4 岩土力学 9 年 管片上浮原因分析.1 衬砌环受力分析.1.1 衬砌成环时受力状态 当衬砌管片刚拼装成环后, 衬砌环处于盾尾保 护之内, 仅受自重作用, 其整体运动受盾构机支配 当盾构机掘削土体同时自重作用于地层后, 由于一 般盾构机重量小于开挖土体的重量, 故地层应力会 进行重分布, 使盾构机

Similar documents


第 10 期 姜忻良等 : 天津地铁盾构施工地层变形实测及动态模拟 1613 底层深度 / m 名称 含水率 ω / % Table 1 密度 ρ / g cm -3 表 1 各层土体参数 Physical parameter in different soils 土粒比重 G s 初始孔隙比 e


Soliman Addenbrooke Potts Chehade Shahrour Fig. 1 Plan view for construction site m 2

Ashdgsahgdh

11 25 stable state. These conclusions were basically consistent with the analysis results of the multi - stage landslide in loess area with the Monte

5 551 [3-].. [5]. [6]. [7].. API API. 1 [8-9]. [1]. W = W 1) y). x [11-12] D 2 2πR = 2z E + 2R arcsin D δ R z E = πr 1 + πr ) 2 arcsin

successful and it testified the validity of the designing and construction of the excavation engineering in soft soil. Key words subway tunnel

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip


#4 ~ #5 12 m m m 1. 5 m # m mm m Z4 Z5

第 05 期 董房等 : 一种卫星遥测在线状态监测及分析系统的设计 WEB 1 2 总体功能及组成 2.1 总体功能 1 2 3Web 2.2 结构组成 Web WEB WEB 2.3 系统各模块接口关系

m K K K K m Fig. 2 The plan layout of K K segment p

2015年中文第1期(111y)(copy)

Lake Pont Tower m m Fg 2 2 Schematc dagram of temporary supports 1 Fg 1 Whole structure A

压 缩 分 散 型 预 应 力 锚 索 近 年 来 有 了 较 多 的 应 用, 并 取 得 了 良 好 的 加 固 效 果 软 弱 岩 土 体 的 主 要 特 性 是 无 论 其 峰 值 强 度 还 是 残 余 强 度 都 是 很 低 的, 其 承 载 力 低 稳 定 性 差 压 缩 分 散 型

99710b43ZW.PDF

& & ) ( +( #, # &,! # +., ) # % # # % ( #

标题

2 ( 自 然 科 学 版 ) 第 20 卷 波 ). 这 种 压 缩 波 空 气 必 然 有 一 部 分 要 绕 流 到 车 身 两 端 的 环 状 空 间 中, 形 成 与 列 车 运 行 方 向 相 反 的 空 气 流 动. 在 列 车 尾 部, 会 产 生 低 于 大 气 压 的 空 气 流

cm /s c d 1 /40 1 /4 1 / / / /m /Hz /kn / kn m ~

Microsoft Word 任 辉_new_.doc

上海科技大学 上海科技大学 上海科技大学 上海科技大学 上海科技大学 上海科技大学 上海科技大学 20142

Force-Velocty Relatonshp of Vscous Dampers F D C u& sgn ( u& ) Lne : F D C N V, Nonlnear Damper wth < Lne : F D C L V, Lnear Damper Lnear Vscous Dampe

2

& &((. ) ( & ) 6 0 &6,: & ) ; ; < 7 ; = = ;# > <# > 7 # 0 7#? Α <7 7 < = ; <

14-02.indd

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5,

<D2BDC1C6BDA1BFB5CDB6C8DAD7CAB8DFB7E5C2DBCCB3B2CEBBE1C3FBB5A52E786C7378>

展, 对 电 子 浆 料 的 性 能 也 提 出 了 更 高 的 要 求, 传 统 内 随 着 驱 动 轴 和 混 合 液 体 在 狭 窄 间 隙 内 作 畸 形 圆 周 的 三 辊 工 艺 已 不 能 满 足 PDP 发 展 对 浆 料 的 需 求 因 运 动, 因 而 产 生 很

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

現代學術之建立 陳平 美學十五講 淩繼堯 美學 論集 徐複觀 書店出版社 的方位 陳寶生 宣傳 敦煌文藝出版社 論集續篇 徐複觀 書店出版社 莊子哲學 王博 道家 的天方學 沙宗平 伊斯蘭教 周易 經傳十


! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

91 岩土力学 27 年 2 工程概况 南京地铁一号线 TA15 标段属古河道漫滩地貌, 基岩埋藏较深, 均大于 25 m 区间盾构隧道主要位于淤泥质粉质黏土 粉质黏土 粉细砂地层, 地质条件复杂, 具体表现为地下水埋藏较浅 土层透水性强 上覆土层多, 且土质差异较大等特点 结合隧道处于高透水性砂性

A4

Microsoft Word 谢雯雯.doc

通 过 厂 变 带 电, 这 种 设 计 减 少 了 机 组 自 带 厂 用 电 负 荷 能 力, 降 低 了 锅 炉 满 足 FCB 时 最 低 稳 燃 工 况, 同 时 造 成 燃 烧 调 整 量 加 大 本 电 厂 在 FCB 试 验 时, 电 泵 不 联 启, 始 终 保 持 汽 泵 运 行

SVM OA 1 SVM MLP Tab 1 1 Drug feature data quantization table

1 引言

! " # $ % & (( %) "*+,- &.(/-) & ( 0 & 1! % " % # % & & $ % "/()%!"# (( (02-03 /(((.1/.2( 4 //). /$0 3)0%. /1/%-2 (( ) / ((0 // "*+,- &.(/-) & ( 0 & 1

ms JF12 1] ms.. ( ) ] 3] 4-5] 6-7]. ( ) Hz. 2. 8] ( ). ( ). 9-11] ]. ( ) 14].. 15].. (JF12) km 5 9

Rupture Index 12 4 a SPB C - 1 b SPB C Fig. 1 Model dimension 1 2 Fig. 2 Position of welding seam Fig s Temperature distrib

2 2 DGJ m ~ 3 m 4. 2 m m 7. 5 ~ 8 m m 3. 5 m 4 3 m

40 强 度 与 环 境 2010 年 强 烈 的 振 动 和 冲 击 载 荷, 这 就 对 阀 门 管 路 等 部 件 连 接 的 静 密 封 结 构 提 出 了 很 高 的 要 求 某 液 体 火 箭 发 动 机 静 密 封 涉 及 高 压 超 低 温 大 尺 寸 三 个 严 酷 条 件, 具

doc

/ / /

增 刊 谢 小 林, 等. 上 海 中 心 裙 房 深 大 基 坑 逆 作 开 挖 设 计 及 实 践 745 类 型, 水 位 埋 深 一 般 为 地 表 下.0~.7 m 场 地 地 表 以 下 27 m 处 分 布 7 层 砂 性 土, 为 第 一 承 压 含 水 层 ; 9 层 砂 性 土

《分析化学辞典》_数据处理条目_1.DOC

g 100mv /g 0. 5 ~ 5kHz 1 YSV8116 DASP 1 N 2. 2 [ M] { x } + [ C] { x } + [ K]{ x } = { f t } 1 M C K 3 M C K f t x t 1 [ H( ω )] = - ω 2

第 03 期 刘高军等 : 基于 CNONIX 的 XML 与 EXCEL 相互转换技术研究 XML XML CNONIX XML EXCEL EXCEL EXCEL EXCEL CNONIXEXCEL XML EXCEL CNONIX XML EXCEL CNONIX 1 CNONIX 数据元分析

(2002) Gartner Group Toelle and Tersine(1989) VMI (1998) (VMI,Vender-Managed Inventory) (2003) (VMI,Vender-Managed Inventory) VMI AHP VMI - 133


218 路基工程 SubgradeEngineering 218 年第 4 期 ( 总期 199 期 ) 宾馆及附近住宅小区, 南侧为顺德二手车市场及宁波奥星汽车服务有限公司, 西侧为鄞州银行及万国商城 地铁 2 号线鄞石区间采用单层装配式钢筋混凝土衬砌, 衬砌管片外径 62mm, 内径 55mm,

% %! # % & ( ) % # + # # % # # & & % ( #,. %

θ 1 = φ n -n 2 2 n AR n φ i = 0 1 = a t - θ θ m a t-m 3 3 m MA m 1. 2 ρ k = R k /R 0 5 Akaike ρ k 1 AIC = n ln δ 2

~ ~ ~

85% NCEP CFS 10 CFS CFS BP BP BP ~ 15 d CFS BP r - 1 r CFS 2. 1 CFS 10% 50% 3 d CFS Cli


作为市场化的人口流动

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α

自然科学版 预处理 视盘粗定位 视盘垂直坐标的粗定位 视盘水平坐标的粗定位

岩 土 力 学 2009 年 646 外 长 寿 沥 青 路 面 结 构 设 计 方 法 进 行 必 要 的 技 术 储 备 辙 深 度 作 为 判 断 标 准, 是 因 为 过 去 美 国 对 在 役 路 面 的 调 查 表 明, 达 到 这 样 的 损 坏 程 度, 一 般 就 需 要 启 动

% 30% % % % %

mm ~

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

Microsoft Word - 007韩月旺.doc

VLBI2010 [2] 1 mm EOP VLBI VLBI [3 5] VLBI h [6 11] VLBI VLBI VLBI VLBI VLBI GPS GPS ( ) [12] VLBI 10 m VLBI 65 m [13,14] (referen

Microsoft Word 定版

Landscape Theory & Study 17


5 223 PLAXIS3D (2015) 30m 7 2 DB20-1~DB20-7DB21-1~DB m DB A~ R K 3 m =340m( R=350 m) 1 ~6 2 1 DK ~ DK (DK

标题

34 7 S R θ Z θ Z R A B C D PTP θ t 0 = θ 0 θ t 0 = 0 θ t 0 = 0 θ t = θ θ t = 0 θ t = 0 θ t V max θ t a max 3 θ t A θ t t 0 t / V max a max A = 3 4 S S

ULC ULC ULC ULC 1. 88

24 26,,,,,,,,, Nsho [7] Nakadokoro [8],,,, 2 (Tradtonal estmaton of mage Jacoban matrx), f(t 1 ) p(t 2 ) : f(t 1 ) = [f 1 (t 1 ), f 2 (t 1 ),, f m (t

2010/8 刘 文 革. 我 国 无 籽 西 瓜 产 业 发 展 状 况 与 对 策 省 份 表 1 分 研 究 尧 栽 培 生 理 尧 转 基 因 等 方 面 研 究 不 断 深 入 袁 并 通 过 研 究 培 养 了 一 大 批 博 士 尧 硕 士 袁 充 实 到 无 籽 西 瓜

Microsoft Word - d27 彭玉柱.doc

Microsoft Word - A _ doc

,

月32期

第16卷 第2期 邯郸学院学报 年6月

<4D F736F F D20C8EDCDC1B5D8BBF9CDB2BBF9CAD4B2C9C6BDCCA8B5C4CACAD3C3D0D4B7D6CEF6>

CFDesign 2 1 CFDesign CFDesign CAD ~ r /min mm 1

中国媒体发展研究报告

Microsoft Word - 043贾善坡.doc


Microsoft Word 聂雪梅.doc

第 7 期于德海张涛姜谙男 : 考虑施工过程的地铁盾构仿真模拟及沉降分析 89 场实测表明, 采用二维平面有限元可模拟土压平衡盾构开挖隧道的过程 ;K.M.Lee 和 R.K.Rowe [6] 发展了一种用于模拟施工工序 隧道位移及应力状态对地 [7] 面沉陷影响的三维弹塑性有限元法 ; 易宏伟和孙

素质教育.doc

<4D F736F F D20B8DFB9B0B0D3B0D3F5E0D3A6C1A6CAB5B2E2D3EBBCC6CBE3BDE1B9FBB2EED2ECD4ADD2F2B7D6CEF62DD5C5B9FAD0C22E646F6378>

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, )

10 中 草 药 Chinese Traditional and Herbal Drugs 第 43 卷 第 1 期 2012 年 1 月 生 药 打 粉 入 药 的 基 本 特 点, 借 鉴 材 料 学 粉 体 学 等 学 科 的 研 究 成 果, 在 中 药 传 统 制 药 理 念 的 启 发

續論

124 中 南 大 学 学 报 ( 社 会 科 学 版 ) 2014 年 第 20 卷 第 2 期 2. 专 门 惩 戒 法 1931 年 6 月 8 日, 国 民 政 府 颁 行 了 公 务 员 惩 戒 法 [6] 该 法 共 二 十 八 条, 六 章, 包 括 通 则 惩 戒 处 分 审 议 程

Fig. 1 1 a-a b-b a-a σ ma = MPa σ a = MPa σ 0a = MPa 0. 9 σ t =135 MPa b-b σ mb = MPa τ b = MPa σ 0b =

Microsoft Word tb 赵宏宇s-高校教改纵横.doc

: ; # 7 ( 8 7

Microsoft Word - 27王填堂一改.doc

Transcription:

第 3 卷第 4 期岩土力学 Vol.3 No. 4 9 年 4 月 Rock and Sol Mechancs Apr. 9 文章编号 :-798 (9) 4-41-6 盾构隧道管片上浮问题研究 1, 肖明清, 孙文昊, 韩向阳 (1. 西南交通大学土木工程学院, 成都 631;. 中铁第四勘察设计院集团有限公司, 武汉 4363 ) 摘要 : 盾构隧道施工过程中衬砌管片上浮问题是客观存在的, 且一直是较难解决的问题之一, 而大直径盾构隧道的上浮问题表现的更为突出 应用有限元法, 对地层材料的物理力学性质 注浆材料的性质等影响盾构衬砌环上浮的因素进行了分析 根据分析结果, 结合对衬砌结构在施工过程中受力状态的分析, 对衬砌环上浮的原因进行了阐述, 据此针对大直径盾构隧道的特点, 提出了施工 设计过程中控制衬砌管片上浮的对策和措施, 可为盾构隧道的施工和设计提供参考 关键词 : 盾构隧道 ; 管片 ; 上浮中图分类号 :U 41 文献标识码 :A Research on upward movng of segments of sheld tunel XIAO Mng-qng 1,,SUN Wen-hao,HAN Xang-yang (1. School of Cvl Engneerng, Southwest Jaotong Unversty, Chengdu 631, Chna;. Chna Ralway Syuan Survey and Desgn Group Co., Ltd, Wuhan 4363, Chna) Abstract: Engneerng practce shows that t s an objectve problem of upward movng of tunnel segments n the constructon process, especally n the large-dameter sheld tunnel, whch s dffcult to solve. The factors affectng the upward movng of sheld tunnel lnng s analyzed by fnte element method(fem), such as the physco-mechancal propertes of stratum materal, and the propertes of groutng materal. Accordng to the fnte element analyss results and the state of the lnng structure n the constructon process, the reasons for the upward movng of sheld tunnel segments are expounded. Based on the characterstcs of large-dameter sheld tunnel, the polces and measures are put forward to control the upward movng of sheld tunnel segments n the constructon process, whch can provde some reference to the desgn and constructon of the sheld tunnel. Key words: sheld tunnel; segments; upward movng 1 引言 根据上海 广州 北京等地盾构隧道施工监测资料来看, 当衬砌环脱出盾尾后, 管片上浮是盾构隧道施工过程中普遍存在的问题 监测资料显示, 直径为 6 m 左右的盾构隧道管片上浮一般在 ~ 6 mm 之间, 但有些隧道局部地段上浮超过了 mm, 并引起了衬砌结构侵入建筑限界 [1-] 对于管片上浮的原因, 一些现场工程师和研究人员进行了分析, 有些认为同步注浆不充分 管片顶部存在的空隙是导致管片上浮的原因之一 [3-4], 但有些却通过现场监测得出 管片脱出盾尾后的上浮量随着注浆量的增加而增加, 反之, 上浮量则减少, 并出现下沉现象 [] 也有的认为, 管片上浮是因为覆 土较浅或隧道处于软土地层所致, 但很多情况下在硬岩地层中的盾构隧道以及覆土较大的隧道也出现了管片上浮现象 [6] 这些分析结论并不能全面地解释管片上浮现象的规律, 有些观点甚至是相互矛盾的, 没有揭露出管片上浮原因的本质 近些年来, 随着越江隧道工程中大直径盾构隧道的应用, 施工过程中管片上浮问题表现得更为突出, 因此有必要对管片上浮原因深入地研究, 找出解决这一问题的对策 本文结合拟建的某大直径盾构隧道工程, 采用有限元法对盾构施工过程进行模拟分析, 并对地层性质 覆土厚度 注浆材料等因素对管片上浮的影响关系进行分析, 从而揭示管片上浮的根本原因, 可为制定控制管片上浮的措施提供参考和依据 收稿日期 :7-8-9 第一作者简介 : 肖明清, 男,197 年生, 博士研究生, 教授级高工, 主要从事水底隧道及高速铁路隧道的设计和研究工作 E-mal: tsyxmq@vp.163.com

4 岩土力学 9 年 管片上浮原因分析.1 衬砌环受力分析.1.1 衬砌成环时受力状态 当衬砌管片刚拼装成环后, 衬砌环处于盾尾保 护之内, 仅受自重作用, 其整体运动受盾构机支配 当盾构机掘削土体同时自重作用于地层后, 由于一 般盾构机重量小于开挖土体的重量, 故地层应力会 进行重分布, 使盾构机在地层作用下略有上浮 这 种上浮是一种平均效果, 由于盾构机重量沿纵向分 布不均匀, 所以在软土地层中较重的刀盘部分一般 会下沉, 而盾尾部分则表现为上扬, 即出现 磕头 现象 [7-9].1. 衬砌环脱出盾尾时受力状态 (1) 软弱土层中的隧道 衬砌环刚脱出盾尾时, 衬砌环管片在同步注浆 材料的包裹下置于地层中, 不计土的拱效应, 拱顶 压力 p 1 = h( 为土重度 ;h 为覆土厚度 ), 隧底压 力 p = (h+r)(r 为隧道半径 ) 假定土压力沿深 度方向均匀分布, 此时结构受力模式如图 1 所示 图 1 衬砌环受力模型 Fg.1 Mechancal model of lnng structure 根据图 1 的受力模式, 通过计算可知, 衬砌结 构受到的竖直方向土压力的合力 F 为 F E E πr (1) 根据一般设计, 衬砌管片厚度 t 与隧道半径 R 的比值近似为一常数, 假定取值为 R/, 则管片的 重量为 G Rt R () h π π h / 式中 :t 为管片厚度 ; h 为混凝土的重度, 取 kn/m 3 ;γ 为土的重度, 取 18 kn/m 3 将混凝土和土的重度代入式 (1) (), 则可得 FE πr 18 3.6 G πr 一般情况下 (t 与 R 的比值为定值 ), 衬砌环刚 刚脱出盾尾时, 受到的地层向上作用的合力大于衬 砌环自重, 且二者的比值与隧道直径无关 () 岩层中的隧道 当盾构隧道处于地层自稳能力很强的地层 ( 如 岩层 ) 中时, 管片脱出盾尾后开挖轮廓自身稳定, 故 衬砌环不受围岩压力作用, 在地下水丰富时仅受水 的压力作用, 根据式 (3) 可知, 处于水中的衬砌环受 到的浮力 F W 与自重 G 的比值为 FW 6πR.4 G πr 同步注浆未凝固时, 由于浆液的重度一般大于 水的重度, 故浆液产生的浮力与自重的比值大于.4 通过上述计算可知, 水或注浆压力的浮力均大 于衬砌环自重. 管片上浮原因 根据力学原理可知, 衬砌环脱出盾尾时的衬砌 环受力处于不平衡状态, 衬砌环有发生运动的趋势 对软弱地层中的隧道, 衬砌环脱出盾尾时受到 地层作用, 当地层向上作用力的合力与衬砌自重的 差值大于地层对衬砌环的摩擦力时, 衬砌环将发生 上浮 衬砌环上浮的结果引起地层应力的再次重分 布, 表现为隧底地层因应力释放而产生向上的位 移, 同时隧道顶部地层应力增加, 上方覆土也随之 隆起 随着地层应力的调整, 衬砌环受到的竖向合 力 F 逐渐减小, 最终衬砌结构和地层达到了新的平 衡而停止运动, 可见软弱地层中管片上浮的发生是 施工过程中地层应力重分布的结果 由于在土质地 层中, 地层应力释放 调整的过程较为缓慢, 所以 盾构管片的上浮从脱出盾尾开始, 持续较长一段时 间才会结束 对于围岩能够自稳的隧道, 衬砌环脱出盾尾后 不受地层压力作用, 如果没有水或未凝浆液的作 用, 一般不会发生上浮 当处于富水地层或采用惰 性浆液同步注浆时, 衬砌环将会发生较大的上浮, 且持续时间相对较短 超挖 推力不均衡 纠偏 注浆压力不均衡等 因素对管片位移可能有影响, 但其引起管片位移的 方向 ( 可能向下 ) 有偶然性, 因此不可能是管片发 生规律性上浮的本质原因 为了验证上述分析所得出规律的合理性, 下面 通过有限元法对施工过程进行模拟计算, 考察软弱 地层中盾构管片的位移规律

第 4 期 肖明清等 : 盾构隧道管片上浮问题研究 43 3 施工过程模拟计算 3.1 计算方法 本文采用有限元法对施工过程进行模拟计算 由弹性力学理论可知, 模拟计算中加载顺序对地层 应力场无影响, 但对地层位移场有影响, 所以在分 析计算中, 应该按照实际的施工过程来模拟计算 计算中, 将相对完整的施工阶段作为一个施工 步, 并设每个施工步包含若干增量步, 则与该施工 步相应地开挖释放荷载可在所包含的增量步中逐步 释放, 从而真实地模拟施工过程 对各施工阶段的 状态, 有限元分析的一般表达式为 [ K] F F F, ( 1,, L) (3) r g p [ K] [ K ] [ K] ( 1) (4) 1 式中 :L 为施工步总数 ;[K] 为第 施工步岩土体和 结构的总刚度矩阵 ;[K] 为岩土体和结构 ( 施工开 始前存在 ) 的初始总刚度矩阵 ;[ ] 为施工中第 K λ 施工步的岩土体和结构刚度的增量或减量 ;{ F r } 为第 施工步开挖边界上的释放荷载的等效节点 力 ;{ F g } 为第 施工步新增自重的等效节点力 ; { F p } 为第 施工步增量荷载的等效节点力 ;{ } 为第 施工步的结点位移增量 达式为 对每个施工步, 增量加载过程的有限元分析表 K F r j F g F p () j j j j j K K K, j 1 1 (6) ( 1,, M ; j 1,, M ) 式中 :M 为各施工步增量加载的次数 ;K j 为第 施工步中施加第 j 荷载增量步时的刚度矩阵 ; j 为第 施工步第 j 增量步的节点位移增量 ; 为与 第 施工步第 j 增量步相应的开挖边界释放荷载系数 ; F g 为第 施工步第 j 增量步新增单元自重 j 等效节点力 ; F p 为第 施工步第 j 增量步增量 j 荷载的等效节点力 载 根据盾构隧道施工过程, 计算步骤为 1 初始地应力场计算 ; 盾构掘进, 切削土体, 释放部分应力 ; 3 盾构机荷载作用, 应力重分布 ; 4 衬砌环脱出盾尾与同步注浆共同承受地层荷 j 3. 基本参数 结合拟建的某越江隧道的设计情况, 隧道内径 为 13.7 m, 外径为. m 盾构机参数如下 : 盾构 机外径为.4 m; 盾构机内径为. m; 盾构机总 重量为 3 t, 平均重度为 1.7 kn/m 3 管片材料为 C6 钢筋混凝土, 隧道所处地层为 粉质黏土, 同步注浆采用惰性浆液 各材料的物理 力学特征参数见表 1 材料 管片 地层 注浆层 表 1 基本计算参数表 Table 1 Parameters of basc calculaton 弹性模量 E/MPa 3 6 3.3 计算模型 泊松比..38. 凝聚力 c/kpa 17 3 内摩擦角 φ/( ) 13 3 重度 /(kn/m 3 ) 6 18. 计算模型如图 所示, 其中衬砌结构采用梁单 元, 土体以及注浆材料均采用实体单元, 且服从德 鲁克 - 普拉格 (D-P) 屈服准则 注浆层 图 计算模型 Fg. Fnte element calculaton models 3.4 计算结果及分析 衬砌管片 按照上述方法, 取覆土厚 1. m 计算 得到各 施工阶段相对上一阶段的位移变化值如图 3 所示 从图 3 的地层位移变化可以看出, 盾构机掘进过程 中, 由于施工对地层的扰动引起部分荷载释放, 造 成周边地层应力释放, 土体向隧道内位移 ; 当盾构 机自重荷载作用于地层上后, 由于盾构机平均重度 (1.3 kn/m 3 ) 小于地层重度 (18. kn/m 3 ), 故在地层 应力差的作用下盾构略有上浮 当衬砌环脱出盾尾 与同步注浆材料共同承受地层荷载后, 由于衬砌环 的平均重度仅仅为 4.3 kn/m 3, 故衬砌环产生上浮, 隧底管片向上位移 9 mm, 拱顶管片上移 6 mm, 管片呈 横鸭蛋 形, 平均整体上浮 43 mm 通过以上计算结果分析可知, 有限元法计算得 到的管片位移规律与前面对软弱地层中衬砌环受力

44 岩土力学 9 年 及位移原因分析的结论相符 为了进一步研究管片上浮的规律, 下面通过对比计算, 对衬砌管片上浮的影响因素进行分析 Y Z X 隧道位移 Δ/mm 6 3.4.8 1. 1.6.4 相对覆土厚度 h/d 地表隆起管片上浮 图 4 相对覆土厚度与隧道位移关系曲线 Fg.4 Relatonshp between h/d and Δ -.3 61 -.9 17 -. 434.18 649.4 73 -.41 9 -.17 476.6 67.3 691.4 774 (a) 步骤 Y Z X 4. 地层性质为了考察隧道所处地层的物理力学性质对管片上浮的影响, 分别取表 所列的几种典型地层进行计算 图 为地层类型与隧道位移的关系 从图中可以看出, 地层性质对管片位移有较大影响 ; 土质地层中土体强度越高, 管片上浮越小, 因此软黏土地层中管片上浮最大 -. 18. 198.4 81.6 964.9 348.1 6.3 389. 773.8 6. 39 (b) 步骤 3 -. 839.1 4. 98.3 911. 694. 83.19 36.3 619.46 3.9 386 (c) 步骤 4 图 3 地层竖向位移云图 ( 单位 :m) Fg.3 Vertcal dsplacement nephogram (unt: m) 4 管片上浮影响因素分析 4.1 覆土厚度 在其他条件不变的情况下分别取覆土厚度 h 为 8 1 m 和 3 m 共 6 种工况进行计算 根据计算结果, 相对覆土厚度 h /D(D 为隧道外径 ) 对地表位移和隧道位移的影响如图 4 所示 从图可 知, 随着覆土厚度的增加, 地表隆起和隧道的向上 位移均逐渐下降 Y Z X 地层 类型 表 地层参数表 Table Parameters of foundaton sol 弹性模量 E/MPa 泊松比 黏聚力 c/kpa 内摩擦角 φ/( ) 重度 (kn/m 3 ) 砂土.3 3 3 粉土.38 17 13 18. 黏土. 3 13 19 软黏土.4 8 8 17 管片上浮值 Δ/mm 7 6 3 粗砂粉土黏土软黏土 图 地层类型与隧道位移关系 Fg. Relatonshp between sol type and 4.3 注浆材料性质 盾壳与衬砌管片外侧之间的空隙在施工中通过 同步注浆来填充, 对于本工程, 盾壳外径为.4 m, 管片外径为. m, 故注浆层的厚度为. m 下面 对粉质黏土地层条件下不同类型注浆材料对管片上 浮的影响分别进行计算, 注浆材料性质见表 3 [] 由于浆液早期强度越高, 地层应力释放越少, 计算 中通过荷载释放系数取值的不同来表现这种差别

第 4 期 肖明清等 : 盾构隧道管片上浮问题研究 4 浆液类型 单液惰性浆 单液硬性浆 双液瞬凝浆 新型可塑浆液 表 3 注浆材料参数表 Table 3 Parameters of groutng materal 弹性模量 E/MPa 泊松比 μ..3.3.3 凝聚力 c/kpa 6 6 6 内摩擦角 φ/( ) 重度 (kn/m 3 ) 荷载释放系数.3..1. t1 图 7 注浆层厚度变化与隧道位移关系 Fg.7 Relatonshp between and t 1 结论 管片上浮值 /mm 3 惰性浆液硬性浆液瞬凝浆液可塑浆液材料 图 6 注浆材料与隧道位移关系 Fg.6 Relatonshp between groutng materal and Δ 通过同步注浆材料和隧道上浮的影响关系可以 看出, 采用强度很低的惰性浆液, 管片位移明显减 小 ; 采用瞬凝浆液和硬性浆液时, 管片位移较大, 可塑浆液引起的位移居中 上述现象的原因在于 : 当注浆材料的强度较低 时, 在衬砌环和地层应力调整过程中注浆层起到缓 冲作用, 即当隧道底部的地层应力释放发生向上的 位移 Δ 1 时, 注浆材料通过自己的体积压缩和流动发 生变形 Δ t =t 1 -t, 则隧道的向上位移 Δ =Δ 1 -Δ t, 即 管片上浮减少如图 7 所示 相反, 当注浆层强度较高 时, 注浆层自身的变形能力差 缓冲作用下降, 即 Δ t 减小, 所以隧道向上位移 Δ 增大, 因此隧道向上 位移随着注浆层强度的增大而增大 基于同样原因, 当注浆量不饱满时, 由于衬砌环和地层之间存在空 隙, 相当于 Δ t 增大, 故隧道位移值减小, 所以会出 现文献 [] 中提到的管片上浮随着注浆量增大而增 大的情况 此外, 浆液早期强度出现的时间越晚, 地层应 力释放越多, 作用于衬砌环上的竖向合力越小, 引 起的衬砌环向上位移也越小, 所以在土质地层中采 用同样强度的瞬凝性浆液时, 管片位移大于采用硬 性浆液时的位移 但对于富水基岩地层条件下, 引 起管片上浮的主要原因是水浮力的作用, 故采用瞬 凝浆液同步注浆, 或通过 次注浆及时填充衬砌外 侧与开挖轮廓之间的空隙, 有效减小管片位移 根据以上分析可以得出如下主要结论 : (1) 软弱地层中管片上浮的发生是施工过程中地层应力重分布的结果, 故上浮过程较为缓慢 ; 围岩能够自稳的隧道中, 隧道上浮是水及同步注浆浆液产生的浮力直接作用的结果, 上浮过程较为短暂 () 软弱地层中, 地层性质 覆土厚度 注浆材料性质等均对管片上浮有影响 (3) 隧道向上位移随着相对覆土厚度的增大而减小 (4) 在软土地层中, 采用早期强度低, 流动性大的注浆材料有利于减小施工期管片上浮 ( 但要注意施工期管片上浮和后期沉降之间的矛盾 ) 在岩质地层中采用瞬凝型浆液可以减少管片上浮 参考文献 [1] 叶慷慨. 盾构隧道管片位移分析 [J]. 隧道建设, 3, 3(): 8-. YE Kang-ka. Analyss of segment dsplacement of sheld tunnel[j]. Tunnel Constructon, 3, 3(): 8-. [] 黄威然, 竺维彬. 施工阶段盾构隧道漂移控制的研究 [J]. 现代隧道技术,, 4(1): 71-76. HUANG We-ran, ZHU We-bn. To control the dsplacement of a sheld tunnel durng constructon[j]. Modern Tunnelng Technology,, 4(1): 71-76. [3] 竺维彬, 鞠世健. 复合地层中的盾构施工技术 [M]. 北京 : 中国科学技术出版社, 6. [4] 姜忻良, 崔奕, 李园, 等. 天津地铁盾构施工地层变形实测及动态模拟 [J]. 岩土力学,, 6(): 161-1617. JIANG Xn-lang, CUI Y, LI Yuan, et al. Measurement and smulaton of ground settlement of Tanjn subway sheld tunnel constructon[j]. Rock and Sol Mechancs,, 6() : 161-1617. 下转第 6 页

岩土力学 9 年 [] 周文波, 吴惠明. 观光隧道盾构叠交施工技术初探 [J]. 中国市政工程,, (4): -3. ZHOU Wen-bo, WU Hu-mng. Prelmnary exploraton of cross-over constructon technology for sghtseeng tunnel sheld[j]. Chna Muncpal Engneerng,, (4): -3. [6] 沈征难. 盾构掘进过程中隧道管片上浮原因分析及控制 [J]. 现代隧道技术, 4, 41(6): 1-6. SHEN Zhen-nan. Analyss and control of the upward movng of tunnel segments n the process of sheld excavaton[j]. Modern Tunnelng Technology, 4, 41(6): 1-6. [7] 于宁, 朱合华. 盾构隧道施工地表变形分析与三维有限元模拟 [J]. 岩土力学, 4, (8): 4-8. YU Nng, ZHU He-hua. Analyss of earth deformaton caused by sheld tunnel constructon and 3D-FEM smulaton[j]. Rock and Sol Mechancs, 4, (8) :4-8. [8] 钟小春, 朱伟. 盾构衬砌管片土压力反分析研究 [J]. 岩土力学, 6, 7(): 1743-1748. ZHONG Xao-chun, ZHU We. Back analysc of sol pressure actng on sheld lnng segment[j]. Rock and Sol Mechancs, 6, 7() : 1743-1748. [9] 林志, 朱合华, 夏才初. 近间距双线大直径泥水盾构施工相互影响研究 [J]. 岩土力学, 6, 7(6): 99-999. LIN Zh, ZHU He-hua, XIA Ca-chu. Study of feld montorng on nteracton between twn slurry sheld tunnels n close space[j]. Rock and Sol Mechancs, 6, 7(6) : 99-999. [] 张凤祥, 朱合华, 傅德明. 盾构隧道 [M]. 北京 : 人民交通出版社, 4.