Chinese Journal of Atmospheric Sciences Vol. 43 No. 2 Mar. 2019,,, Rossby [J]., 43 (2): Zhang Chao, Tan Yanke, Li Chongyin

Similar documents
Microsoft Word - 1--齐继峰_new_.doc

[12 ( ), ],, [13 ] [14, ], ;,, 1 6 [15 ], ( ) [1618 ], Blackmon [16,19 ],,, [20, ],, ;,,, ( ), [8,9 ], Mak [21 ] [22,23 ],? ( )?, Orlanski [24

~ a 3 h NCEP ~ 24 3 ~ ~ 8 9 ~ km m ~ 500 m 500 ~ 800 m 800 ~ m a 200

Climatic and Environmental Research Vol. 22, No. 4 Jul. 2017, [J]. 22 (4): Zhang Dongling, Lu Xu Analysis of abnorm

mm 400 mm 15 mm EOF mm/10a Fig. 1 Distributions

, 2 : ; 4 8, mm, mm, 43. 3% ; 350 mm, 70% , 32 d, d mm, 45. 1% mm, mm, 850 hpa (

[11] Bennetts (1988) [12] and Locatelli (1994) [13] e N 900 hpa hpa N

km km mm km m /s hpa 500 hpa E N 41 N 37 N 121

48 Chinese Journal of Atmospheric Sciences 29 Vol hpa, Flohn [2 ] 7 8 d W = F + (thermal anticyclonic cell), d a Q, (1) t ( ), F, Q, a,, W = P

cm hpa hpa 2 45 N hpa ~ 12 Fig. 1 The observed rainfall distribution of Shanxi

Microsoft Word - 赖芬芬284-校对

720 () 2009,,, , ( ) (6 8 ), ( 5) ( 6).,,119 E, 150 km., 25. 5, 25,., 5b. 3 ROMS 3. 1 ROMS, S,.,,,, [ 9 ]. 1/ 32 ( ),25, 18 s, 180 s


[1] Nielsen [2]. Richardson [3] Baldock [4] 0.22 mm 0.32 mm Richardson Zaki. [5-6] mm [7] 1 mm. [8] [9] 5 mm 50 mm [10] [11] [12] -- 40% 50%

Microsoft Word - N 已统稿(0321)

SWAN min TITAN Thunder Identification Tracking Analysis SWAN TITAN and Nowcasting 19 TREC Tracking Radar Echo by Correlaction T

decades and get distant from each other in other decades which is observed in the last three decades. Key words East China precipitation extrem

by industrial structure evolution from 1952 to 2007 and its influence effect was first acceleration and then deceleration second the effects of indust

Vol. 22 No. 4 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Aug GPS,,, : km, 2. 51, , ; ; ; ; DOI: 10.

17 4 Vol. 17, No CHIN ESE JOU RNAL OF POLAR RESEARCH December , 2 ( 1, ; 2,, ) NCEP , 30,,,, 28/ 10a,, - 3.

一次辽宁暴雨过程的诊断及风场反演分析

Microsoft Word - 呂芳川

Z-I A b Z-I A b Z Z-I A A b Z-I Miller [5] Z i I i Z-I [6] Z-I Z-I Z-I Z-I Z I Wilson [7] 1970 [8] [9] 20.32% Sasaki [10] Nino- miya [11] [12]

1 GIS 95 Y = F y + (1 F) (1) 0 0 Y0 kg/hm 2 /day F y 0 y c kg/hm 2 /day [12] y m 20 kg/hm 2 /hour Y = cl cn ch G [ F( y ) T m yo + (2) (1 F)(

Nikaidon [19 ] , 3 : ; [20 ] 1958 [21 ], , [22224 ] 23, 1a 1 23 ( ) :

IPCC CO (IPCC2006) 1 : = ( 1) 1 (kj/kg) (kgc/gj) (tc/t)

~ ~ ~

Dan Buettner / /

% GIS / / Fig. 1 Characteristics of flood disaster variation in suburbs of Shang

1 : 97,,, ; , , ; :, h 15. 2, h ,, 1,, 3, : 1 1 d, 2 2 d;, , , 0812

* CUSUM EWMA PCA TS79 A DOI /j. issn X Incipient Fault Detection in Papermaking Wa

Schumpeter Mensch Freeman Clark Schumpeter Mensch 1975 technological stalemate 2000 Van Dujin 1977 OECD 1992 Freeman 1982 Van

Microsoft Word tb 赵宏宇s-高校教改纵横.doc

untitled

km <.5 km.5 < 1. km 4 1 km ~ % 23.3 % 23.3 % 36.5 %.5 km 64.5 % 7 % /%

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 5 Oct /35 TU3521 P315.

142 () Fig. 2 Tracks of typhoon 35 m/ s.,. NASA QuikSCA T L3 (10 m ),, km, 25 km,20, 2 m/ s (320 m/ s) 10 %(2030 m/ s)., ()

2 ( 自 然 科 学 版 ) 第 20 卷 波 ). 这 种 压 缩 波 空 气 必 然 有 一 部 分 要 绕 流 到 车 身 两 端 的 环 状 空 间 中, 形 成 与 列 车 运 行 方 向 相 反 的 空 气 流 动. 在 列 车 尾 部, 会 产 生 低 于 大 气 压 的 空 气 流

T R 1 t z v 4z 2 + x 2 t = 2 槡 v t z 200 m/s x v ~

标题

2 : 111 ( Pinctada maxima), 13, 11,,,,,, 15, 25 cm, cm, 4 5 kg 1-2],,, 3-7] 24] 25-26],,, ] min, 1, 5 m 4 m, 20 m , 9-22],,, (

Microsoft Word _4_doc doc

(ICL),, 5 ( ), 40,, , [2,15-19], 3, (THI) (WCI) ( 1) 1 Tab.1 THI WCI and ICL grade standard,, ( ); 3, ;, 1 1, Fig.1 Structur

408 30,, [ 225 ],,,,, [ 629 ],, , 2008,,,,, mm, mm, 3115 mm /h, (34193 N, E), mm, 8511 mm /h,, :,, (5 1

31 17 www. watergasheat. com km 2 17 km 15 km hm % mm Fig. 1 Technical route of p

< F63756D656E D2D796E2DB9A4D7F72D31C6DABFAF2D31D6D0D2BDD2A9CFD6B4FABBAF2D C4EA2DB5DA35C6DA2D30352D31302DC1C9C4FEBBF9B5D82DB8BEB6F9B2A12E6D6469>

United Nations ~ ~ % 2010

~4 197~ [8] [11].5.5 A grid V grid A r ϕ ϕ λ r ϕ 2 2 grid = cos = (π /36) cos V grid = A grid P grid 1 6 r ϕ A grid km 2

(1) ( 1965 ),, 1952 [9] 2.1 (2) 1 53 (E i ), 2 (P i ) (G E (G P, 31 (Q i ) 3, : G E (x,y)= (E i Q(x i, y i )) E i G P (x,y)=

CFDesign 2 1 CFDesign CFDesign CAD ~ r /min mm 1

Microsoft Word - 3——郑运霞_news_.doc

E T 0 = γ 0 = 1 + R γ = nσ n nσ n ΔT 2 i - Σ n ΔT i T Pi - Σ n Σ n

2015-6

4 : 255 [ 2, 4 7 ] [ 8 11 ],,,, [ 12 ] Koldewey , [ 13 ],,, NCEP Koldewey, NCEP 2,, 1231km, 107km Koldewey ( N, E, 11m) A lfre

Microsoft Word - 刘 慧 板.doc

1 引言

: 307, [], [2],,,, [3] (Response Surface Methodology, RSA),,, [4,5] Design-Expert 6.0,,,, [6] VPJ33 ph 3,, ph, OD, Design-Expert 6.0 Box-Behnken, VPJ3

m m m ~ mm

卷 Vol. 40 predictors of Niño3 index and AEAT Index (AEATI). Rather than fixed models for every year, indices are classified into several types

4期

谢今范

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip

[6 ] (20 35 N, E, ( N, E, (25 35 N, [7 ], E 60 %,, : ;,,,, 3, ISCCP W/ m 2 [8 ] Bergman [9 ], 5 15 W/ m 2, 1 5 W/

LaDefense Arch Petronas Towers 2009 CCTV MOMA Newmark Hahn Liu 8 Heredia - Zavoni Barranco 9 Heredia - Zavoni Leyva

Microsoft Word doc

Microsoft Word 張嘉玲-_76-83_

11 : 1345,,. Feuillebois [6]. Richard Mochel [7]. Tabakova [8],.,..,. Hindmarsh [9],,,,,. Wang [10],, (80 µm),.,. Isao [11]. Ismail Salinas [12],. Kaw

mm ~

untitled

85% NCEP CFS 10 CFS CFS BP BP BP ~ 15 d CFS BP r - 1 r CFS 2. 1 CFS 10% 50% 3 d CFS Cli

T K mm mm Q345B 600 mm 200 mm 50 mm 600 mm 300 mm 50 mm 2 K ~ 0. 3 mm 13 ~ 15 mm Q345B 25

14 17.,., Fig. 1 Bougeur gravity map of research region 2 Fig. 2 Magnetic map of research region

3 : 505.,,,,,,,,,, 21 [1,2 ] , 21,, 21,, : [3 ]. 1. 3,, 10, 2 ( ),,, ; ; 40, [4 ]. 46, : (1),, (2) 16,,,,, (3) 17, (4) 18,, (5) 19,, (6) 20

1678 (Chinese J Geophys ) m 2 s - 1, FGCM20 2, 211, NCAR ( Community Atmosphere Model, CAM2), CAM2 NCAR CCM3 [15 ], CCM3,CAM2,,

30 26, ;,,,, ;, 500 hpa, [ 8 ], 0. 01, > 0. 5,, ( 1) 1,,, [ 9 ] 31 ( 2a), II 2 ( b c) 1 ( 1963, 1968, 1971, 1974, 1976, 1985) ( 1973, 1983, 1988, 1993

#4 ~ #5 12 m m m 1. 5 m # m mm m Z4 Z5


1556 地 理 科 学 进 展 30 卷 他 关 于 农 村 住 房 结 构 与 抗 震 性 能 的 研 究, 则 多 是 从 工 程 抗 灾 的 角 度, 研 究 某 种 构 造 类 型 的 房 屋, 力 图 找 到 传 统 房 屋 的 结 构 失 误 和 新 建 房 屋 中 存 在 的 问 [

000封面.doc

~ ~ ~ ~ ~ ~ ~ % % ~ 20% 50% ~ 60%

~ 4 mm h 8 60 min 1 10 min N min 8. 7% min 2 9 Tab. 1 1 Test result of modified

H 2 SO ml ml 1. 0 ml C 4. 0 ml - 30 min 490 nm 0 ~ 100 μg /ml Zhao = VρN 100% 1 m V ml ρ g

Technical Acoustics Vol.27, No.4 Aug., 2008,,, (, ) :,,,,,, : ; ; : TB535;U : A : (2008) Noise and vibr

68 ( ) 2006,,,,,,,,,, (narrative history),,, [1 ] (P ),,,,,,, [ 2 ] ( P ), ;,,,,,,,,,,,,,, (1917),, 30,,,, :,, ;,,,,, ( ) ( ), :,,,,,,,,,,

2 决 (1) (2) (3) 408AD-537AD AD-509AD 2.66 ( 1990) 衆 ( ) 6.5 1) 1)

Microsoft Word - 正文.doc

具有多个输入 特别是多个输出的 部门 或 单位 ( 称为 决策单元 Decision Making Unit 简称 DMU) 间的相对有效 8 性 C2R 模型是 DEA 的个模型 也是 DEA 的基础 和重要模型 假设有 n 个决策单元 DMUj( j = n) 每个 DMU 有 m

132 包 装 工 程 2016 年 5 月 网 产 品 生 命 周 期 是 否 有 与 传 统 产 品 生 命 周 期 曲 线 相 关 的 类 似 趋 势 旨 在 抛 砖 引 玉, 引 起 大 家 对 相 关 问 题 的 重 视, 并 为 进 一 步 研 究 处 于 不 同 阶 段 的 互 联 网

13-15 Lagrange 3. 1 h t + hu + hv = 0 1 x y hu + t x hu gh 2 ( ) + y huv = - gh z 0 ( + x u u 2 2 槡 + v + W C ) 2 x + fhv + z h x 2hv u ( t x )

Microsoft Word - 19王建华.doc

Bairoch, ) (Angus Maddison,1926 ) (Bairoch, 1976, 1981), 1960, , 220, 228 ; , 447, 310, 178 (1993) (1988) Peter Brecke (

72 (2001) group waves. Key words: Correlation coefficient for consecutive wave heights, mean run length (1993) (1996) (1998) (1999) (1993) (

5期xin

~ 10 2 P Y i t = my i t W Y i t 1000 PY i t Y t i W Y i t t i m Y i t t i 15 ~ 49 1 Y Y Y 15 ~ j j t j t = j P i t i = 15 P n i t n Y

successful and it testified the validity of the designing and construction of the excavation engineering in soft soil. Key words subway tunnel

the southern city was higher than that in the northern city. In rural areas the proportion of the nuclear family in the northern region was higher tha

作 主 动 追 求 知 识 获 取 技 能, 在 心 理 和 生 理 上 都 非 常 积 极 的 个 体 (Zimmerman & Pons, 1986) 在 此 期 间, 自 我 效 能 感 (self-efficacy) 自 我 控 制 (self-control) 自 我 管 理 (self-

cm /s c d 1 /40 1 /4 1 / / / /m /Hz /kn / kn m ~

15第2期.FIT)

BISQ理论模型与声波测井响应研究

Transcription:

43 2 2019 3 Vol. 43 No. 2 Mar. 2019,,,. 2019. Rossby [J]., 43 (2): 221 232. Zhang Chao, Tan Yanke, Li Chongyin, et al. 2019. Influences of interactions between high-frequency eddies and low-frequency variabilities on the process of Rossby wave breaking [J]. (in Chinese), 43 (2): 221 232, doi:10.3878/j.issn.1006-9895.1801.17152. Rossby 张潮 1 谭言科 2 李崇银 1, 3 平已川 1 1 211101 2 / 200438 3 LASG 100029 NCEP/DOE NCEP-DOE AMIP-II 2010 12 20 AWB 2010 350 K PV EOF PV PV EOF EOF Rossby 1006-9895(2019)02-0221-12 P432 A doi:10.3878/j.issn.1006-9895.1801.17152 Influences of Interactions between High-Frequency Eddies and Low- Frequency Variabilities on the Process of Rossby Wave Breaking ZHANG Chao 1, TAN Yanke 2, LI Chongyin 1, 3, and PING Yichuan 1 1 Meteorological and Oceanography College, National University of Defense Technology, Nanjing 211101 2 Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai 200438 3 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029 Abstract Based on NCEP-DOE AMIP-II (National Centers for Environmental Prediction, U.S. Department of Energy, Atmospheric Model Intercomparison Project II) daily reanalysis data, a typical case of Anticyclonic Wave Breaking (AWB) that occurred on 20 December 2010 in the North Pacific region and the characteristics of Isentropic Potential Vorticity (IPV) during this process were studied. Daily high-frequency eddies and low-frequency variabilities were investigated. In addition, research was conducted on the modes of high-frequency eddies and low-frequency variabilities through Empirical Orthogonal Function (EOF) method on 350 K isentropic surface in the winter of 2010. Budget analysis of the 2017-04-14; 2018-01-15 1991 E-mail: zhangnanshui@126.com E-mail: tanyanke@fudan.edu.cn 41475070 41490640 41605051 Funded by National Natural Science Foundation of China (Grants 41475070, 41490640, 41605051)

222 43 Vol. 43 IPV was employed to examine the low-frequency and high frequency PV anomalies associated with the primary modes of EOF. The results show that during the process of the Rossby wave breaking, low PV air parcels that emerged over the Northwest Pacific near Japan traveled to the upper troposphere, while high PV air parcels invaded lower troposphere. The first two leading modes of high-frequency PV depict a middle-latitude wave train that propagated from west to east over the North Pacific. The first leading mode of the low-frequency PV spread in the North Pacific as an arched wave train. The track of synoptic waves could be altered by the low-frequency variability, causing the waves to break eventually; meanwhile, the advection of high-frequency flows contributed to the conversion of the primary mode from high-frequency variability to low-frequency variability in the winter. Keywords Rossby wave breaking, Isentropic surface, Potential vorticity, High-frequency eddy, Low-frequency variability 1 Cai and Mak, 1989;, 1994;, 1999;, 2002 Kug et al. 2010 Luo et al. 2014 EBM Eddy-Blocking Matching Rossby Rossby Thorncroft et al., 1993; Song et al., 2011 Benedict et al. 2004 NAO NAO Woollings et al. 2008 NAO Rossby NAO Rossby Song et al. 2009 PNA NAO PNA NAO PNA Rossby Akahori and Yoden 1997 Barnes and Hartmann 2012 Liu et al. 2014 Rossby Rossby Rossby Rossby Rossby Rossby EOF 2 NCEP-DOE Kanamitsu et al., 2002 2.5 2.5 2010 11 1 2011 2 28 120 Butterworth Gauss EOF 2005 IPV Hoskins et al., 1985 20 80 Hoskins et al. 1985 IPV-thinking

2 No. 2 Rossby ZHANG Chao et al. Influences of Interactions between High-Frequency Eddies and Low- Frequency Variabilities 223 Hoskins 2015 Liu et al., 2014 350 K middle world Hoskins, 1991; Song 1 350 K 40 N 150 W Fig. 1 Power spectrum of PV (Potential Vorticity) at (40 N, 150 W) on the 350-K isentropic surface et al., 2011 Strong and Magnusdottir 2008 350 K Rossby 350 K 350 K PV Potential Vorticity 2010 12 20 AWB Anticyclonic Wave Breaking 350 K 10 12 20 1 350 K 40 N 150 W 2010 6 16 40 2010 11 1 2 28 120 3 Rossby 2 AWB 2 2010 12 a 16 b 17 c 18 d 19 e 20 f 21 350 K PV 1 PVU 1 PVU=10 6 km 2 kg 1 s 1 Fig. 2 Evolution of PV on 350-K isentropic surface on (a) 16, (b) 17, (c) 18, (d) 19, (e) 20, (f) 21 December 2010. Interval of contours is 1 PVU (1 PVU=10 6 km 2 kg 1 s 1 )

224 43 Vol. 43 2010 12 16 2a 150 E PV PV PV 18 2c PV 40 60 N 19 2d PV 20 2e PV 21 2f 330 K 320 K 3 AWB 320 K 500 hpa 40 N 4 4d e AWB 200 hpa 500 hpa 850 hpa PV PV Butterworth 120 2.5 8 d Gauss 9 d 2009 Butterworth 2.5 8 d 5 2010 12 16 5a 2 35 N 145 E 55 N 155 W 17 5b 16 30 N 180 18 5c 20 N 180 18 19 5d 2 20 2 e 21 2f 6 2010 12 16 6a 40 N 40 N 30 N 30 N 180 30 N 130 W 40 N 40 N 160 W I II III IV II IV I III 17 18 6b 6c II IV I III 19 20 6d e PV II 5

2 No. 2 Rossby ZHANG Chao et al. Influences of Interactions between High-Frequency Eddies and Low- Frequency Variabilities 225 3 2010 12 a 16 b 17 c 18 d 19 e 20 f 21 320 K Pa s 1 500 hpa 5 K Fig. 3 Vertical velocity on 320-K isentropic surface (shadings, units: Pa s 1 ; positive indicates downward movement; negative indicates upward movement) and temperature at 500 hpa (contours, interval is 5 K) on (a) 16, (b) 17, (c) 18, (d) 19, (e) 20, (f) 21 December 2010 4 2010 12 a 16 b 17 c 18 d 19 e 20 f 21 350 K Pa s 1 200 hpa 5 K Fig. 4 Vertical velocity on 350-K isentropic surface (shadings, units: Pa s 1 ; positive indicates downward movement; negative indicates upward movement) and temperature at 200 hpa (contours, interval is 5 K) on (a) 16, (b) 17, (c) 18, (d) 19, (e) 20, (f) 21 December 2010

226 43 Vol. 43 III III-1 III-2 III-1 III-2 IV 19 21 5 2010 12 a 16 b 17 c 18 d 19 e 20 f 21 350 K 0.5 PVU Fig. 5 High-frequency PV on 350-K isentropic surface on (a) 16, (b) 17, (c) 18, (d) 19, (e) 20, (f) 21 December 2010. Interval of contours is 0.5 PVU 6 2010 12 a 16 b 17 c 18 d 19 e 20 f 21 350 K 0.5 PVU Fig. 6 Low-frequency PV on 350-K isentropic surface on (a) 16, (b) 17, (c) 18, (d) 19, (e) 20, (f) 21 December 2010. Interval of contours is 0.5 PVU

2 No. 2 Rossby ZHANG Chao et al. Influences of Interactions between High-Frequency Eddies and Low- Frequency Variabilities 227 Chang and Yu, 1999 2000 2006 2009 200 hpa 40 N 150 W Hoskins and Valdes, 1990 EOF 8 EOF EOF l 1 23.39% EOF l 1 30 N 180 50 N 135 W 4 EOF 7 EOF EOF h 1 EOF h 2 EOF h 1 EOF h 2 9.75% 9.19% 18.94% EOF h 1 7a 35 N 150 E 40 N 155 W 35 N 180 35 N 120 W EOF h 2 7b 35 N 135 E 40 N 160 W 40 N 110 W 35 N 170 E 40 N 140 W EOF h 1 EOF h 2 π/2 EOF h 1 EOF h 2 30 N 50 N 2005 7c 7 EOF a b c 0.2 PVU Fig. 7 (a) The first leading EOF mode, (2) the second leading EOF mode of high-frequency PV and (c) amplitudes of the first two leading modes. Interval of the contours is 0.2 PVU 8 EOF A B C 0.2 PVU Fig. 8 The first leading mode of the low-frequency PV. A, B, and C represent three regions of the low-frequency PV anomalies, respectively. Interval of contours is 0.2 PVU

228 43 Vol. 43 50 N 180 40 N 100 W 6 19 21 8 6 EOF 5 Hoskins et al., 1985; Derome et al., 2001; Athanasiadis and Ambaum, 2010 dpv PV PV V PV PV dt t 1 V k ( F ) S, 1 PV ( f ) / Ertel = k V V ( uv,,0) 1 g p/ d /dt k F 1 S PV V PV. 2 t Y l h Derome et al., 2001 Y Y Y Y Y Y l Y h Y l Y h 2.5 8 d 9 d 2 t t t l h PV PV PV, 3 2 V V V V l h PV PV PV PV l l l l h V PV V PV V PV h h l h h V PV V PV V PV. 4 4 1 9 Adv1 Adv2 Adv3 Adv4 Adv5 Adv6 Adv7 Adv8 Adv9 A 30 N 60 N 150 W 120 W B 35 N 60 N 150 E 160 W C 20 N 35 N 150 E 160 W 3 4 9a 9b 9a 17 19 A C 5 20 N 180 B 5 20 A C B 9b 19 A B A B A B 20 A B A B 20 C

2 No. 2 Rossby ZHANG Chao et al. Influences of Interactions between High-Frequency Eddies and Low- Frequency Variabilities 229 9 PVU d 1 a b Fig. 9 Evolutions of PV tendency (units: PVU d 1 ): (a) High-frequency PV tendency; (b) low-frequency PV tendency 21 6 2 4 Adv1 Adv1 8 A B C Adv2 Adv4 Adv5 Adv9 9 d Adv3 Adv6 Adv7 Adv8 2.5 8 d Adv2 Adv4 Adv3 Adv7 Adv6 Adv8 K h K l [K h K l K h +K l ] Adv6 Adv8 Adv9 Morlet 16 21 90% 1999 2005 A B C Adv2 Adv4 Adv9 Adv5 Adv3 Adv7 A B C Adv6 Adv8 A B Adv6 C Adv8 B B 10 B Adv3 Adv6 Adv7 Adv3 Adv7

230 43 Vol. 43 10 B Fig. 10 Wavelet spectra of the advection terms during the wave breaking over region B. The black and blue solid lines represent spectrum values of the advection terms, the red and pink lines represent red and white noise spectra, respectively B Adv6 11 Adv6 Adv6 20 N 180 5 Adv6 Adv6 Adv6 B Adv2 Adv4 Adv9 Adv2 Adv4 B Adv9 6 2010 12 20 AWB EOF 2010 1 PV PV 2

2 No. 2 Rossby ZHANG Chao et al. Influences of Interactions between High-Frequency Eddies and Low- Frequency Variabilities 231 11 2010 12 a 16 b 17 c 18 d 19 e 20 f 21 Adv6 PVU d 1 Fig. 11 Advection term from low-frequency flow to high-frequency PV (Adv6) on (a) 16, (b) 17, (c) 18, (d) 19, (e) 20, (f) 21 December 2010. Units: PVU d 1 3 EOF EOF h 1 EOF h 2 30 N 50 N References Akahori K, Yoden S. 1997. Zonal flow vacillation and bimodality of baroclinic eddy life cycles in a simple global circulation model [J]. J. Atmos. Sci., 54 (19): 2349 2361, doi:10.1175/1520-0469(1997)054< 2349:ZFVABO>2.0.CO;2. Athanasiadis P J, Ambaum M H P. 2010. Do high-frequency eddies contribute to low-frequency teleconnection tendencies? [J]. J. Atmos. Sci., 67 (2): 419 433, doi:10.1175/2009jas3153.1. Barnes E A, Hartmann D L. 2012. Detection of Rossby wave breaking and its response to shifts of the midlatitude jet with climate change [J]. J. Geophys. Res., 117 (D9): D09117, doi:10.1029/2012jd017469. Benedict J J, Lee S, Feldstein S B. 2004. Synoptic view of the North Atlantic oscillation [J]. J. Atmos. Sci., 61 (2): 121 144, doi:10.1175/ 1520-0469(2004)061<0121:SVOTNA>2.0.CO;2.

232 43 Vol. 43 Cai M, Mak M. 1989. Symbiotic relation between planetary and synopticscale waves [J]. J. Atmos. Sci., 47 (24): 2953 2968, doi:10.1175/1520-0469(1990)047<2953:srbpas>2.0.co;2. Chang E K M, Yu D B. 1999. Characteristics of wave packets in the upper troposphere. Part I: Northern Hemisphere winter [J]. J. Atmos. Sci., 56 (11): 1708 1728, doi:10.1175/1520-0469(1999)056<1708:cowpit>2.0. CO;2. Derome J, Brunet G, Wang Y H. 2001. On the potential vorticity balance on an isentropic surface during normal and anomalous winters [J]. Mon. Wea. Rev., 129 (5): 1208 1220, doi:10.1175/1520-0493(2001)129<1208: OTPVBO>2.0.CO;2.,,. 2006. [J]., 26 (3): 237 243. Ding Yefeng, Ren Xuejuan, Han Bo. 2006. Primiary analysis of the climatic characteristics and variability of the North Pacific storm track [J]. Scientia Meteorologica Sinica (in Chinese), 26 (3): 237 243, doi:10.3969/j.issn.1009-0827.2006. 03.001.,,. 2009. [J]., 67 (2): 189 200. Fu Gang, Bi Wei, Guo Jingtian. 2009. Three-dimensional structure of storm track over the North Pacific [J]. Acta Meteorologica Sinica (in Chinese), 67 (2): 189 200, doi:10.3321/j. issn:0577-6619.2009.02.002. Hoskins B. 2015. Potential vorticity and the PV perspective [J]. Advances in Atmospheric Sciences, 32 (1): 2 9, doi:10.1007/s00376-014-0007-8. Hoskins B J, Mcintyre M E, Robertson A W. 1985. On the use and significance of isentropic potential vorticity maps [J]. Quart. J. Roy. Meteor. Soc., 111 (470): 877 946, doi:10.1002/qj.49711147002. Hoskins B J. 1991. Towards a PV θ view of the general circulation [J]. Tellus A: Dynamic Meteorology and Oceanography, 43 (4): 27 36, doi:10.3402/tellusa.v43i4.11936. Hoskins B J, Valdes P J. 1990. On the existence of storm-tracks [J]. J. Atmos. Sci., 47 (15): 1854 1864, doi:10.1175/1520-0469(1990)047<1854: OTEOST>2.0.CO;2. Kanamitsu M, Ebisuzaki W, Woollen J, et al. 2002. NCEP DOE AMIP-II reanalysis (R-2) [J]. Bull. Amer. Meteor. Soc., 83 (11): 1631 1644, doi:10.1175/bams-83-11-1631. Kug J, Jin F F, Park J, et al. 2010. A general rule for synoptic-eddy feedback onto low-frequency flow [J]. Climate Dyn., 35 (6): 1011 1026, doi:10.1007/s00382-009-0606-8.,. 2009. [J]., 32 (4): 565 573. Li Ying, Zhu Weijun. 2009. Performance of different digital filters in storm track study [J]. Transactions of Atmospheric Sciences (in Chinese), 32 (4): 565 573, doi:10.3969/j.issn.1674-7097.2009.04.014. Liu C J, Ren X J, Yang X Q. 2014. Mean flow-storm track relationship and Rossby wave breaking in two types of El-Niño [J]. Adv. Atmos. Sci., 31 (1): 197 210, doi:10.1007/s00376-013-2297-7.,. 1999. [J]., 23 (5): 533 542. Lu R Y, Huang R H. 1999. Influence of the stationary disturbance in the westerlies on the blocking highs over the northeastern Asia in summer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 23 (5): 533 542, doi:10.3878/j.issn.1006-9895. 1999.05.03. Luo D H, Cha J, Zhong L H, et al. 2014. A nonlinear multiscale interaction model for atmospheric blocking: The eddy-blocking matching mechanism [J]. Quart. J. Roy. Meteor. Soc., 140 (683): 1785 1808, doi:10.1002/ qj.2337. Song J, Li C Y, Zhou W, et al. 2009. The linkage between the Pacific North American teleconnection pattern and the North Atlantic oscillation [J]. Adv. Atmos. Sci., 26 (2): 229 239, doi:10.1007/s00376-009-0229-3. Song J, Li C Y, Pan J, et al. 2011. Climatology of anticyclonic and cyclonic rossby wave breaking on the dynamical tropopause in the Southern Hemisphere [J]. J. Climate, 24 (4): 1239 1251, doi:10.1175/ 2010JCLI3157.1. Strong C, Magnusdottir G. 2008. Tropospheric Rossby wave breaking and the NAO/NAM [J]. J. Atmos. Sci., 65 (9): 2861 2876, doi:10.1175/ 2008JAS2632.1.,. 2002. 1998 [J]. ( ), 38 (3): 354 364. Tan Benkui, Pan Xuhui. 2002. Baroclinic waves of Northern Hemisphere and Yangtze River flood in the summer of 1998 [J]. Journal of Nanjing University (Natural Sciences) (in Chinese), 38 (3): 354 364, doi:10.3321/ j.issn:0469-5097.2002.03.010. Thorncroft C D, Hoskins B J, Mcintyre M E. 1993. Two paradigms of baroclinic-wave life-cycle behaviour [J]. Quart. J. Roy. Meteor. Soc., 119 (509): 17 55, doi:10.1002/qj.49711950903.. 1999. [M]. :, 276pp. Wei Fengying. 1999. Modern Climatic Statistical Diagnosis and Prediction Technology (in Chinese). [M]. Beijing: China Meteorological Press, 276pp. Woollings T, Hoskins B J, Blackburn M, et al. 2008. A new Rossby wave-breaking interpretation of the North Atlantic oscillation [J]. J. Atmos. Sci., 65 (2): 609 626, doi:10.1175/2007jas2347.1.,,,. 1994. 1980 [J]., 52 (3): 308-320. Wu G X, Liu H, Chen F, et al. 1994. Transient eddy transfer and formation of blocking high On the persistently abnormal weather in the summer of 1980 [J]. Acta Meteorologica Sinica (in Chinese), 52 (3): 308 320, doi:10.11676/ qxxb1994.039.,. 2005. [M]. :, 371pp. Wu Hongbao, Wu Lei. 2005. Methods for Diagnosing and Forecasting Climate Variability (in Chinese) [M]. Beijing: China Meteorological Press, 371pp.,. 2000. 500 hpa [J]., 58 (3): 309 320. Zhu Weijun, Sun Zhaobo. 2000. Interannual variability of northern winter Pacific storm track and its association with 500 hpa height and tropical and northern Pacific sea surface temperature [J]. Acta Meteorologica Sinica (in Chinese), 58 (3): 309 320, doi:10.3321/j.issn:0577-6619.2000. 03.006.