High Speed and High Power Connector Design Taiwan User Conference 2014
Introduction High speed connector: Electrically small Using differential signaling Data rate >100Mbps High power connector: Static to low frequency Carrying high current Consideration of thermal and mechanical effects
Typical Connector Design Workflow Design Virtual Prototype Analysis Measurement Manufacture Optimization
Connector Simulation Workflow Pre- Processing 3D CAD import Material definition PCB test fixture Solver Choice T-Solver F-Solver Post Processing TDR TDR cross probing S-parameter Eye diagram SPICE / Touchstone
Connector Simulation Workflow Pre- Processing 3D CAD import Material definition PCB test fixture Solver Choice T-Solver F-Solver Post Processing TDR TDR cross probing S-parameter Eye diagram SPICE / Touchstone
Material Definition Copper Alloy International Annealed Copper Standard (IACS) Copper reference conductivity 58M S/m as 100% 27% IACS conductivity 15.66M S/m * Data taken from First Copper Technology Co., LTD.
Material Definition - Substrate Dispersive material with Eps_r(f) The dielectric dissipation factor or tangent of the loss angle describes the losses Higher order dispersion model * Data taken from VECTRA LCP material (E130i)
Connector Simulation Workflow Pre- Processing 3D CAD import Material definition PCB test fixture Solver Choice T-Solver F-Solver Post Processing TDR TDR cross probing S-parameter Eye diagram SPICE / Touchstone
Solver Choice High geometrical complexity Broadband results Memory efficient Online TDR True transient co-simulation Electrically small structures Narrow band frequency range Many ports (direct solver) Conformal mesh (curved elements) Automatic energy based mesh adaptation
Connector Simulation Workflow Pre- Processing 3D CAD import Material definition PCB test fixture Solver Choice T-Solver F-Solver Post Processing TDR TDR cross probing S-parameter Eye diagram SPICE / Touchstone
Connector Design Tools What matter in connector design is impedance TDR (Time Domain Reflectometry) Impedance profile in time S-Parameter Frequency domain IL and X-Talks SPICE Extraction
TDR Response from Different Termination Zo ohm termination Short Open End time of TDR response shows the defined termination impedance TDR response up to 0.5ns remains the same independent from open or short termination
TDR Response from Different Environment Impedance overshoot Series L discontinuity Impedance undershoot Shunt C discontinuity Impedance overshoot & undershoot Combination L & C
Excitation Signal Step function Spectrum contains zero amplitude No meaningful s-parameter Gauss signal Wideband spectrum S-parameter results Z( t) i Zo i o( t) o( t) TDR response Z( t) Zo i( t) dt i( t) dt o( t) dt o( t) dt Recommended excitation signal: Gauss signal
TDR Resolution and Rise Time Faster rise time includes higher frequency content t 10~90% rise 0.876 f max Higher frequency means smaller wavelength Smaller wavelength leads to a better resolution of discontinuities
TDR Response Different Rise Time TDR response of 50 39 50 ohm loss free MS line Rise time in ns Pick the correct rise time based on the high-speed digital standard technologies and not by minimum distance of the discontinuities
Effect of Loss on TDR Response Lossy medium: attenuates the spikes and dip in TDR response decreases the rise time degrades the TDR resolution
Z(t) TDR Cross Probing Locating the discontinuity using the TDR Cross probing Only available in time domain solver Requires 3D time domain power flow result monitor
S-Parameter Scattering parameter describes the DUT performance Insertion loss, e.g. S21 Return loss, e.g. S11 X-talks: Near end x-talk, e.g. S31 Far end x-talk, e.g. S41 S11 Reconstruction of TDR response from return loss (reflection coefficient) S21 1 2 DUT 3 4 S31 S41
S-Parameter Result Typical S-Parameter results TDR response from the return loss
Connector Examples DisplayPort USB 3.0 High Speed Backplane Connector Power Connector
DisplayPort Connector Consists 1,2 or 4 differential data pairs 5.4Gbps raw data rate for each lane DisplayPort plug model DisplayPort receptacle model Joint model with activated cutting plane view
PCB Test Fixture and Excitation Port Waveguide port with differential signal definition Line impedance and differential mode pattern are automatically calculated
Simulation Setting Copper 100% IACS Plastic housing with Eps_r=4 and TanD=0.02 Fmax 6GHz ~ Trise=146ps T-solver with hexahedral mesh Energy decay -40dB Open boundary in all direction Hexahedral mesh view in x-normal plane
Z(t) TDR Result (Open End) Data line 1 Data line 2 h1 Time / ps h1>h2 higher parasitic inductance at data line 1 h2
Z(t) TDR Result Interior Design Modification w1 h1 Compensate the parasitic capacitance Increase the width space w1 100um Increase the height space h1 50um
Z(t) TDR Result Design Modification Adding simplified plastic cover at launcher Time / ps Add plastic cover at launcher helps to compensate the parasitic inductance Introduces higher parasitic capacitance Improve the TDR at the launcher (200ps-400ps)
S-Parameter Results Original Connector Modified Connector Return loss has been improved Staggered signal pin assignment helps to keep X-talk low - + G G - + - + G
Eye Diagram PRBS N=7 eye height= 0.94 eye width= 190ps 5Gbs data rate with trise=130ps Good insertion loss and low cross talk level results in proper eye opening
Example 2 USB 3.0 Standard A-Connector
USB 3.0 Standard A-Connector Same interface as USB 2.0 standard A-connector, but with added Superspeed USB Signal which offers 5 Gbps signal rate, 10x faster than Hi-Speed USB 2.0 Compatible with the USB 2.0 standard A-connector STP (Shielded Twisted Pair) used for USB 3.0 and Unshielded Twisted Pair (UTP) for USB 2.0 USB 3.0 Differential Signal Pair (STP) GND USB 3.0 Differential Signal Pair (STP) GND USB 2.0 Differential Signal Pair (UTP) Power
3D Simulation Settings Differential mode with 90ohm impedance Mated connector Fmax=11.52GHz for 50ps Trise (20%-80%) T-solver hexahedral mesh (22M mesh) Energy decay -40dB Open boundary in all directions Copper 100% IACS and LCP for plastic component Simplified 3D Cable Cross section
Cable Construction 3.3dB loss @ 2.5GHz Model of USB3.0 cable cross section using CST CABLE STUDIO Low insertion loss at 2.5GHz for 3m long USB 3.0 cable * Data taken from Universal Serial Bus 3.0 Specification
Z(t) Differential TDR mated connector Time / ns
Differential Insertion Loss Differential insertion loss -7.5dB @2.5GHz for mated cable assembly Mated connector Input Mated connector Output USB 3.0 cable Circuit simulator CST DESIGN STUDIO Frequency / GHz 5.3dB loss @2.5GHz
Differential Crosstalk Differential NEXT Crosstalk between the USB 3.0 differential pairs Frequency / GHz -45dB Xtalk @2.5GHz
Eye Diagram UI = 200ps 5Gbs data rate Eye width and height are calculated from the center UI minimum eye width minimum eye height
Example 3 High Speed Backplane Connector
Daughter card side Backplane Connector Backplane side Differential pair pin assignments Up to 20Gbs data rate for each differential pair Staggered pin configuration and edge-coupled design to achieve low loss and low cross talk
Simulation Settings Mated connector Fmax=30GHz T-solver with hexahedral mesh (17M mesh) Open boundary in all directions -40dB energy decay Conducting material: Brass (28% IACS) Non-conducting material: LCP Simplified PCB test fixture (output) Simplified PCB test fixture (input)
Z(t) Differential TDR TDR with 50ps (10%-90%) Modification of interior design to meet the TDR specification A B C D E F G H I J Time/ns
Z(t) Interior Modification Time/ns
Differential Insertion Loss A B C D E F G H I J Frequency / GHz Losses for the selected pairs are within the limit <1dB for 6Gbs (3GHz) <2dB for 20Gbs (10GHz)
NEXT (%) Differential Crosstalk (NEXT) Crosstalk measurement always on daughter card side: NEXT measurement: Signal injected on daughter card side. NEXT <3.25% with 50ps (10%-90%) NEXT 1 Peak Peak NEXT: 1.2% Time/ns in NEXT 2
FEXT (%) Differential Crosstalk (FEXT) FEXT measurement: Signal injected on backplane side FEXT <5.75% with 50ps (10%-90%) in Peak Peak FEXT: 1% FEXT 1 Time/ns FEXT 2
Crosstalk (%) Worst Case Crosstalk Peak Peak NEXT: 2.7% Time/ns Multi-pair-active crosstalk when the signal is injected from all adjacent pairs. One victim pair and six aggressor pairs
Eye Diagram PRBS N=7 eye height= 0.9 eye width= 90ps Eye diagram from the center output port at daughter card side with UI=100ps (20Gbs) Circuit simulation time using 40x40 s-matrix SPICE equivalent network extraction: 12m Transient simulation: 40s
Example 4 Power Connector
Multidisciplinary Approach Losses in material introduced from HF EM-field Structure deformation detunes the HF-performance Temperature increment as the result of losses Losses in material introduced from stationary or LF EM-field Increasing of temperature leads to structure deformation
Simulation Setup Input 6x 7.5A Simulation of mated connector DC current for each cable 7.5A Brass material for pin and socket Nylon material for housing Additional material parameter definitions: Thermal conductivity Thermal expansion coefficient Young s modulus Output
Simulation Workflow Stationary current solver Current distribution Export thermal loss Stationary thermal solver Source: thermal loss Temp. distribution Heat flow Automatic update all tasks! original structure Structural mechanic solver Source: temp. distr. Deformation deformed structure
Conclusions Pre-processing: Supports various formats of 3D CAD import (CATIA, Pro-E, STEP, etc.) and various formats of PCB layout (ODB++, Zuken, Cadence, etc.) Realistic material parameter modeling for HF and Multiphysic simulation Realistic cable modeling using CST CABLE STUDIO Complete technology T! and F! offer flexibility to choose most efficient solver HPC computing supported from both solvers Post processing: Automatic line impedance calculation, TDR, s-parameter and eye diagram Fast and accurate circuit simulation using CST DESIGN STUDIO Seamless simulation workflow for system simulation
易迪拓培训 专注于微波 射频 天线设计人才的培养网址 :http://www.edatop.com C S T 视频培训课程推荐 CST 微波工作室 (CST Microwave Studio) 是 CST 工作室套装中最核心的一个子软件, 主要用于三维电磁问题的仿真分析, 可计算任意结构任意材料电大宽带的电磁问题 广泛应用于高频 / 微波无源器件的仿真设计 各种类型的天线设计 雷达散射截面分析 电磁兼容分析和信号完整性分析等各个方面 易迪拓培训 (www.edatop.com) 推出的 CST 微波工作室视频培训课程由经验丰富的专家授课, 旨在帮助用户能够快速地学习掌握 CST 微波工作室的各项功能 使用操作和工程应用 购买 CST 教学视频培训课程套装, 还可超值赠送 3 个月免费在线学习答疑, 让您学习无忧 CST 学习培训课程套装该培训套装由易迪拓培训联合微波 EDA 网共同推出, 是最全面 系统 专业的 CST 微波工作室培训课程套装, 所有课程都由经验丰富的专家授课, 视频教学, 可以帮助您从零开始, 全面系统地学习 CST 微波工作的各项功能及其在微波射频 天线设计等领域的设计应用 且购买该套装, 还可超值赠送 3 个月免费学习答疑 课程网址 :http://www.edatop.com/peixun/cst/24.html HFSS 天线设计培训课程套装套装共含 5 门视频培训课程, 课程从基础讲起, 内容由浅入深, 理论介绍和实际操作讲解相结合, 全面系统的讲解了 CST 微波工作室天线设计的全过程 是国内最全面 最专业的 CST 天线设计课程, 可以帮助您快速学习掌握如何使用 CST 设计天线, 让天线设计不再难 课程网址 :http://www.edatop.com/peixun/cst/127.html 更多 CST 视频培训课程 : CST 微波工作室入门与应用详解 中文视频教程 CST 微波工作室初学者的最佳培训课程, 由工程经验丰富的资深专家授课, 全程中文讲解, 高清视频, 直观易学 网址 :http://www.edatop.com/peixun/cst/25.html CST 微波工作室天线设计详解 中文视频培训教程重点讲解天线设计相关知识和使用 CST 进行天线仿真设计的使用操作, 是学习掌握使用 CST 微波工作室进行天线设计的必备课程, 网址 :http://www.edatop.com/peixun/cst/26.html CST 阵列天线仿真设计实例详解 中文视频教程阵列天线设计专业性要求很高, 因此相关培训课程是少之又少, 该门培训课程由易迪拓培训重金聘请专家讲解 ; 课程网址 :http://www.edatop.com/peixun/cst/123.html 更多 CST 培训课程, 敬请浏览 :http://www.edatop.com/peixun/cst
` 专注于微波 射频 天线设计人才的培养易迪拓培训网址 :http://www.edatop.com 关于易迪拓培训 : 易迪拓培训 (www.edatop.com) 由数名来自于研发第一线的资深工程师发起成立, 一直致力和专注于微波 射频 天线设计研发人才的培养 ; 后于 2006 年整合合并微波 EDA 网 (www.mweda.com), 现已发展成为国内最大的微波射频和天线设计人才培养基地, 成功推出多套微波射频以及天线设计相关培训课程和 ADS HFSS 等专业软件使用培训课程, 广受客户好评 ; 并先后与人民邮电出版社 电子工业出版社合作出版了多本专业图书, 帮助数万名工程师提升了专业技术能力 客户遍布中兴通讯 研通高频 埃威航电 国人通信等多家国内知名公司, 以及台湾工业技术研究院 永业科技 全一电子等多家台湾地区企业 我们的课程优势 : 成立于 2004 年,10 多年丰富的行业经验 一直专注于微波射频和天线设计工程师的培养, 更了解该行业对人才的要求 视频课程 既能达到现场培训的效果, 又能免除您舟车劳顿的辛苦, 学习工作两不误 经验丰富的一线资深工程师讲授, 结合实际工程案例, 直观 实用 易学 联系我们 : 易迪拓培训官网 :http://www.edatop.com 微波 EDA 网 :http://www.mweda.com 官方淘宝店 :http://shop36920890.taobao.com 专注于微波 射频 天线设计人才的培养易迪拓培训官方网址 :http://www.edatop.com 淘宝网店 :http://shop36920890.taobao.com