ý ý ý
梁昌洪 陈 曦 西安电子科技大学天线与微波技术国防重点实验室 陕西西安 ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý 梁昌洪 陈 曦 西安电子科技大学天线与微波技术国防重点实验室 陕西西安 下转第 页赵伟文 ³ ¼ À ¼º ¾ Å Ê º½ ¾Â± ÇÀ³ à À³Í Àºº Á»  À±ÄÀ¾ º¹µ±Ä ¾ºÂÉÑ»¾± ÀÂÀ³¼º Éź ÀÂ
LH_Series_Rev2014.pdf
REMINDERS Product information in this catalog is as of October 2013. All of the contents specified herein are subject to change without notice due to technical improvements, etc. Therefore, please check
投影片 1
RACCOON BOARD JORJIN OMAP4460 Processor Board V2.0 June 2012 1 Two Ways to Utilize RACCOON Wireless Connectivity Module WG7500 (WiFi/BT/FM/GPS) 4-in-1 TI JORJIN RACCOON AP Module OMAP4460 + TWL6032 + LPDDR2
Microsoft Word - OFC_bandpass_filter_OFC_final_new
29 OSA/OFC/NFOEC 29 Bandwidth-Variable Bandpass Filter based on Dispersion Engineered Tapered Fiber with External Polymer Cladding Kuei-Chu Hsu 1, Nan-Kuang Chen 2,3, Sen-Yih Chou 1,4, Shien-Kuei Liaw
