Microsoft Word - MC-1613_datasheet_v1.x.doc

Similar documents
Microsoft Word - LS2303x_datasheet_v1.1.doc

Microsoft Word - LS20030~3_datasheet_v1.1beta1.doc

Microsoft Word - MC R_datasheet.doc

Microsoft Word - BH-0606_datasheet.doc

Microsoft Word - MC-1613-G_datasheet.doc

Microsoft Word - MC-1513-G_datasheet.doc

Microsoft Word - ST-1612_datasheet_V0.5.doc

Contents 1. Introduction of VK2828U7G5LF Features Appearance and Size Pins Working Conditions Normal Worki

Microsoft Word - S4-1513_datasheet.doc

Microsoft Word - LS2022A_datasheet.doc

GH1220 Hall Switch

Microsoft Word - LR1122B-B.doc

Microsoft Word - AP1515V02

BC04 Module_antenna__ doc

HC50246_2009

Microsoft Word - ML63S_8.doc

coverage2.ppt

HC20131_2010

Cube20S small, speedy, safe Eextremely modular Up to 64 modules per bus node Quick reaction time: up to 20 µs Cube20S A new Member of the Cube Family

Pin Configurations Figure2. Pin Configuration of FS2012 (Top View) Table 1 Pin Description Pin Number Pin Name Description 1 GND 2 FB 3 SW Ground Pin.

Microsoft Word - PZ series.doc

< B9E2BBFAD7DBBACFCDBCB2E1B6A8B8E52DC7E5CEFAB0E6312E706466>

HCD0174_2008

SG-959 GPS 接收器用户手册中文版 V1.1 用户手册 SG-959 GPS 接收器 SiRF StarⅢ V 1.1 台湾制造 2008/08/08 免费服务热线 ( 限中国大陆 ):

入學考試網上報名指南

OVLFx3C7_Series_A3_bgry-KB.pub

. Land Patterns for Reflow Soldering.Recommended Reflow Soldering Conditions (For Lead Free) TYPE PID0703 PID0704 PID1204 PID1205 PID1207 PID1209 L(mm

LSC操作说明

FM1935X智能非接触读写器芯片

HC70245_2008

1.ai

Microsoft Word - HC20138_2010.doc

Table of Contents A. Product Outline.. 3 B. Features.. 4 C. Block Diagram... 5 D. Pin Assignments. 6 E. Physical Specifications... 7 F. DC Characteris

K301Q-D VRT中英文说明书141009

全汉不间断电源 全汉集团始于 1993 Began in 1993 UPS

E15-3D1 1. Specifications Compact 4-Way Cassette type Model name MMU- AP0071MH2UL AP0091MH2UL AP0121MH2UL AP0151MH2UL AP0181MH2UL Cooling Capacity kbt

<95BD90AC E E F1816A93648E718D CA48B868F8A8CA48B8694AD955C89EF8D A E706466>

Microsoft Word - P SDV series.DOC

FM1935X智能非接触读写器芯片

Microsoft Word - SWRH-B series of Shielded SMD Power Inductor.doc

Progress Report of BESIII Slow Control Software Development

SHIMPO_表1-表4

(Microsoft Word W Technical document for \300\366\304\313.doc)

Microsoft Word - MTK平台生产软件使用说明.doc

Microsoft Word - LD5515_5V1.5A-DB-01 Demo Board Manual

SHIMPO_表1-表4

KL DSC DEMO 使用说明

r_09hr_practical_guide_kor.pdf

P4i45GL_GV-R50-CN.p65

Gerotor Motors Series Dimensions A,B C T L L G1/2 M G1/ A 4 C H4 E

CHCN_8-14_K.indd

MODEL 62000H SERIES 5KW / 10KW / 15KW 0 ~ 375A 0 ~ 1000V/2000V( ) : 200/220Vac, 380/400Vac, 440/480Vac 3U/15KW / & 150KW / ( 10 ms ~ 99 hours)

HC70044_2008

Table of Contents Design Concept 03 Copyrights & TradeMark 04 Special Notice 05 Notice to concerned 05 Installation and Registration Introduction 07 s

Chapter 24 DC Battery Sizing

Important Notice SUNPLUS TECHNOLOGY CO. reserves the right to change this documentation without prior notice. Information provided by SUNPLUS TECHNOLO

User ID 150 Password - User ID 150 Password Mon- Cam-- Invalid Terminal Mode No User Terminal Mode No User Mon- Cam-- 2


Chroma 61500/ bit / RMS RMS VA ()61500 DSP THD /61508/61507/61609/61608/ (61500 ) Chroma STEP PULSE : LISTLIST 100 AC DC

VioCard-300 user manual

MICROCHIP EVM Board : APP APP001 PICmicro Microchip APP001 40pin PDIP PICmicro Design Tips Character LCM Temperature Sensor Application I/O Pi

untitled

穨control.PDF

LH_Series_Rev2014.pdf

SDP

LK110_ck

Gerolor Motors Series Dimensions A,B C T L L G1/2 M8 G1/ A 4 C H4 E

(Guangzhou) AIT Co, Ltd V 110V [ ]! 2

Rotary Switch Catalogue

RF & MICROWAVE COMPONENTS

...2 SK 500 G SK 500 G / /

Olav Lundström MicroSCADA Pro Marketing & Sales 2005 ABB - 1-1MRS755673

Bus Hound 5

HC20093A_2008

Current Sensing Chip Resistor

2/80 2

邏輯分析儀的概念與原理-展示版

0-封面封底

AN INTRODUCTION TO PHYSICAL COMPUTING USING ARDUINO, GRASSHOPPER, AND FIREFLY (CHINESE EDITION ) INTERACTIVE PROTOTYPING

untitled

* RRB *

untitled

KDC-U5049 KDC-U4049 Made for ipod, and Made for iphone mean that an electronic accessory has been designed to connect specifically to ipod, or iphone,

P3B-F Pentium III/II/Celeron TM

ch_code_infoaccess

Improved Preimage Attacks on AES-like Hash Functions: Applications to Whirlpool and Grøstl

IP505SM_manual_cn.doc

热设计网

CANVIO_AEROCAST_CS_EN.indd

02 Keysight GNSS - GNSS... 3 GNSS... 4 GNSS... 4 GPS... 6 GPS... 6 GPS... 7 GPS... 8 GLONASS... 8 GLONASS... 9 GLONASS GLONASS Galileo E1.

+01-10_M5A_C1955.p65

JLX

untitled

pdf

目 录 目 录 1. 安 装 和 快 速 入 门 附 件 1.1 随 机 附 件 附 件 信 息... 3 连 接 和 设 定 1.3 连 接 记 录 纸... 4 快 速 入 门 1.5 发 送 传 真 / 复 印 接 收 传 真

01CP-WX3030WNetc_CO_ENG.indd

solutions guide

Microsoft PowerPoint - STU_EC_Ch08.ppt

60C

10_DataSheet_LMS-Q1560_xx-xx-2013_PRELIMINARY_IP.indd

Transcription:

Product name Description Version MC-1613 Datasheet of MC-1613 stand-alone GPS module 1.3 1 Introduction LOCOSYS GPS MC-1613 module features high sensitivity, low power and ultra small form factor. This GPS module is powered by MediaTek, it can provide you with superior sensitivity and performance even in urban canyon and dense foliage environment. This module supports hybrid ephemeris prediction to achieve faster cold start. One is self-generated ephemeris prediction that is no need of both network assistance and host CPU s intervention. This is valid for up to 3 days and updates automatically from time to time when GPS module is powered on and satellites are available. The other is server-generated ephemeris prediction that gets from an internet server. This is valid for up to 14 days. Both ephemeris predictions are stored in the on-board flash memory and perform a cold start time less than 15 seconds. 2 Features MediaTek high sensitivity solution Support 66-channel GPS Low power consumption Fast TTFF at low signal level Built-in 12 multi-tone active interference canceller Free hybrid ephemeris prediction to achieve faster cold start Built-in data logger Up to 10 Hz update rate Capable of SBAS (WAAS, EGNOS, MSAS, GAGAN) Support SBAS ranging Support Japan QZSS Indoor and outdoor multi-path detection and compensation Small form factor 15.9 x 13.1 x 2.2 mm SMD type with stamp holes; RoHS compliant 3 Application Personal positioning and navigation Automotive navigation Marine navigation 2010 Page 1/17

Fig 3-1 System block diagram. GPS active antenna 3.3V TX RX VCC LNA Impedance 50 ohm 2~4.3V Battery keep alive to get hot start and AGPS start LDO output 3.3V 1 RFIN 2 3 4 5 V_BCKP 6 7 8 9 10 11 VCC MC-1613 29 28 27 26 25 24 23 22 21 20 1PPS 19 Micro processor Fig 3-2 Typical application circuit that uses an active antenna 2010 Page 2/17

3.3V GPS passive antenna TX RX VCC Impedance 50 ohm 2~4.3V Battery keep alive to get hot start and AGPS start LDO output 3.3V 1 RFIN 2 3 4 5 9 10 11 V_BCKP 6 7 8 VCC 36 35 34 33 32 31 RX 30 TX /RESET 14 13 12 MC-1613 15 18 17 16 29 28 27 26 25 24 23 22 21 20 1PPS 19 Micro processor Fig 3-3 Typical application circuit that uses a passive antenna. 2010 Page 3/17

4 GPS receiver and antenna 4.1 GPS receiver Chip Frequency Channels Update rate Sensitivity Acquisition Time Position Accuracy Max. Altitude Max. Velocity MediaTek MT3339 L1 1575.42MHz, C/A code Support 66 channels (22 Tracking, 66 Acquisition) 1Hz default, up to 10Hz Tracking Cold start Hot start (Open Sky) Hot start (Indoor) Cold Start (Open Sky) Autonomous SBAS < 50,000 m < 515 m/s Protocol Support NMEA 0183 ver 3.01 up to -165dBm (with external LNA) up to -148dBm (with external LNA) < 1s (typical) < 30s 32s (typical) without AGPS < 15s (typical) with AGPS (hybrid ephemeris prediction) 3m (2D RMS). 2.5m (depends on accuracy of correction data). 9600 bps (1), 8 data bits, no parity, 1 stop bits (default) 1Hz: GGA, GLL, GSA, GSV, RMC, VTG Note 1: Both baud rate and output message rate are configurable to be factory default. 5 Software interface 5.1 NMEA output message Table 5.1-1 NMEA output message NMEA record GGA GLL GSA GSV RMC VTG Description Global positioning system fixed data Geographic position - latitude/longitude GNSS DOP and active satellites GNSS satellites in view Recommended minimum specific GNSS data Course over ground and ground speed GGA--- Global Positioning System Fixed Data Table 5.1-2 contains the values for the following example: $GPGGA,053740.000,2503.6319,N,12136.0099,E,1,08,1.1,63.8,M,15.2,M,,0000*64 Table5.1-2 GGA Data Format Name Example Units Description Message ID $GPGGA GGA protocol header 2010 Page 4/17

UTC Time 053740.000 hhmmss.sss Latitude 2503.6319 ddmm.mmmm N/S indicator N N=north or S=south Longitude 12136.0099 dddmm.mmmm E/W Indicator E E=east or W=west Position Fix Indicator 1 See Table 5.1-3 Satellites Used 08 Range 0 to 12 HDOP 1.1 Horizontal Dilution of Precision MSL Altitude 63.8 mters Units M mters Geoid Separation 15.2 mters Units M mters Age of Diff. Corr. second Null fields when DGPS is not used Diff. Ref. Station ID 0000 Checksum *64 <CR> <LF> End of message termination Table 5.1-3 Position Fix Indicators Value Description 0 Fix not available or invalid 1 GPS SPS Mode, fix valid 2 Differential GPS, SPS Mode, fix valid 3-5 Not supported 6 Dead Reckoning Mode, fix valid GLL--- Geographic Position Latitude/Longitude Table 5.1-4 contains the values for the following example: $GPGLL,2503.6319,N,12136.0099,E,053740.000,A,A*52 Table 5.1-4 GLL Data Format Name Example Units Description Message ID $GPGLL GLL protocol header Latitude 2503.6319 ddmm.mmmm N/S indicator N N=north or S=south Longitude 12136.0099 dddmm.mmmm E/W indicator E E=east or W=west UTC Time 053740.000 hhmmss.sss Status A A=data valid or V=data not valid 2010 Page 5/17

Mode A A=autonomous, D=DGPS, E=DR, N=Data not valid, R=Coarse Position (1), S=Simulator Checksum *52 <CR> <LF> End of message termination GSA---GNSS DOP and Active Satellites Table 5.1-5 contains the values for the following example: $GPGSA,A,3,24,07,17,11,28,08,20,04,,,,,2.0,1.1,1.7*35 Table 5.1-5 GSA Data Format Name Example Units Description Message ID $GPGSA GSA protocol header Mode 1 A See Table 5.1-6 Mode 2 3 See Table 5.1-7 ID of satellite used 24 Sv on Channel 1 ID of satellite used 07 Sv on Channel 2.. ID of satellite used Sv on Channel 12 PDOP 2.0 Position Dilution of Precision HDOP 1.1 Horizontal Dilution of Precision VDOP 1.7 Vertical Dilution of Precision Checksum *35 <CR> <LF> End of message termination Table 5.1-6 Mode 1 Value M A Description Manual- forced to operate in 2D or 3D mode Automatic-allowed to automatically switch 2D/3D Table 5.1-7 Mode 2 Value Description 1 Fix not available 2 2D 3 3D GSV---GNSS Satellites in View Table 5.1-8 contains the values for the following example: $GPGSV,3,1,12,28,81,285,42,24,67,302,46,31,54,354,,20,51,077,46*73 $GPGSV,3,2,12,17,41,328,45,07,32,315,45,04,31,250,40,11,25,046,41*75 $GPGSV,3,3,12,08,22,214,38,27,08,190,16,19,05,092,33,23,04,127,*7B 2010 Page 6/17

Table 5.1-8 GSV Data Format Name Example Units Description Message ID $GPGSV GSV protocol header Total number of messages 1 3 Range 1 to 3 Message number 1 1 Range 1 to 3 Satellites in view 12 Satellite ID 28 Channel 1 (Range 01 to 196) Elevation 81 degrees Channel 1 (Range 00 to 90) Azimuth 285 degrees Channel 1 (Range 000 to 359) SNR (C/No) 42 db-hz Channel 1 (Range 00 to 99, null when not tracking) Satellite ID 20 Channel 4 (Range 01 to 196) Elevation 51 degrees Channel 4 (Range 00 to 90) Azimuth 077 degrees Channel 4 (Range 000 to 359) SNR (C/No) 46 db-hz Channel 4 (Range 00 to 99, null when not tracking) Checksum *73 <CR> <LF> End of message termination 1. Depending on the number of satellites tracked multiple messages of GSV data may be required. RMC---Recommended Minimum Specific GNSS Data Table 5.1-9 contains the values for the following example: $GPRMC,053740.000,A,2503.6319,N,12136.0099,E,2.69,79.65,100106,,,A*53 Table 5.1-9 RMC Data Format Name Example Units Description Message ID $GPRMC RMC protocol header UTC Time 053740.000 hhmmss.sss Status A A=data valid or V=data not valid Latitude 2503.6319 ddmm.mmmm N/S Indicator N N=north or S=south Longitude 12136.0099 dddmm.mmmm E/W Indicator E E=east or W=west Speed over ground 2.69 knots True Course over ground 79.65 degrees Date 100106 ddmmyy Magnetic variation Variation sense Mode A degrees E=east or W=west (Not shown) A=autonomous, D=DGPS, E=DR, N=Data not valid, R=Coarse Position, S=Simulator 2010 Page 7/17

Checksum *53 <CR> <LF> End of message termination VTG---Course Over Ground and Ground Speed Table 5.1-10 contains the values for the following example: $GPVTG,79.65,T,,M,2.69,N,5.0,K,A*38 Table 5.1-10 VTG Data Format Name Example Units Description Message ID $GPVTG VTG protocol header Course over ground 79.65 degrees Measured heading Reference T True Course over ground degrees Measured heading Reference M Magnetic Speed over ground 2.69 knots Measured speed Units N Knots Speed over ground 5.0 km/hr Measured speed Units K Kilometer per hour Mode A A=autonomous, D=DGPS, E=DR, N=Data not valid, R=Coarse Position (1), S=Simulator Checksum *38 <CR> <LF> End of message termination 5.2 Proprietary NMEA input/output message Please refer to MTK proprietary message. 5.3 Examples to configure the power mode of GPS module The GPS module supports different power modes that user can configure by issuing software commands. 5.3.1 Standby mode User can issue software command to make GPS module go into standby mode that consumes less than 200uA current. GPS module will be awaked when receiving any byte. The following flow chart is an example to make GPS module go into standby mode and then wake up. 2010 Page 8/17

Start GPS module is powered on and in normal operation mode Change GPS to standby mode unsigned char StandbyMode[] = {"$PMTK161,0*28\x0D\x0A"}; Wake up GPS module Yes No Issue any byte to wake up GPS module GPS module will return {"$PMTK010,002*2D\x0D\x0A"} and start normal operation. End 5.3.2 Periodic mode When GPS module is commanded to periodic mode, it will be in operation and standby periodically. Its status of power consumption is as below chart. The following flow chart is an example to make GPS module go into periodic mode 2010 Page 9/17

and then back to normal operation mode. Start GPS module is powered on Change GPS to periodic mode with 3000ms on and 12000ms standby if position fix is available, otherwise (18000, 72000) ms will be applied. Set GPS to normal operation mode? unsigned char PeriodicMode[] = {"$PMTK225,2,3000,12000,18000,72000*15\x0D\x0A"}; Note: minimum on time is 2000ms. maximum standby time is 518400000ms (6 days) Yes GPS module will return message "$PMTK001,225,3*35\x0D\x0A" if command is accepted. GPS is in standby now Yes Issue any byte to GPS and wait it awake No End GPS is in periodic mode No Issue command of normal operation mode End GPS is in normal mode unsigned char NormalMode[] = {"$PMTK225,0*2B\x0D\x0A"}; GPS module will return message "$PMTK001,225,3*35\x0D\x0A" if command is accepted. 5.3.3 AlwaysLocate TM mode AlwaysLocate TM is an intelligent controller of periodic mode. Depending on the environment and motion conditions, GPS module can adaptively adjust working/standby time to achieve balance of positioning accuracy and power consumption. In this mode, the host CPU does not need to control GPS module until the host CPU needs the GPS position data. The following flow chart is an example to make GPS module go into AlwaysLocate Tm mode and then back to normal operation mode. 2010 Page 10/17

Note: AlwaysLocate TM is a trade mark of MTK. Start GPS module is powered on Change GPS to AlwaysLocate mode unsigned char AlwaysLocateMode[] = {"$PMTK225,8*23\x0D\x0A"}; GPS module will return message "$PMTK001,225,3*35\x0D\x0A" if command is accepted. Yes Request a GPS position data Yes No No Issue any byte to get GPS position data Set GPS to normal operation mode? Yes Issue any byte to GPS and wait it awake Change GPS back to AlwaysLocate mode No Set GPS to normal operation mode unsigned char NormalMode[] = {"$PMTK225,0*2B\x0D\x0A"}; End GPS is in normal mode 5.4 Data logger The GPS module has internal flash memory for logging GPS data. The configurations 2010 Page 11/17

include time interval, distance, speed, logging mode, and etc. For more information, please contact us. 6 Pin assignment and descriptions Table 6-1 Pin descriptions Pin # Name Type Description Note 1 RFIN I GPS RF signal input 1 2 P Ground 3 Not connected 4 Not connected 5 V_BCKP P Backup battery supply voltage This pin must be powered to enable the module. 2 6 P Ground 7 Not connected 8 Not connected 9 Not connected 10 Not connected 11 VCC P DC supply voltage Page 12/17 2010

12 Not connected 13 /RESET I Reset input, active low. GPS module has internal power-on reset circuit, user can leave this pin floating. 14 Not connected 15 P Ground 16 Not connected 17 Not connected 18 Not connected 19 Not connected 20 1PPS O Pulse per second (default 100ms pulse/sec) 21 Not connected 22 Not connected 23 Not connected 24 P Ground 25 Not connected 26 Not connected 27 Not connected 28 Not connected 29 Not connected 30 TX O Serial output (Default NMEA) 31 RX I Serial input (Default NMEA) 32 Not connected 33 P Ground 34 Not connected 35 Not connected 36 P Ground <Note> 1. RFIN does not have short circuit protection. 2. In order to get AGPS (Long Term Orbit) advantage, this pin must be always powered during the period of effective AGPS. 2010 Page 13/17

7 DC & Temperature characteristics 7.1 Absolute maximum ratings Parameter Symbol Ratings Units Input Voltage VCC 4.3 V Input Backup Battery Voltage V_BCKP 4.3 V Operating Temperature Range Topr -40 ~ 85 Storage Temperature Range Tstg -40 ~ 85 7.2 DC Electrical characteristics Parameter Symbol Conditions Min. Typ. Max. Units Input Voltage VCC 3.0 3.3 4.3 V Input Backup Battery Voltage V_BCKP 2.0 4.3 V VCC = 3.3V, w/o active antenna, Supply Current Iss Peak Acquisition Tracking Standby 87 (1) ma 26 ma 18 (2) ma 170 ua Backup Battery Current Ibat VCC = 0V 6 ua High Level Input Voltage VI H 2.0 3.6 V Low Level Input Voltage VI L -0.3 0.8 V High Level Input Current I I H no pull-up or down -1 1 ua Low Level Input Current I I L no pull-up or down -1 1 ua High Level Output Voltage VOH 2.4 V Low Level Output Voltage VOL 0.4 V High Level Output Current IOH 2 ma Low Level Output Current IOL 2 ma Note 1. This happens when downloading AGPS data to MC-1613. Note 2. Measured when position fix (1Hz) is available, input voltage is 3.3V and the function of self-generated ephemeris prediction is inactive. 7.3 Temperature characteristics Parameter Symbol Min. Typ. Max. Units Operating Temperature Topr -40-85 Storage Temperature Tstg -40 25 85 2010 Page 14/17

8 Mechanical specification 8.1 Outline dimensions 8.2 Recommended land pattern dimensions 2010 Page 15/17

9 Reel packing information 2010 Page 16/17

Document change list Revision 1.0 First release on Dec. 24, 2010. Revision 1.0 to Revision 1.1 (April 11, 2011) Upgraded GPS firmware to version AXN1.5. Changed cold start time from 35s to 33s on page 3 Changed full cold start time from 38s to 34s on page 3 Revised RFIN (pin11) to RFIN (pin1) on page 3. Changed default 1PPS as 100ms pulse/sec on page 10 Revision 1.1 to Revision 1.2 (November 21, 2011) Changed GPS chip from MT3329 to MT3339 on page 4. The units with a capital T after the date code on the metal shield have been changed to new chip. Added the description of hybrid ephemeris prediction in section 1. Added several new features in section 2. Changed Fig 3-1 and Fig 3-2 Added Fig 3-3 Changed hot start time from < 2s to < 1s on page 5. Changed cold start time from 33s to 32s on page 5. Changed Max. Altitude from 18,000m to 50,000m on page 5. Removed the section 4.2 Changed the range of satellite ID in GSV message from 32 to 196 on page 7. Added N = data not valid, R=Coarse Position, S=Simulator in GLL, RMC and VTG message. Added section 5.3 and 5.4 Changed the maximum input voltage of VCC from 3.6V to 4.3V in the section 7.2. Changed the peak supply current from 160mA to 87mA in the section 7.2. Changed the acquisition current from 35mA to 26mA in the section 7.2. Changed the tracking current from 33mA to 18mA in the section 7.2. Added standby current, 170uA in the section 7.2. Changed the minimum operation temperature from -30 to -40 in the section 7.3 Revision 1.2 to Revision 1.3 (June 24, 2013) Changed tolerance from 15.9±0.15 to 15.9±0.2 on page 15 2010 Page 17/17