Microsoft Word - S4-1513_datasheet.doc

Similar documents
Microsoft Word - LS2303x_datasheet_v1.1.doc

Microsoft Word - LS20030~3_datasheet_v1.1beta1.doc

Microsoft Word - LS2022A_datasheet.doc

Microsoft Word - BH-0606_datasheet.doc

Microsoft Word - MC-1613_datasheet_v1.x.doc

Microsoft Word - ST-1612_datasheet_V0.5.doc

Microsoft Word - MC R_datasheet.doc

Microsoft Word - MC-1613-G_datasheet.doc

Microsoft Word - MC-1513-G_datasheet.doc

Contents 1. Introduction of VK2828U7G5LF Features Appearance and Size Pins Working Conditions Normal Worki

GH1220 Hall Switch

Microsoft Word - LR1122B-B.doc

Microsoft Word - AP1515V02

Pin Configurations Figure2. Pin Configuration of FS2012 (Top View) Table 1 Pin Description Pin Number Pin Name Description 1 GND 2 FB 3 SW Ground Pin.

coverage2.ppt

Cube20S small, speedy, safe Eextremely modular Up to 64 modules per bus node Quick reaction time: up to 20 µs Cube20S A new Member of the Cube Family

BC04 Module_antenna__ doc

HC50246_2009

untitled

Microsoft Word - ML63S_8.doc

P4i45GL_GV-R50-CN.p65

HC20131_2010

Microsoft Word - HC20138_2010.doc

FM1935X智能非接触读写器芯片

User ID 150 Password - User ID 150 Password Mon- Cam-- Invalid Terminal Mode No User Terminal Mode No User Mon- Cam-- 2

. Land Patterns for Reflow Soldering.Recommended Reflow Soldering Conditions (For Lead Free) TYPE PID0703 PID0704 PID1204 PID1205 PID1207 PID1209 L(mm

HC70245_2008

穨control.PDF

MODEL 62000H SERIES 5KW / 10KW / 15KW 0 ~ 375A 0 ~ 1000V/2000V( ) : 200/220Vac, 380/400Vac, 440/480Vac 3U/15KW / & 150KW / ( 10 ms ~ 99 hours)

HCD0174_2008

Rotary Switch Catalogue

(Guangzhou) AIT Co, Ltd V 110V [ ]! 2

FM1935X智能非接触读写器芯片

Microsoft Word - LD5515_5V1.5A-DB-01 Demo Board Manual

SG-959 GPS 接收器用户手册中文版 V1.1 用户手册 SG-959 GPS 接收器 SiRF StarⅢ V 1.1 台湾制造 2008/08/08 免费服务热线 ( 限中国大陆 ):

2/80 2

Olav Lundström MicroSCADA Pro Marketing & Sales 2005 ABB - 1-1MRS755673

Microsoft PowerPoint - STU_EC_Ch08.ppt

LSC操作说明

KL DSC DEMO 使用说明

OVLFx3C7_Series_A3_bgry-KB.pub

國 立 政 治 大 學 教 育 學 系 2016 新 生 入 學 手 冊 目 錄 表 11 國 立 政 治 大 學 教 育 學 系 博 士 班 資 格 考 試 抵 免 申 請 表 論 文 題 目 申 報 暨 指 導 教 授 表 12 國 立 政 治 大 學 碩 博 士 班 論

LK110_ck

Microsoft Word - PZ series.doc

Microsoft Word - MTK平台生产软件使用说明.doc

AN INTRODUCTION TO PHYSICAL COMPUTING USING ARDUINO, GRASSHOPPER, AND FIREFLY (CHINESE EDITION ) INTERACTIVE PROTOTYPING

全汉不间断电源 全汉集团始于 1993 Began in 1993 UPS

< B9E2BBFAD7DBBACFCDBCB2E1B6A8B8E52DC7E5CEFAB0E6312E706466>

入學考試網上報名指南

Logitech Wireless Combo MK45 English

68369 (ppp quickstart guide)

Chapter 24 DC Battery Sizing

untitled

HC70044_2008

Important Notice SUNPLUS TECHNOLOGY CO. reserves the right to change this documentation without prior notice. Information provided by SUNPLUS TECHNOLO

TX-NR3030_BAS_Cs_ indd

K301Q-D VRT中英文说明书141009

1.ai

RAID RAID 0 RAID 1 RAID 5 RAID * ( -1)* ( /2)* No Yes Yes Yes A. B. BIOS SATA C. RAID BIOS RAID ( ) D. SATA RAID/AHCI ( ) SATA M.2 SSD ( )

Microsoft PowerPoint - talk8.ppt

Microsoft Word - template.doc

SHIMPO_表1-表4

Microsoft PowerPoint - ATF2015.ppt [相容模式]

Table of Contents Design Concept 03 Copyrights & TradeMark 04 Special Notice 05 Notice to concerned 05 Installation and Registration Introduction 07 s

Bus Hound 5

MICROCHIP EVM Board : APP APP001 PICmicro Microchip APP001 40pin PDIP PICmicro Design Tips Character LCM Temperature Sensor Application I/O Pi

Tel: Fax: TTP-344M/246M /

iml v C / 4W Down-Light EVM - pplication Notes. IC Description The iml8683 is a Three Terminal Current Controller (TTCC) for regulating the cur

邏輯分析儀的概念與原理-展示版

Chroma 61500/ bit / RMS RMS VA ()61500 DSP THD /61508/61507/61609/61608/ (61500 ) Chroma STEP PULSE : LISTLIST 100 AC DC

SHIMPO_表1-表4

ebook140-8

iml88-0v C / 8W T Tube EVM - pplication Notes. IC Description The iml88 is a Three Terminal Current Controller (TTCC) for regulating the current flowi

VioCard-300 user manual

P4V88+_BIOS_CN.p65

iml v C / 0W EVM - pplication Notes. IC Description The iml8683 is a Three Terminal Current Controller (TTCC) for regulating the current flowin

PTS7_Manual.PDF

SPHE8202R Design Guide Important Notice SUNPLUS TECHNOLOGY CO. reserves the right to change this documentation without prior notice. Information provi

P4VM800_BIOS_CN.p65

Microsoft Word - SWRH-B series of Shielded SMD Power Inductor.doc

HC20093A_2008

KDC-U5049 KDC-U4049 Made for ipod, and Made for iphone mean that an electronic accessory has been designed to connect specifically to ipod, or iphone,

DR2010.doc

SA-DK2-U3Rユーザーズマニュアル

(Microsoft Word W Technical document for \300\366\304\313.doc)

SDP

Table of Contents A. Product Outline.. 3 B. Features.. 4 C. Block Diagram... 5 D. Pin Assignments. 6 E. Physical Specifications... 7 F. DC Characteris

solutions guide

untitled

Improved Preimage Attacks on AES-like Hash Functions: Applications to Whirlpool and Grøstl

Gerotor Motors Series Dimensions A,B C T L L G1/2 M G1/ A 4 C H4 E

ARM Cortex-M3 (STM32F) STMicroelectronics ( ST) STM32F103 Core: ARM 32-bit Cortex -M3 CPU 72 MHz, 90 DMIPS with 1.25 DMIPS/MHz Single-cycle multiplica

Microsoft Word - 3D手册2.doc

ICD ICD ICD ICD ICD

IP505SM_manual_cn.doc

CHCN_8-14_K.indd

Microsoft Word - VA REV.A.doc

Serial ATA ( Silicon Image SiI3114)...2 (1) SATA... 2 (2) B I O S S A T A... 3 (3) RAID BIOS RAID... 5 (4) S A T A... 8 (5) S A T A... 10

ch_code_infoaccess

Microsoft PowerPoint - ryz_030708_pwo.ppt

Transcription:

Product name Description Version S4-1513 Datasheet of S4-1513 GPS module 1.1 1 Introduction LOCOSYS S4-1513 GPS module features high sensitivity, low power and ultra small form factor. This GPS module is powered by SiRF Star IV, it can provide you with superior sensitivity and performance even in urban canyon and dense foliage environment. With SiRF CGEE (Client Generated Extended Ephemeris) technology, it predicts satellite positions for up to 3 days and delivers CGEE-start time of less than 15 seconds under most conditions, without any network assistance. Besides, MicroPower Mode allows GPS module to stay in a hot-start condition nearly continuously while consuming very little power. 2 Features SiRF Star IV high sensitivity solution Support 48-channel GPS Fast TTFF at low signal level Capable of SBAS (WAAS, EGNOS, MSAS, GAGAN) Up to 5 Hz update rate Built-in active jammer remover to track up to 8 CW jammers Embedded free CGEE technology to get faster location fix Micro Power Mode MEMS support SBAS ranging Built-in LNA and SAW filter Small form factor 15 x 13 x 2.2 mm SMD type with stamp holes; RoHS compliant 3 Application Personal positioning and navigation Automotive navigation Marine navigation 2010 Page 1/22

GPS antenna RTC TCXO WAKEUP VCC GND SAW Flash memory SiRF GPS chip /RESET ON_OFF UART Switching mode S4-1513 Fig 3-1 System block diagram. GPS passive antenna VCC IO RX TX Micro processor IN GND OUT 1.8V 1 20 GPIO6 GND 2 19 GPIO7 RFIN 3 18 1PPS GND (level: 1.8V) 4 17 TX NC 5 16 RX BS 21 22 GND GND 1.8V 6 15 GPIO4 GPIO3 2.2K 7 14 GPIO0 GPIO2 8 13 100K /RESET GPIO8 9 12 WAKEUP VCC 10 11 2.2K ON_OFF GPIO1 mandatory S4-1513 50 ohm As short as possible 1.8V Keep alive to get hot start and CGEE Fig 3-2 Typical application circuit that uses a passive antenna. 2010 Page 2/22

Fig 3-3 Typical application circuit that uses an active antenna 3.3V 1.8V RX of Micro processor 1 6 VA VB 2 5 GND DIR 3 4 A B 100K TX of S4-1513 GPS active antenna SN74LVC1T45 VCC IO RX TX Micro processor IN GND OUT 3.3V 1 20 GPIO6 GND 2 19 GPIO7 RFIN 3 18 1PPS GND Level 4 17 TX NC shifter 5 16 RX BS 21 22 GND GND 1.8V 6 15 GPIO4 GPIO3 2.2K 7 14 GPIO0 GPIO2 8 13 100K /RESET GPIO8 9 12 WAKEUP VCC 10 11 2.2K ON_OFF GPIO1 mandatory S4-1513 LNA 50 ohm 18pF 27nH or BEAD VCC for antenna 1.8V Keep alive to get hot start and CGEE Fig 3-4 Use a level shifter for a micro processor of 3.3V IO voltage to communicate with S4-1513. 2010 Page 3/22

4 GPS receiver Chip SiRF Star IV, GSD4e-9411 Frequency L1 1575.42MHz, C/A code Channels 48 Update rate 1Hz default, up to 5 Hz Tracking Sensitivity Navigation Cold start Hot start (Open Sky) Hot start (Indoor) Acquisition Time Cold Start (Open Sky) -159.5dBm, up to -163dBm (with external LNA) -156.5dBm, up to -160dBm (with external LNA) -144.5dBm, up to -148dBm (with external LNA) < 1s (typical) < 15s 32s (typical) < 15s (typical), CGEE-start Position Accuracy Autonomous 3m (2D RMS) SBAS 2.5m (depends on accuracy of correction data) Max. Altitude < 18,000 m Max. Velocity < 515 m/s 9600 bps (1), 8 data bits, no parity, 1 stop bits (default) NMEA 0183 ver 3.0 Protocol Support 1Hz: GGA, GLL, GSA, GSV, RMC, VTG OSP Binary 115200 bps, 8 data bits, no parity, 1 stop bits Note 1: Both baud rate and output message rate are configurable. Table 4.1 Navigation Parameters Track smooth mode Static navigation mode Disabled Enabled 5 Software interface 5.1 NMEA output message Table 5.1-1 NMEA output message NMEA record GGA GLL GSA GSV RMC VTG Description Global positioning system fixed data Geographic position - latitude/longitude GNSS DOP and active satellites GNSS satellites in view Recommended minimum specific GNSS data Course over ground and ground speed 2010 Page 4/22

GGA--- Global Positioning System Fixed Data Table 5.1-2 contains the values for the following example: $GPGGA,053740.000,2503.6319,N,12136.0099,E,1,08,1.1,63.8,M,15.2,M,,0000*64 Table5.1-2 GGA Data Format Message ID $GPGGA GGA protocol header UTC Time 053740.000 hhmmss.sss Latitude 2503.6319 ddmm.mmmm N/S indicator N N=north or S=south Longitude 12136.0099 dddmm.mmmm E/W Indicator E E=east or W=west Position Fix Indicator 1 See Table 5.1-3 Satellites Used 08 Range 0 to 12 HDOP 1.1 Horizontal Dilution of Precision MSL Altitude 63.8 mters Units M mters Geoid Separation 15.2 mters Units M mters Age of Diff. Corr. second Null fields when DGPS is not used Diff. Ref. Station ID 0000 Checksum *64 <CR> <LF> Table 5.1-3 Position Fix Indicators Value Description 0 Fix not available or invalid 1 GPS SPS Mode, fix valid 2 Differential GPS, SPS Mode, fix valid 3-5 Not supported 6 Dead Reckoning Mode, fix valid GLL--- Geographic Position Latitude/Longitude Table 5.1-4 contains the values for the following example: $GPGLL,2503.6319,N,12136.0099,E,053740.000,A,A*52 Table 5.1-4 GLL Data Format 2010 Page 5/22

Message ID $GPGLL GLL protocol header Latitude 2503.6319 ddmm.mmmm N/S indicator N N=north or S=south Longitude 12136.0099 dddmm.mmmm E/W indicator E E=east or W=west UTC Time 053740.000 hhmmss.sss Status A A=data valid or V=data not valid Mode A A=autonomous, D=DGPS, E=DR Checksum *52 <CR> <LF> GSA---GNSS DOP and Active Satellites Table 5.1-5 contains the values for the following example: $GPGSA,A,3,24,07,17,11,28,08,20,04,,,,,2.0,1.1,1.7*35 Table 5.1-5 GSA Data Format Message ID $GPGSA GSA protocol header Mode 1 A See Table 5.1-6 Mode 2 3 See Table 5.1-7 ID of satellite used 24 Sv on Channel 1 ID of satellite used 07 Sv on Channel 2.. ID of satellite used Sv on Channel 12 PDOP 2.0 Position Dilution of Precision HDOP 1.1 Horizontal Dilution of Precision VDOP 1.7 Vertical Dilution of Precision Checksum *35 <CR> <LF> Table 5.1-6 Mode 1 Value M A Description Manual- forced to operate in 2D or 3D mode Automatic-allowed to automatically switch 2D/3D Table 5.1-7 Mode 2 Value Description 1 Fix not available 2 2D 2010 Page 6/22

3 3D GSV---GNSS Satellites in View Table 5.1-8 contains the values for the following example: $GPGSV,3,1,12,28,81,285,42,24,67,302,46,31,54,354,,20,51,077,46*73 $GPGSV,3,2,12,17,41,328,45,07,32,315,45,04,31,250,40,11,25,046,41*75 $GPGSV,3,3,12,08,22,214,38,27,08,190,16,19,05,092,33,23,04,127,*7B Table 5.1-8 GSV Data Format Message ID $GPGSV GSV protocol header Total number of messages 1 3 Range 1 to 3 Message number 1 1 Range 1 to 3 Satellites in view 12 Satellite ID 28 Channel 1 (Range 01 to 32) Elevation 81 degrees Channel 1 (Range 00 to 90) Azimuth 285 degrees Channel 1 (Range 000 to 359) SNR (C/No) 42 db-hz Channel 1 (Range 00 to 99, null when not tracking) Satellite ID 20 Channel 4 (Range 01 to 32) Elevation 51 degrees Channel 4 (Range 00 to 90) Azimuth 077 degrees Channel 4 (Range 000 to 359) SNR (C/No) 46 db-hz Channel 4 (Range 00 to 99, null when not tracking) Checksum *73 <CR> <LF> 1. Depending on the number of satellites tracked multiple messages of GSV data may be required. RMC---Recommended Minimum Specific GNSS Data Table 5.1-9 contains the values for the following example: $GPRMC,053740.000,A,2503.6319,N,12136.0099,E,2.69,79.65,100106,,,A*53 Table 5.1-9 RMC Data Format Message ID $GPRMC RMC protocol header UTC Time 053740.000 hhmmss.sss Status A A=data valid or V=data not valid Latitude 2503.6319 ddmm.mmmm N/S Indicator N N=north or S=south Longitude 12136.0099 dddmm.mmmm E/W Indicator E E=east or W=west 2010 Page 7/22

Speed over ground 2.69 knots True Course over ground 79.65 degrees Date 100106 ddmmyy Magnetic variation Variation sense degrees E=east or W=west (Not shown) Mode A A=autonomous, D=DGPS, E=DR Checksum *53 <CR> <LF> VTG---Course Over Ground and Ground Speed Table 5.1-10 contains the values for the following example: $GPVTG,79.65,T,,M,2.69,N,5.0,K,A*38 Table 5.1-10 VTG Data Format Message ID $GPVTG VTG protocol header Course over ground 79.65 degrees Measured heading Reference T True Course over ground degrees Measured heading Reference M Magnetic Speed over ground 2.69 knots Measured speed Units N Knots Speed over ground 5.0 km/hr Measured speed Units K Kilometer per hour Mode A A=autonomous, D=DGPS, E=DR Checksum *38 <CR> <LF> 5.2 Proprietary NMEA input message Table 5.2-1 Message Parameters Start Sequence Payload Checksum End Sequence $PSRF<MID> 1 Data 2 *CKSUM 3 <CR><LF> 4 1. Message Identifier consisting of three numeric characters. Input messages begin at MID 100. 2. Message specific data. Refer to a specific message section for <data> <data> definition. 3. CKSUM is a two-hex character checksum as defined in the NMEA specification, NMEA-0183Standard For Interfacing Marine Electronic Devices. Use of checksums is required on all input messages. 4. Each message is terminated using Carriage Return (CR) Line Feed (LF) which is \r\n which is hex 0D0A. Because \r\n are not printable ASCII characters, they are omitted from the example strings, but must be sent to terminate the 2010 Page 8/22

message and cause the receiver to process that input message. Note: All fields in all proprietary NMEA messages are required, none are optional. All NMEA messages are comma delimited. Table 5.2-2 Proprietary NMEA input messages Message MID 1 Description SetSerialPort 100 Set PORT A parameters and protocol NavigationInitialization 101 Parameters required for start using X/Y/Z 2 SetDGPSPort 102 Set PORT B parameters for DGPS input Query/Rate Control 103 Query standard NMEA message and/or set output rate LLANavigationInitialization 104 Parameters required for start using Lat/Lon/Alt 3 Development Data On/Off 105 Development Data messages On/Off Select Datum 106 Selection of datum to be used for coordinate transformations 1. Message Identification (MID). 2. Input coordinates must be WGS84. 3. Input coordinates must be WGS84 100---SetSerialPort This command message is used to set the protocol (SiRF binary or NMEA) and/or the communication parameters (Baud, data bits, stop bits, and parity). Generally, this command is used to switch the module back to SiRF binary protocol mode where a more extensive command message set is available. When a valid message is received, the parameters are stored in battery-backed SRAM and the Evaluation Receiver restarts using the saved parameters. Table 5.2-3 contains the input values for the following example: Switch to SiRF binary protocol at 9600,8,N,1 $PSRF100,0,9600,8,1,0*0C Table 5.2-3 Set Serial Port Data Format Message ID $PSRF100 PSRF100 protocol header Protocol 0 0=SiRF binary, 1=NMEA Baud 9600 4800,9600,19200,38400,57600,115200 DataBits 8 8,7 1 StopBits 1 0,1 Parity 0 0=None, 1=Odd, 2=Even Checksum *0C <CR><LF> 1. SiRF protocol is only valid for 8 data bits, 1 stop bit, and no parity. 101---NavigationInitialization 2010 Page 9/22

This command is used to initialize the Evaluation Receiver by providing current position (in X, Y, Z coordinates), clock offset, and time. This enables the Evaluation Receiver to search for the correct satellite signals at the correct signal parameters. Correct initialization parameters enable the Evaluation Receiver to acquire signals quickly. Table 5.2-4 contains the input values for the following example: Start using known position and time $PSRF101,-2686700,-4304200,3851624,96000,497260,921,12,3*1C Table 5.2-4 Navigation Initialization Data Format Message ID $PSRF101 PSRF101 protocol header ECEF X -2686700 meters X coordinate position ECEF Y -4304200 meters Y coordinate position ECEF Z 3851624 meters Z coordinate position ClkOffset 96000 Hz Clock Offset of the Evaluation Receiver 1 TimeOfWeek 497260 seconds GPS Time Of Week WeekNo 921 GPS Week Number ChannelCount 12 Range 1 to 12 ResetCfg 3 See Table 5.2-5 Checksum *1C <CR><LF> 1. Use 0 for last saved value if available. If this is unavailable, a default value of 96000 is used. Table 5.2-5 Reset Configuration Hex Description 0x01 0x02 0x03 0x04 0x08 Hot Start All data valid Warm Start Ephemeris cleared Warm Start (with Init) Ephemeris cleared, initialization data loaded Cold Start Clears all data in memory Clear Memory Clears all data in memory and resets the receiver back to factory defaults 102---SetDGPSPort This command is used to control the serial port used to receive RTCM differential corrections. Differential receivers may output corrections using different communication parameters. If a DGPS receiver is used that has different communication parameters, use this command to allow the receiver to correctly decode the data. When a valid message is received, the parameters are stored in battery-backed SRAM and the receiver restarts using the saved parameters. Table 5.2-6 contains the input values for the following example: Set DGPS Port to be 9600,8,N,1. $PSRF102,9600,8,1,0*12 Table 5.2-6 Set GPS Port Data Format 2010 Page 10/22

Message ID $PSRF102 PSRF102 protocol header Baud 9600 4800,9600,19200,38400 DataBits 8 8,7 StopBits 1 0,1 Parity 0 0=None, 1=Odd, 2=Even Checksum *12 <CR><LF> Note: RTCM is not supported. 103---Query/Rate Control This command is used to control the output of standard NMEA messages GGA, GLL, GSA, GSV, RMC, and VTG. Using this command message, standard NMEA messages may be polled once, or setup for periodic output. Checksums may also be enabled or disabled depending on the needs of the receiving program. NMEA message settings are saved in battery-backed memory for each entry when the message is accepted. Table 5.2-7 contains the input values for the following example: 1. Query the GGA message with checksum enabled $PSRF103,00,01,00,01*25 2. Enable VTG message for a 1 Hz constant output with checksum enabled $PSRF103,05,00,01,01*20 3. Disable VTG message $PSRF103,05,00,00,01*21 Table 5.2-7 Query/Rate Control Data Format (See example 1) Message ID $PSRF103 PSRF103 protocol header Msg 00 See Table 5.2-8 Mode 01 0=SetRate, 1=Query Rate 00 seconds Output off=0, max=255 CksumEnable 01 0=Disable Checksum, 1=Enable Checksum Checksum *25 <CR><LF> Table 5.2-8 Messages Value 0 GGA 1 GLL Description 2010 Page 11/22

2 GSA 3 GSV 4 RMC 5 VTG 6 MSS (If internal beacon is supported) 7 Not defined 8 ZDA (if 1PPS output is supported) 9 Not defined 104---LLANavigationInitialization This command is used to initialize the Evaluation Receiver by providing current position (in latitude, longitude, and altitude coordinates), clock offset, and time. This enables the receiver to search for the correct satellite signals at the correct signal parameters. Correct initialization parameters enable the receiver to acquire signals quickly. Table 5.2-9 contains the input values for the following example: Start using known position and time. $PSRF104,37.3875111,-121.97232,0,96000,237759,1946,12,1*07 Table 5.2-9 LLA Navigation Initialization Data Format Message ID $PSRF104 PSRF104 protocol header Lat 37.3875111 degrees Latitude position (Range 90 to 90) Lon -121.97232 degrees Longitude position (Range 180 to 180) Alt 0 meters Altitude position ClkOffset 96000 Hz Clock Offset of the Evaluation Receiver 1 TimeOfWeek 237759 seconds GPS Time Of Week WeekNo 1946 Extended GPS Week Number (1024 added) ChannelCount 12 Range 1 to 12 ResetCfg 1 See Table 5.2-10 Checksum *07 <CR><LF> 1. Use 0 for last saved value if available. If this is unavailable, a default value of 96000 is used. Table 5.2-10 Messages Hex 0x01 0x02 0x03 Description Hot Start All data valid Warm Start Ephemeris cleared Warm Start (with Init) Ephemeris cleared, initialization data loaded 2010 Page 12/22

0x04 0x08 Cold Start Clears all data in memory Clear Memory Clears all data in memory and resets receiver back to factory defaults 105---Development Data On/Off Use this command to enable development data information if you are having trouble getting commands accepted. Invalid commands generate debug information that enables you to determine the source of the command rejection. Common reasons for input command rejection are invalid checksum or parameter out of specified range. Table 5.2-11 contains the input values for the following example: 1. Debug On $PSRF105,1*3E 2. Debug Off $PSRF105,0*3F Table 5.2-11 Development Data On/Off Data Format Message ID $PSRF105 PSRF105 protocol header Debug 1 0=Off, 1=On Checksum *3E <CR><LF> 106---Select Datum $PSGPS receivers perform initial position and velocity calculations using an earth-centered earth-fixed (ECEF) coordinate system. Results may be converted to an earth model (geoid) defined by the selected datum. The default datum is WGS 84 (World Geodetic System 1984) which provides a worldwide common grid system that may be translated into local coordinate systems or map datums. (Local map datums are a best fit to the local shape of the earth and not valid worldwide.) Table 5.2-12 contains the input values for the following example: Datum select TOKYO_MEAN $PSRF106,178*32 Table 5.2-12 Development Data On/Off Data Format Message ID $PSRF106 PSRF106 protocol header Datum 178 21=WGS84 178=TOKYO_MEAN 179=TOKYO_JAPAN 180=TOKYO_KOREA 181=TOKYO_OKINAWA Checksum *32 2010 Page 13/22

<CR><LF> 117---System Turn Off This message requests that the GPS receiver perform an orderly shutdown and switch to hibernate mode. Table 5.2-13 contains the values for the following example: $PSRF117,16*0B Table 5.2-13 System Turn Off Message ID $PSRF117 PSRF117 protocol header Sub ID 16 16: System turn off Checksum *0B <CR><LF> 2010 Page 14/22

5.3 Supply voltage control and sequencing 5.3.1 Initial power up When power is first applied, the module goes into a low-power mode while RTC starts. The host is not required to control /RESET pin (pin 8 of GPS module) since the module s internal reset circuitry handles detection of application of power. After that, the module is in ready-to-start state and awaits an ON_OFF input pulse to start. Since RTC startup time is variable, detection of when the module is ready to accept an ON_OFF pulse requires the host to either wait for a fixed interval or to monitor a pulse on WAKEUP output (pin 9 of GPS module) to assert a pulse on the ON_OFF input. An example flow chart is shown below. Start First provide power to GPS module Wait for 1 second 3 RTC cycles Assert an ON_OFF pulse to GPS module No Receive UART messages from GPS module within 1 second? ON_OFF pulse Yes GPS module starts to work in full-power mode End 2010 Page 15/22

5.3.2 Procedure for removing power of GPS module Abrupt, uncontrolled removal of power while GPS module is operating carries the risk of data corruption. The consequences of corruption range from longer TimeToFirstFix to complete system failure. The appropriate procedure to remove power is shown as below. Start Via software Via ON_OFF pin Send system turn off message to GPS module (refer to table 5.2-13) Assert an ON_OFF pulse when GPS module is in full-power mode Wait for 1 second to let GPS module go into hibernate mode Remove power of GPS module for a period longer than 10 s Note: All BBRAM contents and RTC time of GPS module will be lost resulting in a factory reset. Restart GPS module? Yes Follow the procedure of section 5.3.1 No End 2010 Page 16/22

6 Pin assignment and descriptions Table 6-1 Pin descriptions Pin # Name Type Description Note 1 GPIO6 General purpose I/O I/O Do not connect for default UART interface. 1 2 GPIO7 General purpose I/O I/O Do not connect for default UART interface. 1 3 1PPS O Pulse per second (200 ms pulse) 4 TX O Serial output (Default NMEA) 5 RX I Serial input (Default NMEA) 1 6 GPIO4 I/O General purpose I/O 1 7 GPIO0 General purpose I/O I/O Please connect a 2.2KΩ pull-up resistor to VCC 1 External reset input with internal pull-up, active low. 8 /RESET I GPS module has internal power on reset that is the 1 preferred system reset method. External reset will clear all BBRAM and SRAM. 9 WAKEUP O Wake up output. A high on this output indicates that GPS module is in operational mode. A low on this output indicates that GPS module is in low power state (standby, hibernate and ready-to-start). User can use this pin to control external power supply, LNA or external GPS antenna. 2010 Page 17/22

10 ON_OFF I 11 GPIO1 I/O Power control pin. Internal 10KΩ pull-down resistor. General purpose I/O 12 VCC P DC supply voltage 13 GPIO8 I/O Please connect a 2.2KΩ pull-up resistor to VCC General purpose I/O Please connect a 100KΩ pull-down resistor to GND 14 GPIO2 I/O General purpose I/O 1 15 GPIO3 I/O General purpose I/O 1 16 BS I Boot mode select (Do not connect in normal operation) 17 NC Not connected 18 GND P Ground 19 RFIN I GPS RF signal input 20 GND P Ground 21 GND P Ground 22 GND P Ground <Note> 1. Input voltage is 3.6V tolerant. 2. Input pulse to start the module, and switch the module between different power modes. ON_OFF pulse requires a rising edge and high level that persists for three cycles of the RTC clock in order to be detected. Resetting the ON_OFF detector requires that ON_OFF goes to logic low for at least three cycles of the RTC clock. If the module is first powered, i.e. in ready-to-start state, an ON_OFF pulse will start the module. If the module is in hibernate state, an ON_OFF pulse will move it to full-power mode. If the module is in MicroPower mode, an ON_OFF pulse will move it to full-power mode. If the module is in AdvancedPower mode, an ON_OFF pulse will initiate one AdvancedPower cycle. If the module is in TricklePower mode, an ON_OFF pulse will initiate one TricklePower cycle. If the module is in Push-To-Fix mode, an ON_OFF pulse will initiate one Push-To-Fix cycle. If the module is already in full-power mode, an ON_OFF pulse will initiate orderly shutdown. 1,2 1 1 2010 Page 18/22

7 DC & Temperature characteristics 7.1 Absolute maximum ratings Parameter Symbol Ratings Units DC Supply Voltage VCC 1.95 V I/O Pin Voltage VIO 3.6 V Operating Temperature Range Topr -40 ~ 85 Storage Temperature Range Tstg -40 ~ 85 7.2 DC Electrical characteristics Parameter Symbol Conditions Min. Typ. Max. Units DC Supply Voltage VCC 1.71 1.8 1.89 V VIN = 1.8V Supply Current (Switching mode) Iss Peak 130 ma Acquisition Tracking Standby (1) Hibernate Ready-to-start (2) 46 27.5 93 20 9 ma ma ua ua ua MPM (3) 250 (4) High Level Input Voltage VI H 0.7*VCC 3.6 V Low Level Input Voltage VI L -0.4 0.45 V High Level Output Voltage VOH 0.75*VCC VCC V Low Level Output Voltage VOL 0.4 V High Level Output Current IOH 2 ma Low Level Output Current IOL 2 ma Input Capacitance C IN 5 pf Load Capacitance C LOAD 8 pf <Note> 1. Transitional state when GPS module is in TricklePower mode. 2. When power is first applied, the module goes into a ready-to-start state. Please refer to the section 5.3. 3. MicroPowerMode. 4. The value of each module is different. ua 7.3 Temperature characteristics Parameter Symbol Min. Typ. Max. Units Operating Temperature Topr -30-85 Storage Temperature Tstg -40 25 85 2010 Page 19/22

8 Mechanical specification 8.1 Outline dimensions 8.2 Recommended land pattern dimensions 2010 Page 20/22

9 Reel Packing information 2010 Page 21/22

Document change list Revision 1.0 First release on Dec. 24, 2010. Revision 1.0 to Revision 1.1 (March 15, 2011) Upgraded GPS firmware to version 4.1.0. Added Up to 5 Hz update rate on page 1. Added 115200 in the Table 5.2-3 on page 9. Changed tracking current from 31mA to 27.5mA on page 19. Changed MPM current from 550uA to 250uA on page 19. 2010 Page 22/22