Microsoft Word - 08-陈敬业_oee190218_ xyz.doc

Similar documents
[1-3] (Smile) [4] 808 nm (CW) W 1 50% 1 W 1 W Fig.1 Thermal design of semiconductor laser vertical stack ; Ansys 20 bar ; bar 2 25 Fig

NANO COMMUNICATION 23 No.3 90 CMOS 94/188 GHz CMOS 94/188 GHz A 94/188 GHz Dual-Band VCO with Gm- Boosted Push-Push Pair in 90nm CMOS 90 CMOS 94

2 ( 自 然 科 学 版 ) 第 20 卷 波 ). 这 种 压 缩 波 空 气 必 然 有 一 部 分 要 绕 流 到 车 身 两 端 的 环 状 空 间 中, 形 成 与 列 车 运 行 方 向 相 反 的 空 气 流 动. 在 列 车 尾 部, 会 产 生 低 于 大 气 压 的 空 气 流

Tokyo Tech Template

致 谢 开 始 这 篇 致 谢 的 时 候, 以 为 这 是 最 轻 松 最 愉 快 的 部 分, 而 此 时 心 头 却 充 满 了 沉 甸 甸 的 回 忆 和 感 恩, 一 时 间 竟 无 从 下 笔 虽 然 这 远 不 是 一 篇 完 美 的 论 文, 但 完 成 这 篇 论 文 要 感 谢

[29] a N d N b 2 d sin θ N b ФФ a b Ф Ф θ θ a b Fig.1 Working principle demonstration of a phased-array antenna θ

PCA+LDA 14 1 PEN mL mL mL 16 DJX-AB DJ X AB DJ2 -YS % PEN

Microsoft Word - 11-秦华伟.doc

g 100mv /g 0. 5 ~ 5kHz 1 YSV8116 DASP 1 N 2. 2 [ M] { x } + [ C] { x } + [ K]{ x } = { f t } 1 M C K 3 M C K f t x t 1 [ H( ω )] = - ω 2

mm 5 1 Tab 1 Chemical composition of PSB830 finishing rolled rebars % C Si Mn P S V 0 38 ~ 1 50 ~ 0 80 ~ ~

第二十四屆全國學術研討會論文中文格式摘要

MHz 10 MHz Mbps 1 C 2(a) 4 GHz MHz 56 Msps 70 MHz 70 MHz 23 MHz 14 MHz 23 MHz 2(b)

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 5 Oct /35 TU3521 P315.

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip

Microsoft Word - KSAE06-S0262.doc

Vol. 22 No. 4 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Aug GPS,,, : km, 2. 51, , ; ; ; ; DOI: 10.

强 度 调 制 器 相 位 延 迟 器 表 面 声 光 偏 转 器 磁 光 隔 离 器 偏 振 控 制 器 等 器 件 的 原 理 及 应 用 讲 述 介 质 波 导 波 导 色 散 光 纤 模 式 等 概 念 结 合 基 础 介 绍 学 科 前 沿 知 识 精 密 仪 器 设 计

增 刊 谢 小 林, 等. 上 海 中 心 裙 房 深 大 基 坑 逆 作 开 挖 设 计 及 实 践 745 类 型, 水 位 埋 深 一 般 为 地 表 下.0~.7 m 场 地 地 表 以 下 27 m 处 分 布 7 层 砂 性 土, 为 第 一 承 压 含 水 层 ; 9 层 砂 性 土

iml88-0v C / 8W T Tube EVM - pplication Notes. IC Description The iml88 is a Three Terminal Current Controller (TTCC) for regulating the current flowi

标题


北 京 大 学

untitled

1 VLBI VLBI 2 32 MHz 2 Gbps X J VLBI [3] CDAS IVS [4,5] CDAS MHz, 16 MHz, 8 MHz, 4 MHz, 2 MHz [6] CDAS VLBI CDAS 2 CDAS CDAS 5 2

Microsoft PowerPoint - ATF2015.ppt [相容模式]

(Pattern Recognition) 1 1. CCD

Microsoft Word - 13-黄林海_oee170704__xyzey_.doc

698 39,., [6].,,,, : 1) ; 2) ,, 14,, [7].,,,,, : 1) :,. 2) :,,, 3) :,,,., [8].,. 1.,,,, ,,,. : 1) :,, 2) :,, 200, s, ) :,.

1 引言

% GIS / / Fig. 1 Characteristics of flood disaster variation in suburbs of Shang

Microsoft Word - 专论综述1.doc

LaDefense Arch Petronas Towers 2009 CCTV MOMA Newmark Hahn Liu 8 Heredia - Zavoni Barranco 9 Heredia - Zavoni Leyva

; 3/2, Buck-Boost, 3 Buck-Boost DC-DC ; Y, Fig. 1 1 BBMC The topology of three phase-three phase BBMC 3 BBMC (Study on the control strategy of

国家重点实验室建设与运行管理办法

报 告 1: 郑 斌 教 授, 美 国 俄 克 拉 荷 马 大 学 医 学 图 像 特 征 分 析 与 癌 症 风 险 评 估 方 法 摘 要 : 准 确 的 评 估 癌 症 近 期 发 病 风 险 和 预 后 或 者 治 疗 效 果 是 发 展 和 建 立 精 准 医 学 的 一 个 重 要 前

34 22 f t = f 0 w t + f r t f w θ t = F cos p - ω 0 t - φ 1 2 f r θ t = F cos p - ω 0 t - φ 2 3 p ω 0 F F φ 1 φ 2 t A B s Fig. 1

投影片 1

/MPa / kg m - 3 /MPa /MPa 2. 1E ~ 56 ANSYS 6 Hz (a) 一阶垂向弯曲 (b) 一阶侧向弯曲 (c) 一阶扭转 (d) 二阶侧向弯曲 (e) 二阶垂向弯曲 (f) 弯扭组合 2 6 Hz

Microsoft Word tb 赵宏宇s-高校教改纵横.doc

60C

生 醫 光 電 已 成 為 重 要 的 產 業 亮 點 生 醫 光 電 已 成 為 重 要 的 產 業 亮 點 文 / 台 北 市 生 物 技 術 服 務 商 業 同 業 公 會 台 北 市 生 物 技 術 服 務 商 業 同 業 公 會 於 2004 年 成 立, 是 依 法 設 置 的 非 營

标题

HOIE WITH PREISION is also the Easy choice! Easy-Laser Easy-Laser

科 研 信 息 化 技 术 与 应 用,2015, 6 (1) of identity and the framework of identity management, this paper analyses the development trend of Identity Management

Microsoft Word - A doc

12-1b T Q235B ML15 Ca OH Table 1 Chemical composition of specimens % C Si Mn S P Cr Ni Fe


T K mm mm Q345B 600 mm 200 mm 50 mm 600 mm 300 mm 50 mm 2 K ~ 0. 3 mm 13 ~ 15 mm Q345B 25

IP TCP/IP PC OS µclinux MPEG4 Blackfin DSP MPEG4 IP UDP Winsock I/O DirectShow Filter DirectShow MPEG4 µclinux TCP/IP IP COM, DirectShow I

Microsoft Word - 刘 慧 板.doc

NANO COMMUNICATION 23 No. 2-3D IC 29 6T SRAM, ReRAM, sense amplifiers, analog amplifiers and gas sensors was integrated to confirm the superiority in

m m m ~ mm

GH1220 Hall Switch

iml v C / 4W Down-Light EVM - pplication Notes. IC Description The iml8683 is a Three Terminal Current Controller (TTCC) for regulating the cur

ZHONG Chong A Study on the Map of Provincial Capital of Zhejiang Past and Present

Fig. 1 Frame calculation model 1 mm Table 1 Joints displacement mm

D4

km km mm km m /s hpa 500 hpa E N 41 N 37 N 121

Microsoft Word - 61-杨丽丽

2 3. 1,,,.,., CAD,,,. : 1) :, 1,,. ; 2) :,, ; 3) :,; 4) : Fig. 1 Flowchart of generation and application of 3D2digital2building 2 :.. 3 : 1) :,

* CUSUM EWMA PCA TS79 A DOI /j. issn X Incipient Fault Detection in Papermaking Wa

512 光 学 精 密 工 程 第 24 卷 improve the recognition rate of star map. Consequently, it meets the requirements of dynamic star simulator in all magnitude le

T R 1 t z v 4z 2 + x 2 t = 2 槡 v t z 200 m/s x v ~

iml v C / 0W EVM - pplication Notes. IC Description The iml8683 is a Three Terminal Current Controller (TTCC) for regulating the current flowin

VLBI2010 [2] 1 mm EOP VLBI VLBI [3 5] VLBI h [6 11] VLBI VLBI VLBI VLBI VLBI GPS GPS ( ) [12] VLBI 10 m VLBI 65 m [13,14] (referen

第16卷 第2期 邯郸学院学报 年6月

闲 旅 游 现 已 成 为 城 市 居 民 日 常 生 活 的 重 要 部 分 袁 它 的 出 现 标 志 着 现 代 社 会 文 明 的 进 步 遥 据 国 外 学 者 预 测 袁 2015 年 左 右 袁 发 达 国 家 将 陆 续 进 入 野 休 闲 时 代 冶 袁 发 展 中 国 家 也 将

Microsoft PowerPoint - ryz_030708_pwo.ppt

Microsoft PowerPoint ARIS_Platform_en.ppt

Microsoft PowerPoint - Aqua-Sim.pptx

10 中 草 药 Chinese Traditional and Herbal Drugs 第 43 卷 第 1 期 2012 年 1 月 生 药 打 粉 入 药 的 基 本 特 点, 借 鉴 材 料 学 粉 体 学 等 学 科 的 研 究 成 果, 在 中 药 传 统 制 药 理 念 的 启 发

KUKA W. Polini L. Sorrentino Aized Shirinzadeh 6 7 MF Tech Pitbull Fox Taniq Scorpo Scorpo Compositum Windows KUKA 1 P 1 P 2 KU

1. 前 言 由 於 石 油 價 格 浮 動, 汽 油 價 格 節 節 高 升 及 二 氧 化 碳 等 廢 棄 大 量 排 放 造 成 全 球 環 境 的 改 變, 因 此 世 界 各 國 都 極 力 提 倡 節 能 減 碳 進 而 掀 起 腳 踏 車 城 市 的 風 潮 因 應 目 前 自 行 車

11 : 1345,,. Feuillebois [6]. Richard Mochel [7]. Tabakova [8],.,..,. Hindmarsh [9],,,,,. Wang [10],, (80 µm),.,. Isao [11]. Ismail Salinas [12],. Kaw


标题

m m m

Wuhan Textile University M. A. S Dissertation Emotional Design of Home Textile Based on the Chinese Traditional Culture Wedding Bedding for Example Ca

/3 CAD JPG GIS CAD GIS GIS 1 a CAD CAD CAD GIS GIS ArcGIS 9. x 10 1 b 1112 CAD GIS 1 c R2VArcscan CAD MapGIS CAD 1 d CAD U

/ 理 论 研 讨 /Theoretical Discussion 的 样 子 其 次, 残 疾 人 有 接 受 教 育 的 能 力 据 专 家 介 绍, 一 个 人 除 非 是 植 物 人, 都 有 学 习 和 劳 动 的 能 力, 这 是 人 与 生 俱 来 的 天 性 前 些 年, 香 港 理

Cube20S small, speedy, safe Eextremely modular Up to 64 modules per bus node Quick reaction time: up to 20 µs Cube20S A new Member of the Cube Family

THE APPLICATION OF ISOTOPE RATIO ANALYSIS BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETER A Dissertation Presented By Chaoyong YANG Supervisor: Prof.D

Z-I A b Z-I A b Z Z-I A A b Z-I Miller [5] Z i I i Z-I [6] Z-I Z-I Z-I Z-I Z I Wilson [7] 1970 [8] [9] 20.32% Sasaki [10] Nino- miya [11] [12]

m 3 m m 84 m m m m m m m

Untitiled

240 生 异 性 相 吸 的 异 性 效 应 [6] 虽 然, 心 理 学 基 础 研 [7-8] 究 已 经 证 实 存 在 异 性 相 吸 异 性 相 吸 是 否 存 在 于 名 字 认 知 识 别 尚 无 报 道 本 实 验 选 取 不 同 性 别 的 名 字 作 为 刺 激 材 料, 通

LED Mu-Tao Chu Copyright 2012 ITRI

Scoones World Bank DFID Sussex IDS UNDP CARE DFID DFID DFID 1997 IDS

Construction of Chinese pediatric standard database A Dissertation Submitted for the Master s Degree Candidate:linan Adviser:Prof. Han Xinmin Nanjing

31 17 www. watergasheat. com km 2 17 km 15 km hm % mm Fig. 1 Technical route of p

Mnq 1 1 m ANSYS BEAM44 E0 E18 E0' Y Z E18' X Y Z ANSYS C64K C70C70H C /t /t /t /mm /mm /mm C64K

资源 环境 生态 土壤 气象

z

m K K K K m Fig. 2 The plan layout of K K segment p

BC04 Module_antenna__ doc

untitled


USB PC LabVIEW SignalExpress Labview Vi Fig. 1 EMAT system based on orthogonal lock-in 5 amplifier PCB 15

ph ph ph Langmuir mg /g Al 2 O 3 ph 7. 0 ~ 9. 0 ph HCO - 3 CO 2-3 PO mg /L 5 p

Chroma 61500/ bit / RMS RMS VA ()61500 DSP THD /61508/61507/61609/61608/ (61500 ) Chroma STEP PULSE : LISTLIST 100 AC DC

Transcription:

Opto-Electronic Engineering 光电工程 Review 2019 年, 第 46 卷, 第 7 期 固态激光雷达研究进展 陈敬业, 时尧成 * 310058 摘要 : 激光雷达可以高精度 高准确度地获取目标的距离 速度等信息或者实现目标成像, 在测绘 导航等领域具有重要作用 本文首先介绍了从机械式向全固态过渡的微机械系统激光雷达解决方案 ; 其次针对激光雷达全固态的发展需求, 介绍了面阵闪光 相控阵激光雷达的基本原理和典型实现方法, 从液晶 光波导材料等研究方向阐述相控阵激光雷达研究现状 ; 最后总结了目前激光雷达存在的问题及不同的解决方案, 并对未来发展趋势进行了展望 关键词 : 激光雷达 ; 微机电系统 ; 闪光 ; 光学相控阵中图分类号 :TN249 文献标志码 :A 引用格式 : 陈敬业, 时尧成. 固态激光雷达研究进展 [J]. 光电工程,2019,46(7): 190218 Research progress in solid-state LiDAR Chen Jingye, Shi Yaocheng * State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, Zhejiang 310058, China Abstract: Light detection and ranging (LiDAR) system can be used to capture the distances and speeds of the targets with high resolution and high accuracy, and can also form imaging. It is important for the applications such as mapping, and navigation, et al. This paper introduces the LiDAR solution based on micro-electromechanical system (MEMS) is a transitional scheme from mechanical one to solid-state. Meanwhile, in terms of the requirement of solid-state, the principles of Flash and optical phased array LiDAR are introduced in this paper. At the same time, the miniaturization trend of LiDAR is presented with optical phased array based on liquid crystal (LC) and integrated optical waveguides. At last, the performances and open issues of the solutions for LiDAR are concluded and the development trends of LiDAR are summarized with outlook. Keywords: LiDAR; MEMS; Flash; optical phased array Citation: Chen J Y, Shi Y C. Research progress in solid-state LiDAR[J]. Opto-Electronic Engineering, 2019, 46(7): 190218 1 引言 [1-4] (LiDAR) 收稿日期 :2019-05-05; 收到修改稿日期 :2019-06-06 基金项目 :(11861121002) 作者简介 : (1993-) E-mail jingyechen@zju.edu.cn 通信作者 : (1981-) E-mail yaocheng@zju.edu.cn 190218-1

[5-7] (micro-electro-mechanical system, MEMS) (Flash)(optical phased array, OPA) MEMS Flash OPA [8] 2 3 MEMS 4 Flash 5 OPA (liquid crystal LC) (Silicon on insulators SOI) 6 2 基本原理 1 / 3 MEMS 激光雷达 (MEMS) 2 MEMS [9] MEMS [10] 2.3 V 9 12 mw 74 Hz [11] MEMS [12] 3 Laser Scanner Synchronization Computer 图 1 激光雷达工作原理图 Fig. 1 Schematic of the LiDAR system 190218-2

Laser MEMS mirror Synchronization Computer Lens 图 2 MEMS 激光雷达工作原理图 Fig. 2 Schematic of the MEMS LiDAR system MEMS 10 khz (PZT) [13] PZT MEMS [14] 11.2 khz 39 MEMS [15] 10 V 10 KTH [16] 4 MEMS 20 V 5.6 MEMS 7 mm MEMS [17] (time of flight TOF) 0.5 m 80 m 30 550 Hz 5 LiDAR 2 7 [18] 334 mm 80% 60 250 Hz 20 mm [19] 7.2 MEMS 1 khz 100 W MEMS MEMS MEMS [20] Byung-Wook Yoo 6 8 8 MEMS [21] 10 V 1.7π 0.5 MHz 9.14 9.14 Magnet Magnet B x i MEMS comb drive Tunable grating S N S N Coil Moving beam 10 μm Suspension spring (4 ) Waveguide [12] 图 3 电磁驱动 MEMS 结构图 Fig. 3 Schematic of the MEMS based on electromagnetic actuator [12] [16] 图 4 MEMS 驱动光栅电镜图 Fig. 4 SEM image of grating based on MEMS actuator [16] 190218-3

3 5 6 2 1 8 7 PC 4 50 μm [18] 图 5 大孔径 MEMS 激光雷达示意 Fig. 5 Schematic setup of MEMS-based LiDAR with large aperture [18] 4 Flash 激光雷达 20 90 [22] 3D 7 Flash [23] 8 Flash 2010 3D Flash [21] 图 6 8 8 MEMS 光学相控阵芯片扫描电镜图 Fig. 6 SEM image of the 8 8 MEMS optical phased array [21] [24] NASA 3D Flash 9 Flash 256 256 30 Hz 1 km [25] 1064 nm Flash 20 55 Hz [26] Flash PIN [27-28] 10 (avalanche photodetector APD) APD Laser Structure light Computer Synchronization Lens Focal plane detector 图 7 Flash 激光雷达工作原理图 Fig. 7 Schematic of the Flash LiDAR system 190218-4

Rack mounted system 1998 3D portable video camera 2005 Compact TigerEye July 2009 [23] 图 8 Flash 激光雷达小型化发展过程 Fig. 8 Miniaturization evolution of Flash LiDAR [23] Flash LiDAR Laser altimeter Aft port window Ribbon cable down loads 3D data to laptop Hand held 3D camera under development at ASCs Receiver aperture Laser transmitter aperture Laptop processes and displays 3D images Controls camera functions [25] 图 9 Flash 激光雷达框架图 Fig. 9 Configuration of Flash LiDAR [25] APD (linear mode avalanche photodiode LMAPD) (Geiger mode avalanche photodiode GMAPD) Lincoln 32 32 GMAPD 500 MHz 5000 10000 15 cm [29] 256 256 GMAPD 11 CMOS 30 ms 3.5 km [30] Raytheon (HgCdTe) LMAPD 3D 256 256 [31] [27] 图 10 Flash 激光雷达系统 Fig. 10 System of Flash LiDAR [27] Flash (APD) [32] Flash KAIST (polarization modulating Pockels cell, PMPC) (micro-polarizer charge-coupled device, MCCD) CMOS readout Silica substrate [30] 图 11 混合集成成像器截面图 Fig. 11 Cross section of hybridized imager [30] APDs 190218-5

[33] MCCD 1024 1024 MCCD APD 0.12 mrad 16 m 5.2 mm 5 OPA 激光雷达 12 [8] 5.1 液晶 (LC) 相控阵 McManamon [34] 13 (spatial light modulator SLM) Phase modulator LO Laser Phase modulator LO Computer 图 12 OPA 激光雷达工作原理图 Fig. 12 Schematic of the OPA LiDAR system Polarization Optical beam Off 360 Phase shift/( ) On V 0 0 V t 5 RMS voltage/v [34] 图 13 液晶光学相控阵结构原理 Fig. 13 Schematic of the LC optical phased array [34] 190218-6

±10 David Engström [35] 200 μs ±3.4 V ±9 ( khz ) ( ) 5.2 集成光波导型相控阵 1972 Meyer (LiTaO 3 ) 46 [36] 2π 32 V CMOS (silicon-on- insulator SOI) SungWon Chung 1024 [37] 180 nm SOI 45 0.03 136 66 μs MIT 14 [38] π 8.5 mw 24 1.6 19 db LiDAR LiDAR [39] (frequency modulated continuous wave FMCW) 15 L mn y Column phase control Unit cell ϕ mn Row phase control SMF Intrinsic Si n-si n * -Si Contact Metal 2 Metal 1 x Input 300 μm [38] 图 14 二维硅基光学相控阵结构示意图 Fig. 14 Schematic of 2D silicon optical phased array [38] Ge PDs Control pads 10% LO tap RX TX [39] 图 15 硅基光学相控阵收发芯片显微镜图 Fig. 15 Optical microscope image of the silicon optical phased array transceiver chip [39] 190218-7

46 36 0.85 0.18 2 m 20 mm [40] FMCW 5 mw 60 m 9 mm 9 mm 8 8 [41] 16 MIT 27.2 mw 2π 12 db, 6 总结与展望 OPA 1 20 90 Flash 3D 21 MEMS MEMS LiDAR MEMS Calibration GC z o y x Output GC Input GC T/R switch Poly-Si(p+) Poly-Si(p-) Si(p-) Metal layer 2 Metal layer 1 Via Si(p+) Top metal Metal layer 3 Amplitude control line Phase control line Active cell 8 8 active OPA Dimensions are not scaled [41] 图 16 单片集成 8 8 光学相控阵收发器示意图 Fig. 16 Schematic of the 8 8 monolithic optical phased array transceiver [41] 表 1 不同类型的激光雷达芯片性能对比 Table 1 Performances comparison of different LiDAR chips Type Scanning angle/( ) Resolution/( ) Speed/Hz Voltage/V MEMS [21] 9.14 9.14 NA 0.5 M 10 Flash [26] 20 NA 55 NA LC [35] 18 0.025 5 k ±3.4 Silicon OPA [39] 46 36 0.85 0.18 NA 12 190218-8

MEMS Flash LiDAR CMOS Velodyne 1983 Leddar Tech MEMS MEMS Flash Quanergy 参考文献 [1] Hauchecorne A, Chanin M L. Density and temperature profiles obtained by lidar between 35 and 70 km[j]. Geophysical Research Letters, 1980, 7(8): 565 568. [2] Koch G J, Barnes B W, Petros M, et al. Coherent differential absorption lidar measurements of CO 2 [J]. Applied Optics, 2004, 43(26): 5092 5099. [3] Schwarz B. LIDAR: Mapping the world in 3D[J]. Nature Photonics, 2010, 4(7): 429 430. [4] Collis R T H, Russell P B. Lidar measurement of particles and gases by elastic backscattering and differential absorption[m]//hinkley E D. Laser Monitoring of the Atmosphere. Berlin, Heidelberg: Springer, 1976: 71 151. [5] Gschwendtner A B, Keicher W E. Development of coherent laser radar at Lincoln Laboratory[J]. Lincoln Laboratory Journal, 2000, 12(2): 383 396. [6] Niclass C, Ito K, Soga M, et al. Design and characterization of a 256x64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor[j]. Optics Express, 2012, 20(11): 11863 11881. [7] McCarthy A, Ren X M, Della Frera A, et al. Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector[j]. Optics Express, 2013, 21(19): 22098 22113. [8] Heck M J R. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering[j]. Nanophotonics, 2017, 6(1): 93 107. [9] Nee J T, Conant R A, Muller R S, et al. Lightweight, optically flat micromirrors for fast beam steering[c]//proceedings of 2000 IEEE/LEOS International Conference on Optical MEMS, 2000: 9 10. [10] Xu Y S, Singh J, Selvaratnam T, et al. Two-axis gimbal-less electrothermal micromirror for large-angle circumferential scanning[j]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(5): 1432 1438. [11] Koh K H, Lee C. A low power 2-D raster scanning MEMS mirror driven by hybrid electrothermal and electromagnetic actuation mechanisms[c]//proceedings of 2012 International Conference on Optical MEMS and Nanophotonics, 2012: 236 237. [12] Urey H. MEMS scanners for display and imaging applications[j]. Proceedings of SPIE, 2004, 5604: 218 229. [13] Uchino K. Piezoelectric actuators 2006[J]. Journal of Electroceramics, 2008, 20(3 4): 301 311. [14] Tani M, Akamatsu M, Yasuda Y, et al. A combination of fast resonant mode and slow static deflection of SOI-PZT actuators for MEMS image projection display[c]//proceedings of 2006 IEEE/LEOS International Conference on Optical MEMS and Their Applications Conference, 2006: 25 26. [15] Chu H M, Hane K. Design, fabrication and vacuum operation characteristics of two-dimensional comb-drive micro-scanner[j]. Sensors and Actuators A: Physical, 2011, 165(2): 422 430. [16] Errando-Herranz C, Le Thomas N, Gylfason K B. Low-power optical beam steering by microelectromechanical waveguide gratings[j]. Optics Letters, 2019, 44(4): 855 858. [17] Hofmann U, Senger F, Soerensen F, et al. Biaxial resonant 7mm-MEMS mirror for automotive LIDAR application[c]//proceedings of 2012 International Conference on Optical MEMS and Nanophotonics, 2012: 150 151. [18] Sandner T, Wildenhain M, Gerwig C, et al. Large aperture MEMS scanner module for 3D distance measurement[j]. Proceedings of SPIE, 2010, 7594: 75940D. [19] Senger F, Hofmann U, Von Wantoch T, et al. Centimeter-scale MEMS scanning mirrors for high power laser application[j]. Proceedings of SPIE, 2015, 9375: 937509. [20] Jung I W, Krishnamoorthy U, Solgaard O. High fill-factor two-axis gimbaled tip-tilt-piston micromirror array actuated by self-aligned vertical electrostatic combdrives[j]. Journal of Microelectromechanical Systems, 2006, 15(3): 563 571. [21] Yang W J, Sun T B, Rao Y, et al. High speed optical phased array using high contrast grating all-pass filters[j]. Optics 190218-9

Express, 2014, 22(17): 20038 20044. [22] Anthes J P, Garcia P, Pierce J T, et al. Nonscanned ladar imaging and applications[j]. Proceedings of SPIE, 1993, 1936: 11 22. [23] Stettner R. Compact 3D flash lidar video cameras and applications[j]. Proceedings of SPIE, 2010, 7684: 768405. [24] Natale D J, Tutwiler R L, Baran M S, et al. Using full motion 3D Flash LIDAR video for target detection, segmentation, and tracking[c]//proceedings of 2010 IEEE Southwest Symposium on Image Analysis & Interpretation, 2010: 21 24. [25] Amzajerdian F, Vanek M, Petway L, et al. Utilization of 3D imaging flash lidar technology for autonomous safe landing on planetary bodies[j]. Proceedings of SPIE, 2010, 7608: 760828. [26] Ramond T, Saiki E, Weimer C, et al. Topographic mapping flash lidar for multiple scattering, terrain, and forest mapping[j]. Proceedings of SPIE, 2011, 8037: 803710. [27] Stettner R, Bailey H, Richmond R D. Eye-safe laser radar 3D imaging[j]. Proceedings of SPIE, 2004, 5412: 111 117. [28] Stettner R, Bailey H, Silverman S. Large format time-of-flight focal plane detector development[j]. Proceedings of SPIE, 2005, 5791: 288 292. [29] Marino R M, Stephens T, Hatch R E, et al. A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements[j]. Proceedings of SPIE, 2003, 5086: 1 15. [30] Aull B F, Schuette D R, Young D J, et al. A study of crosstalk in a 256 256 photon counting imager based on silicon geiger-mode avalanche photodiodes[j]. IEEE Sensors Journal, 2015, 15(4): 2123 2132. [31] Jack M, Chapman G, Edwards J, et al. Advances in ladar components and subsystems at Raytheon[J]. Proceedings of SPIE, 2012, 8353: 83532F. [32] Zhang P, Du X P, Zhao J G, et al. High resolution flash three-dimensional LIDAR systems based on polarization modulation[j]. Applied Optics, 2017, 56(13): 3889 3894. [33] Jo S, Kong H J, Bang H, et al. High resolution three-dimensional flash LIDAR system using a polarization modulating Pockels cell and a micro-polarizer CCD camera[j]. Optics Express, 2016, 24(26): A1580 A1585. [34] McManamon P F, Dorschner T A, Corkum D L, et al. Optical phased array technology[j]. Proceedings of the IEEE, 1996, 84(2): 268 298. [35] Engström D, O'Callaghan M J, Walker C, et al. Fast beam steering with a ferroelectric-liquid-crystal optical phased array[j]. Applied Optics, 2009, 48(9): 1721 1726. [36] Meyer R A. Optical beam steering using a multichannel lithium tantalate crystal[j]. Applied Optics, 1972, 11(3): 613 616. [37] Chung S, Abediasl H, Hashemi H. A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS[J]. IEEE Journal of Solid-State Circuits, 2018, 53(1): 275 296. [38] Sun J, Hosseini E S, Yaacobi A, et al. Two-dimensional apodized silicon photonic phased arrays[j]. Optics Letters, 2014, 39(2): 367 370. [39] Poulton C V, Yaacobi A, Cole D B, et al. Coherent solid-state LIDAR with silicon photonic optical phased arrays[j]. Optics Letters, 2017, 42(20): 4091 4094. [40] Martin A, Dodane D, Leviandier L, et al. Photonic integrated circuit-based FMCW coherent LiDAR[J]. Journal of Lightwave Technology, 2018, 36(19): 4640 4645. [41] Abediasl H, Hashemi H. Monolithic optical phased-array transceiver in a standard SOI CMOS process[j]. Optics Express, 2015, 23(5): 6509 6519. 190218-10

Research progress in solid-state LiDAR Chen Jingye, Shi Yaocheng * State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, Zhejiang 310058, China Laser Scanner Synchronization Computer Schematic of the LiDAR system Overview: Radar is utilized as the eyes to have the sense of the world for human, which has the ability to detect the target in dead zone and long distance. It plays a significant role in the military and civilian domains. Light detection and ranging (LiDAR) system has the shorter wavelength than that of the traditional radar. Thus, LiDAR systems have higher resolutions of distance, angle, and speed compared with the radar system. Due to the high direction and high coherence of laser, LiDAR systems can realize detection and ranging of the remote targets without external interference. The information of distance and speed can be obtained with coherent detection of LiDAR, which can be used in the fields such as missile guidance, mapping, driverless technology and so on. LiDAR can be classified as three types: mechanical, mixed solid-state, and solid-state. The mechanical LiDAR systems utilize the mechanically rotating parts to realize beam steering, of which the field of view is large but the assembly is complexed and the scanning speed is low. The solid-state LiDAR systems are without mechanical scanners and can be realized by the micro-electromechanical system (MEMS), Flash and optical phased array (OPA) technologies. MEMS based LiDAR realizes the beam scanning with micro mirror. The MEMS mirrors can be actuated by electrostatic method, electromagnetic method, piezoelectric method, and electrothermal method. The integration of the MEMS system is relatively high but the field of view is limited by the displacement of the micro mirror. Flash based solid-state LiDAR is proposed in 1990s, the techniques of which are relatively mature and have commercial applications. However, the detection range and field of view are limited. OPA emerged in 1970s is a novel optical beam scanning technology, which is based on principles and techniques of the microwave phased array. The OPAs realize beam steering based on the principle of changing the optical phase in the array unit, which will modulate the wavefronts of the emission beam. The OPA beam scanners are non-inertia, precision, accurate and have the potential to be utilized in the LiDAR field. The technique is emerging with liquid crystal (LC) and integrated optical waveguides and so on. The OPAs with high integration can satisfy the requirements of the miniaturization trends in some driverless fields. In the future, the LiDAR will develop on the way to the solid state and miniaturization trend. In this paper, we review the recent research of OPA LiDAR systems in Section 2, the basic working principle of Li- DAR system is introduced. In Section 3, the technique researches of MEMS based LiDAR are introduced. In Section 4, the principle and research of Flash LiDAR are introduced. The LC OPA and integrated waveguide OPAs for LiDAR, including the electro-optic materials, silicon-on-insulator (SOI) platform and so on, are introduced in Section 5. The performances of the techniques are compared and the open issues and outlook are given in the Section 6. Citation: Chen J Y, Shi Y C. Research progress in solid-state LiDAR[J]. Opto-Electronic Engineering, 2019, 46(7): 190218 Supported by National Natural Science Foundation of China (11861121002) * E-mail: yaocheng@zju.edu.cn 190218-11