untitled

Similar documents
untitled

第八章 容忍度分析(Iolerancing)

2 Abstract 厦门大学博硕士论文摘要库 1

星河33期.FIT)

UDC Empirical Researches on Pricing of Corporate Bonds with Macro Factors 厦门大学博硕士论文摘要库

: p Previous Next First Last Back Forward 1





!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

UDC The Policy Risk and Prevention in Chinese Securities Market

Microsoft Word 谢雯雯.doc

证券投资组合的实证研究及绩效评价

三维数据点的曲率计算

➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉ Lecture on Stochastic Processes (by Lijun Bo) 2

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π


不确定性环境下公司并购的估价:一种实物期权.doc

untitled

南華大學數位論文

《红楼梦》中茗烟与李贵的对比分析

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2

99 學年度班群總介紹 第 370 期 班群總導 陳怡靜 G45 班群總導 陳怡靜(河馬) A 家 惠如 家浩 T 格 宜蓁 小 霖 怡 家 M 璇 均 蓁 雴 家 數學領域 珈玲 國燈 英領域 Kent

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

: ( ),,



從詩歌的鑒賞談生命價值的建構

避孕篇

2-7.FIT)

Microsoft Word - 004王皓 doc


國立桃園高中96學年度新生始業輔導新生手冊目錄

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02


报 告 1: 郑 斌 教 授, 美 国 俄 克 拉 荷 马 大 学 医 学 图 像 特 征 分 析 与 癌 症 风 险 评 估 方 法 摘 要 : 准 确 的 评 估 癌 症 近 期 发 病 风 险 和 预 后 或 者 治 疗 效 果 是 发 展 和 建 立 精 准 医 学 的 一 个 重 要 前

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

Lorem ipsum dolor sit amet, consectetuer adipiscing elit

<4D F736F F D20A46AA4AFACECA7DEA46ABEC7B1D0AE76ACE3A873AD70B565A6A8AA47B3F8A769A4AFACE >

Chapter 7 Sampling Distribution and Central Limit Theorem

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

spss.doc

WTO

國立中山大學學位論文典藏.PDF

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

Microsoft Word - Students-app_2014

Microsoft PowerPoint 兩性簡報

Abstract Since 1980 s, the Coca-Cola came into China and developed rapidly. From 1985 to now, the numbers of bottlers has increased from 3 to 23, and

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &

國立中山大學學位論文典藏

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %

我的野蛮女友(网络小说)中文版


中铁某集团人力资源咨询项目建议书

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, )

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η


3.1 ( ) (Expectation) (Conditional Mean) (Median) Previous Next

微积分 授课讲义

Microsoft Word - ChineseSATII .doc

, & % # & # # & % & + # & # # # & # % #,

Construction of Chinese pediatric standard database A Dissertation Submitted for the Master s Degree Candidate:linan Adviser:Prof. Han Xinmin Nanjing

減災扶貧計劃

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

Microsoft Word - D-2°w¶Ë¬ì¹ï¤U�Iµh®{¤âÀˬd¬yµ{_¬x°ö�×__P _.doc

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

2

Microsoft Word doc

Transcription:

Statstcs & Data Aalyss 3 Zhu Huaqu @Pekg Uversty Get your facts frst, the you ca dstort them as you please. Mark Tw Our behavor atttudes ad sometmes actos Our behavor, atttudes, ad sometmes actos are based o samples. Elemets of Samplg Theory ad Methods

3.1 31 (Image by MIT OpeCourseWare. Based o Glbert, Norma. Statstcs. W.B. Sauders Co., 1976.)

3.1.1 {Ω, F Ω }Φ {Ω, F Ω, Φ}statstcal model statstcal structure {Ω, F Ω, Φ}{Ω, F Ω, Φ }, F F,, F,, F, {Ω,, F Ω Ω, Φ}{Ω, {, F Ω Ω, Φ}

3.1. X, Θ {X } Heght Θ ~ X, Θ {X } Θ ~ Θ

Samplg s that part of statstcal practce cocered wth the selecto of dvdual observatos teded to yeld some kowledge about a populato of cocer, especally for the purposes of statstcal ferece. X μ radom samplg XX radom sample X={x }=1,,, N {X 1, X,, X }, <N X {X } =1,,,

3.1.3 XN{x{ }=1, 1,, N 1 N populato mea N 1 x populato total N 1 x N populato varace N N 1 1 ( x ) ( x ) N 1 N 1 populato stadard devato s

Example 3.1E. col K-1Eschercha col K-1 MG1655 GCE. col K-1 4,639,14C GAT4,89 GCDNA GC GC%4,89 %, GC N=489μ=51.01σ =3.91s=4.89

3. 3 : X 1,X,,X <+

3..1 χ tf χ Ch-square dstrbuto XN(0, 1)(X 1, X,, X ) X (=1,, ) f X X X 1... x 1 1 x e, x 0 ( x ) 0, x 0 χ χ ~χ () f x χ () () x 1 1 x e, x 0 0, x 0 =1 = =3 =4 =5

x, F x χ () ( ) =1 = =3 =4 =5 χ 1 1 ~ ( 1), ~ ( ) 1, ~ ( ) 1 1 χ ~χ () E ( ) ( ) D

χ 3χ ()αα0<α<1χ α () P ( ) f( x) dx χ α ()χ ()α χ α ()

χ χ Pearso- χ (1) () (3) Frst descrbed by the Germa statstca Helmert papers of 1875 where he computed the samplg dstrbuto of the sample varace of a ormal populato. p Thus Germa ths was tradtoally kow as Helmert dstrbuto. Idepedetly redscovered by the Eglsh mathematca Pearso the cotext of goodess of ft, for whch he developed hs Pearso's ch-squared test, wth computed table of values publshed 190. Fsher Karl Pearso (1857 1936) Fredrch Robert Helmert (1843 1917) t t dstrbuto X~N(0, 1)Y~χ ()X, X Y X T Y / 1 1 t f () t 1, t TtStudet T~t()

Wllam Sealy Gosset 18761937 1937 Studett 1 1 t f() t 1, t =1 =4 =8 =1 N(0, 1) t()

=1 = =5 =10 =+ t() t 1f(t)t = 0 Studet N(0, 1)N(0, 1) 1 lm f ( t ) e t Desty of the t-dstrbuto for 1,, 3, 5, 10, ad 30 df compared to the stadard ormal dstrbuto (blue).

t 3t()α α0<α<1t α () t ( ) P t t ( ) f ( t) dt t α ()t()α t α () f t dt t ( ) () 1 α α

F F dstrbutofsher-sedecor U~χ (), V~χ (m)u, V U / F V / m m 1 ( ) y m, y 0 m f ( y ) m y ( ) ( ) 1 m 0, y 0 F(, m)ff~f(, F(, m) 1 m ( ) y m, y 0 m f ( y) m y ( ) ( ) 1 m 0, y 0 =1, m=1 =, m=1 =5, m= =100, m=1 =100, m=100 F(, m)

=1, m=1 =, m=1 =5, m= =100, m=1 =100, m=100 F(, m) F 1F~F(, m) =1 1 ~ Fm (, ) F F(1, m) t( m)

3α0<α<1F α (, m) F (, m) P F F (, m) f( y) dy F α (, m)f(, m)α F 4 1 1 (, m) F ( m, ) F α (, m)

3.. statstc samplg dstrbuto XN(μ, σ )(X(X 1, X,, X ) X (=1,, ) 1 1 X ~ N (, ), where X X 1 1 S ~ ( 1), where S ( X ) X 1 X 1 S 3 1

XN(μ, σ )(X 1, X,, X ) X (=1,, ) T ( X ) S ~ t( 1) (X 1, X,, X )(Y 1, Y,, Y m )N(μ 1, σ 1 )N(μ, σ ) ( X Y ) ( 1 ) ~ ( ) T t m 1 1 S w m ( 1) S1 ( m 1) S S w m m 1 1 S1 ( X X ), S ( Y Y) 1 m 1 1 1

(X 1, X,, X )(Y 1, Y,, Y m ) N(μ 1, σ 1 )N(μ, σ ) S / F ~ F ( 1, m 1) S 1 1 / 1 1 S X X S Y Y m 1 ( ), ( ) 1 1 m 1 1 3.3 33 3 Smple Radom Samplg χ tf Samples are draw radomly from the populato, esurg that all parts of the populato lt have a statstcally ttt equal chace of beg selected. Wth SRS method, each member of the populato has a statstcally equal chace of beg selected as a sample, thus reducg bas the sample. SRS s the best approach f lttle or othg s kow about the populato. lt

(smple radom samplgsrs) X X(X 1, X,, X ) (X( 1, X,, X ) ) IID 1(X 1,X,,X ) (X 1, X,, X )X (X 1, X,, X ) (X 1, X,, X ) 1 1XX XX 3XX

1 (wth replacemet) SRSSRS N 3 X =1,,, X 4 X 1, X,, X 5wthout replacemet < 0.05N

Example 3. 0 XN(X(X 1, X,, X ) 1sample mea N 1 1 X X ~ x N 1 1 sample varace 1 1 s X X x N ( ) ~ ( ) 1 1 N 1

(X 1, X,, X ) 3.3.1 331 31 Example 3 3E colk 1Eschercha col K 1 MG1655 Example 3.3E. col K-1Eschercha col K-1 MG1655 GC489 = 10, 0, 30, 40500

μ X E ( X ) 1 X 1 ubased estmate

ubased estmate: A statstc t t s sad to be a ubased estmate t of a gve parameter whe the mea of the samplg dstrbuto of that statstc ca be show to be equal to the parameter beg estmated. E ( X ) X 1 1 DX X ( ) (1 ) N 1 Nσ 1 X <<N X

3.3. 33 3 1 s ( X X ) 1 1 N Es ( ) N 1 Nσ based estmate

N 1 1 N 1 s. s X X 1 N 1 N N>>N 1 ( ) 1 1 s X X 1 ; 1 s ( X X ) 1 X 1

3.3.3 333 XN{x{x }=1,,, N 1.. rad( ) srad( ) 3.

3.3.4 334 34 xynn r N 1 y N y N 1 x x N N 1 1 N 1 1 y x r y x 1 N N 1 XN {(X 1, Y 1 ), (X, Y ),, (X, Y )} R r R 1 Y Y X 1 X R 1 1 1 1 Y X

R 1 X Y XY x DR ( ) r r 1 1 1 1 r r N1 1 N x y N xy x y 1 x N y X Y N 1 x y N N 1 x y xy Y X xy N XY N 1 ρ x x y y R 1 1 1 D R r r ( ) 1 x y x y N 1 x

Y R X 1 1 1 ER ( ) r 1 r N 1 x x x y 1D(R), ( E(R) r μ x μ x D(R), ( E(R) r R 1 1 1 D ( R ) 1 R s x sy Rsxy N 1 X 1 1 1 E ( R ) r 1 R s x Rs xy N 1 X 1 s 1 ( X ) x X s ( Y ) y Y 1 1 1 1 1 s ( X )( ) xy X Y Y 1 1

3 RE(R)-r o(1/) R 4 1 Y 1 X 1 Y 1 1 X 1 Example 3.41976Herkso39319681

3.4 34 Why? 1 N1 1 N 1 X s. s X X 1 1 N 1 N 1 1 E( X) DX ( ) (1 ) X N 1 1 N Es ( ) N 1 X

Stratfed Radom Samplg Whe the populato exhbts a regularly occurrg or predctable strata, samples ca be draw radomly from each of the stratum. Ths method esures that all dvduals wth a stratum have a statstcally equal chace of beg selected for the study. subpopulato 1 1 3

3.4.1 341 XLN l, l=1,,, Ll N1N... NL N l l l xl, 1 1,,..., Nl, l 1 1,,..., L l L N l L L 1 1 xl Nl l Wl l, N N W l=1 l=l L N l ( xl ) l1 1 l1 l1 l1 1 l Nl N 1 N lweght l N Nl 1 l 1 x l l X ll 1l, Xl,..., Xl l l l 1 1 X l X s l l Xl X l l 1 1 l 1 L L N l s l l l l1 N l1 X X W X l=1 l=l L L N l s l l l l1 N l1 s s Ws

X s L WX l l1 L s l l l 1 E X W E X l L 1 l 1 s l 1 l D X W 1 l l N l 1 3.4. strata allocato scheme D X W W L L 1 1 l l s l 1 l l l1 l Nl 1 l1 l l=1 l=l

Neyma Neyma optmal allocato scheme D X s W l l l L, l 1 1,,..., L W k 11 k k 1... L Neyma 1 W l l W l l L 1 s l l Neyma l 1 D X W

1... L W, l 1 1,,..., L l l proportoal allocato scheme 1 1 L s W l l D X proporto l 1

Example 3.5KID (Kds Ipatet Database ): database of hosptal patet stays for chldre. To detfy, track, ad aalyze atoal treds health care utlzato, access, charges, qualty, ad outcomes. Composed of more tha 100 clcal ad oclcal varables for each hosptal stay. These clude: (1) Prmary ad secodary dagoses; () Prmary ad secodary procedures; (3) Admsso ad dscharge status; (4) Patet demographcs; (5) Expected paymet source; (6) Total charges; (7) Legth of stay; (8) Hosptal characterstcs (e.g., (eg owershp, sze, teachg status). For the purposes of calculatg dscharge weghts, we stratfed hosptals o sx characterstcs: (1) Geographc Rego: Northeast, Mdwest, West, ad South; () Cotrol : govermet ofederal, prvate ot-for-proft, ft ad prvate vestor-owed; (3) Locato: urba or rural. (4) Teachg Status: teachg or oteachg. (5) Bedsze: small, medum, ad large. (6) Hosptal Type : chldre s or other hosptal 1

3.5 35 3.5.1 1. systematc c radom samplg K = N / N Systematc Radom Samplg Be useful for samplg data that are moble or dyamc, such as dscharge from a process (e.g., takg a total 0 samples every fve mutes for oe hour).

. cluster radom samplg groups, clusters Populato Smple radom samplg o groups Sample

1 1 3. mult-stage radom samplg groups, or clusters Populato Smple radom samplg o groups Radom samplg Sample

1 1 3 3.5. 35 1

1. Quota samplg strata 1. Sowball samplg A type ofpurposve p samplg, t volves detfyg oe or more people from the populato beg researched who ca the detfy other members of the populato who, tur ca detfy further members ad so o. A substatal umber of people ca be detfed ad approached to take part the research. Sowball samplg s also kow as etwork samplg ad s partcularly useful whe t s dffcult to detfy members of a populato as may be the case whe researchg hard-to-reach groups.

3. Voluteer samplg A commo method of voluteer samplg s phoe- samplg, used maly to gauge publc opo o curret affars ssues such as preferred poltcal party, captal pushmet, etc. People are asked to telephoe ther vote o a partcular ssue wth a certa tme, wth o lmt to the umber of people who ca call. Ufortuately, there s also o lmt to the umber of tmes a perso may phoe through ther vote. Ths s a major reaso why t s hghly ulkely that ths type of samplg wll produce a represetatve sample. As well, people who ted to call for these surveys may have qute dfferet vews from those who do ot to call. Example 3.61936Alfred M Lado Frakl D Roosevelt Lterary Dgest 10003057% LadoLterary DgestLado Roosevelt6%

3.6 36* 1.. 1 (Weghtg adjustmet method) Poltz-Smmos

Imputato method Mea mputato Deductve mputato Rato mputato Regressve g mputato Nearest eghbor mputato Hot deck mputato 3.7 37* 3.7.1 3.7. 37 Gbbs

Further readg Govdarajulu Z., Elemets of Samplg Theory ad Methods, by Pearso Educato Asa Ltd., 1999 005 010