微积分 授课讲义

Similar documents
. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P.

( )

untitled

koji-13.dvi

lim f(x) lim g(x) 0, lim f(x) g(x),

5 (Green) δ

untitled


Cauchy Duhamel Cauchy Cauchy Poisson Cauchy 1. Cauchy Cauchy ( Duhamel ) u 1 (t, x) u tt c 2 u xx = f 1 (t, x) u 2 u tt c 2 u xx = f 2 (

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %

untitled

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π


x y z.... X Y (cdf) F (x, y) = P (X x, Y y) (X, Y ) 3.1. (X, Y ) 3.2 P (x 1 < X x 2, y 1 < Y y 2 ) = F (x 2, y 2 ) F (x 2, y 1 ) F (x 1, y 2

1. PDE u(x, y, ) PDE F (x, y,, u, u x, u y,, u xx, u xy, ) = 0 (1) F x, y,,uu (solution) u (1) u(x, y, )(1)x, y, Ω (1) x, y, u (1) u Ω x, y, Ωx, y, (P

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

untitled

尿路感染防治.doc

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+

14A 0.1%5% 14A 14A

(Chi)_.indb

穨_2_.PDF

&! +! # ## % & #( ) % % % () ) ( %

E = B B = B = µ J + µ ε E B A A E B = B = A E = B E + A ϕ E? = ϕ E + A = E + A = E + A = ϕ E = ϕ A E E B J A f T = f L =.2 A = B A Aϕ A A = A + ψ ϕ ϕ

untitled

PowerPoint Presentation

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5,

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

WL100014ZW.PDF

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

DS Ω(1.1)t 1 t 2 Q = t2 t 1 { S k(x, y, z) u } n ds dt, (1.2) u us n n (t 1, t 2 )u(t 1, x, y, z) u(t 2, x, y, z) Ω ν(x, y, z)ρ(x, y, z)[u(t 2, x, y,

中医疗法(下).doc

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2


! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02

untitled

4. 计 算 积 分 : ż ż βi fdl = f(x(t), y(t), z(t)) a x 1 (t) 2 + y 1 (t) 2 + z 1 (t) 2 dt L i α i ż ż βi 或 者 在 二 维 情 形 中 fdl = f(x(t), y(t)) a x 1 (t) 2 +


! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

% %! # % & ( ) % # + # # % # # & & % ( #,. %

& & ) ( +( #, # &,! # +., ) # % # # % ( #

( ) Wuhan University


2 a i, f, b j, Z 6. {x 1, x 2,, x n }Du = ϕx 1, x 2,, x n 7.1 F x 1, x 2,, x n ; ϕ,,,, 0 u = ϕx 1, x 2,, x n 7.1D 7.1n = 2 F x, y, z,, = z = ϕx,

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

第 2 頁 (a) 擔 任 機 場 擴 建 統 籌 辦 總 監 的 首 席 政 府 工 程 師 職 位 第 3 點 ) ; (b) 擔 任 ( 機 場 擴 建 統 籌 辦 ) 的 首 長 級 丙 級 政 務 官 職 位 ; 以 及 (c) 擔 任 總 助 理 ( 機 場 擴 建 統 籌 辦 ) 的

cgn

Gauss div E = 1 ε 0 ρ(x, y, z), (1.3) E (x, y, z)ε 0 ρ(x, y, z) E = 0 (curl E = 0), (1.4) E = u(x, y, z), (1.5) u ( )(1.5) (1.3) u(x, y, z) = 1 ε 0 ρ(

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

39898.indb

怎样使孩子更加聪明健康(五).doc

數學教育學習領域

穨ecr2_c.PDF

電腦相關罪行跨部門工作小組-報告書

i

发展党员工作手册

i

中医疗法(上).doc

香 港 舞 蹈 總 會    北 京 舞 蹈 學 院

Microsoft Word - 中三選科指南 2014 subject

(As at 28

untitled

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &

Microsoft Word - EDB Panel Paper 2016 (Chi)_finalr

二零零六年一月二十三日會議

马太亨利完整圣经注释—雅歌

厨房小知识(四)

妇女更年期保健.doc

小儿传染病防治(上)

<4D F736F F D B875B9B5A448ADFBBADEB27AA740B77EA4E2A5555FA95EAED6A641ADD75F2E646F63>

女性青春期保健(下).doc

避孕知识(下).doc

孕妇饮食调养(下).doc

禽畜饲料配制技术(一).doc

中老年保健必读(十一).doc

i

怎样使孩子更加聪明健康(七).doc

i

2007 GRE Math-Sub Nov 3, 2007 Test time: 170 minutes

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

untitled

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

Solutions to Exercises in "Discrete Mathematics Tutorial"

Ⅰ Ⅱ 1 2 Ⅲ Ⅳ

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

Solutions to Exercises in "Discrete Mathematics Tutorial"

3 35. f (x), x dy y, lim dx x (fluxion).,, dy dx (differential quotient), (differential coefficient)., dérivée. y = f(x), y/ x (x, y) (x + x, y + y),

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ


3 4 Ψ Ζ Ζ [, Β 7 7>, Θ0 >8 : Β0 >, 4 Ε2 Ε;, ] Ε 0, 7; :3 7;,.2.;, _ & αε Θ:. 3 8:,, ), β & Φ Η Δ?.. 0?. χ 7 9 Ε >, Δ? Β7 >7 0, Τ 0 ΚΚ 0 χ 79 Ε >, Α Ε

PowerPoint 演示文稿

509 (ii) (iii) (iv) (v) 200, , , , C 57

天主教永年高級中學綜合高中課程手冊目錄

stexb08.dvi

, 13, 90, 20.,,,,..,,,.,..

Transcription:

2018 10

aiwanjun@sjtu.edu.cn 1201 / 18:00-20:20 213 14:00-17:00

I

II Taylor :

, n R n : x = (x 1, x 2,..., x n ) R; x, x y ; δ( ) ; ; ; ; ; ( ) ; ( / ) ; ; Ů(P 1,δ) P 1 U(P 0,δ) P 0 Ω P 1:

1.1 ( ). Ω R n (n 2), f Ω n, f: Ω R. 1. p, V T : p = CT /V, C = Const., T > 0, V > 0.,.

., : 2.1. a f(x) x 0, ϵ > 0, δ > 0, f(x) a < ϵ, 0 < x x 0 < δ. lim f(x) = a. x x 0

: 2.2. f(x, y) P 0 (x 0, y 0 ) A, ϵ > 0, δ > 0, f(x, y) A < ϵ, (x, y) Ů(P 0, δ). lim f(x, y) = A. (x,y) (x 0,y 0 )

, (x, y) ( ) (x 0, y 0 ), f(x, y) a... lim x x 0 lim f(x, y), y y0 lim y y0 lim f(x, y) x x0 f(x, y).

2.3. : lim f(x, y), lim (x,y) (x 0,y 0 ) lim y y 0 x x 0 lim f(x, y) x x0 lim f(x, y), y y0, ;,, ;,

2. f(x, y) = xy/(x 2 + y 2 ),., lim f(x, y) = 0 = lim f(x, y), x 0 y 0, y = kx, lim f(x, y) = k/(1 + (x,y) (0,0) k2 ),,.

( ) 3. x sin 1 f(x, y) = y + y sin 1, xy 0, x 0, xy = 0 证明., f(x, y) 0 x + y 2 x 2 + y 2 0, lim (x,y) (0,0) f(x, y) = 0. lim sin 1 x 0 x,

2.4. f(t) (a, b), g(x, y) (x 0, y 0 ) Ω: = Ů( (x 0, y 0 ), δ 1 ), g(ω) (a, b). lim g(x, y) = t 0, (x,y) (x 0,y 0 ) lim f(t) = A, t t0 t 0 g(ω) f t 0, lim f(g(x, y)) = A. (x,y) (x 0,y 0 )

证明., ϵ > 0,, ϵ 1 > 0 f(t) A ϵ, 0 < t t 0 < ϵ 1., ϵ 1 > 0, δ > 0, t 0 g(ω), g(x, y) t 0 ϵ 1, (x, y) Ů( (x 0, y 0 ), δ ). 0 < g(x, y) t 0 ϵ 1, (x, y) Ů( (x 0, y 0 ), δ ).

f(g(x, y)) A ϵ, (x, y) Ů( (x 0, y 0 ), δ ). f(t) t 0, f(t) A ϵ, t t 0 < ϵ 1, f(g(x, y)) A ϵ, (x, y) Ů( (x 0, y 0 ), δ ).

4. lim x2 + y 2 1 sin (x,y) (0,0) x2 + y 2.

4. lim x2 + y 2 1 sin (x,y) (0,0) x2 + y 2. 证明. f(t) = t sin 1 t, g(x, y) = x 2 + y 2 lim g(x, y) = 0, lim (x,y) (0,0) g(x, y) = 0 x = y = 0, lim (x,y) (0,0) f(t) = 0. t 0 f(g(x, y)) = lim f(t) = 0. t 0

, P 0 P P 0, P 0.,,.,. 2.5. f Ω, f P 0 (x 0, y 0 ) Ω, lim f(x, y) = f(x 0, y 0 ). (x,y) (x 0,y 0 )., f P Ω, f Ω.

ϵ-δ ϵ-δ,. 2.6. f(x, y) Ω. f P 0 (x 0, y 0 ), ϵ > 0, δ > 0, P = (x, y) U(P 0, δ) Ω, f(x, y) f(x 0, y 0 ) < ϵ.

, : ; ;, ; :..

: 3.1. f(x) x 0. a f(x) x 0, f f(x 0 + x) f(x 0 ) (x 0 ): = lim x 0 x. ϵ-δ, : ϵ > 0, δ > 0, x δ, f(x 0 + x) f(x 0 ) f (x 0 ) x ϵ x.

,. f(t) t, f (t) t,.,,, f (t),..

, 100km/h 28m/s, 5, f(t) = 25(10t t 2 )/9. 2:, V km/s T

f(x, y), f (x, y 0 ), f (x 0, y), f(x, y), f x (x, y 0 ), f x (x, y 0)., ( ϵ-δ )., f x (x, y 0 ) f(x, y 0 ).. f x, f x ( ); ;

I,. 5. z = ln(1 + arctan x y ).

II 证明., z D = {(x, y) : y 0}, {x = 0},. z D = {(x, y) : x 0, y 0}, z x = (1 + arctan(x/y) ) 1 1 sgn(x/y) 1 + (x/y) 1/y, 2 sgn(x/y)y = (x 2 + y 2 )(1 + arctan(x/y) ), z y = (1 + arctan(x/y) ) 1 1 sgn(x/y) 1 + (x/y) x 2 y 2 sgn(x/y)x = (x 2 + y 2 )(1 + arctan(x/y) ).

, f(x) ϵ-δ : ϵ > 0, δ, x U(x 0, δ), f(x 0 + x) f(x 0 ) f (x 0 ) x ϵ x., o( x ) f(x 0 + x) f(x 0 ) = f (x 0 ) x + o( x ), o( x ) lim x 0 x = 0.

, P 0 (x 0, y 0 ) f(x, y),. 3.2. A, B, f(x 0 + x, y 0 + y) f(x 0, y 0 ) = A x + B y + o(ρ), ρ = x 2 + y 2. Adx + Bdy f(x, y) P 0, df P0. f P 0., f P 0, f P 0., f P 0 f x (P 0 ) = A, f y (P 0 ) = B., f x (P 0 )dx + f y (P 0 )dy.

I 6. f(x, y) P 0 (0, 0), f(x, y) + ax by lim (x,y) (0,0) ln(1 + x 2 + y 2 ) = 1, a, b, f x (P 0 ) + f y (P 0 )

II 证明. f P 0, f(0, 0) = 0. f(x, y) f(0, 0) ( ax + by) lim (x,y) (0,0) x2 + y 2 f(x, y + ax by) = lim ln(1 + x2 + y 2 ) (x,y) (0,0) ln(1 + x 2 + y 2 ) x2 + y 2 = 1 0 = 0, f x (P 0 ) = a, f y (P 0 ) = b, f x (P 0 ) + f y (P 0 ) = a + b.

,,.,.

3.3. f(x, y) P 0 (x 0, y 0 ), f P 0. 证明. f(x 0 + x, y 0 + y) f(x 0, y 0 ) = f(x 0 + x, y 0 + y) f(x 0, y 0 + y) + f(x 0, y 0 + y) f(x 0, y 0 ). f(x 0, y 0 + y) f(x 0, y 0 ) = f y (x 0, y 0 ) y + o( y ), f(x 0 + x, y 0 + y) f(x 0, y 0 + y) = f x (x 0, y 0 + y) x + o( x ).

, f(x 0 + x, y 0 + y) f(x 0, y 0 ) = f x (x 0, y 0 + y) x + f y (x 0, y 0 ) y + o( x ) + o( y ), f x P 0, f x (x 0, y 0 + y) f x (x 0, y 0 ) = o( y ). f(x 0 + x, y 0 + y) f(x 0, y 0 ) = f x (x 0, y 0 ) x + f y (x 0, y 0 ) y + o( y ) x + o( x ) + o( y ),, f P 0.

I : u = u(x) x 0, f = f(u) u 0 = u(x 0 ), z = f(u(x)) x 0, z = f (u(x 0 )) u (x 0 ).

II,, 3.3. u = u(x, y), v = v(x, y) P 0 (x 0, y 0 ). z = f(u, v) Q 0 = (u(x 0, y 0 ), v(x 0, y 0 )), z = f(u(x, y), v(x, y)) P 0 ( ), z x (P 0 ) = f u (Q 0 ) u x (P 0 ) + f v (Q 0 ) v x (P 0 ), z y (P 0 ) = f u (Q 0 ) u y (P 0 ) + f v (Q 0 ) v y (P 0 ).

III., P 0., u, v P 0. [1,. 6.13].,, dz = f u du + f v dv, du = u x dx + u y dy, dv = v x dx + v y dy. dz = (f u u x + f v v x )dx + (f u u y + f v v y )dy, z = f(u(x, y), v(x, y)) ( )

I 7. z = z(x, y), z = z xx + z yy z. x = r cos θ, y = r sin θ, f(r, θ) = z(r cos θ, r sin θ) ( z ).

II 证明. f rr = (z x x r + z y y r ) r = z xx x 2 r + 2z xy x r y r + z yy y 2 r + z x x rr + +z y y rr = z xx cos θ 2 + 2z xy cos θ sin θ + z yy sin θ 2, f θθ = z xx x 2 θ + 2z xy x θ y θ + z yy y 2 θ + z x x θθ + z y y θθ = z xx ( r sin θ) 2 2z xy (r 2 sin θ cos θ) + z yy (r cos θ) 2 + z x ( r cos θ) + z y ( r sin θ) = r 2 ( z xx sin 2 θ 2z xy sin θ cos θ + z yy cos 2 θ ) rf r,

III, z = z xx + z yy = f rr + 1 r f r + 1 r 2f θθ., f(r, θ) = ln r, r > 0, f = 0, z(x, y) = ln x 2 + y 2 ( z = 0).

I : D = { (x, y) R 2 : x 2 + y 2 = 1 }. F (x, y) = x 2 + y 2 1, D F (x, y) xy-. y = y(x), x. ( 1, 0) (1, 0) P U(P ; δ), U(P ; δ) y = y(x)., y = ± 1 x 2 = y (x) = x 1 x 2.

II ( 1, 0) (0, 1) y (x)., y (x) x = x 0, F x + F y y = 0 = y = F x /F y = F y 0. F y, F y (x 0, y(x 0 ))., x, f(y): = F (x, y) y., x y F (x, y) = 0. y = y(x), F (x, y(x)) = 0.

. 3.4. F (x, y) P 0 (x 0, y 0 ) U(P 0 ; δ) F y, F (x 0, y 0 ) = 0, F y (x 0, y 0 ) 0, F (x, y) = 0 P 0 U(P 0 ; δ ) y = y(x), y F (x, y(x)) = 0, y 0 = y(x 0 )

. 3.5. F (x, y, z) P 0 (x 0, y 0, z 0 ) U(P 0 ; δ) F z, F (x 0, y 0, z 0 ) = 0, F z (x 0, y 0, z 0 ) 0, F (x, y, z) = 0 P 0 U(P 0 ; δ ) z = z(x, y), F (x, y, z(x, y)) = 0, z 0 = z(x 0, y 0 ) z(x, y) z x = F x (x, y, z)/f z (x, y, z), z y = F y (x, y, z)/f z (x, y, z).

I,.,,., (x 0, y 0 ) z x z y, z = z(x, y) (x 0, y 0 ). 8. F (x, y, z) = x 2 + y 2 + z 2 1 = 0 z = z(x, y).

II 证明. F x + F z z x = 0 = z x = F x /F z = 2x/2z = x/z, (x 0, y 0, z 0 ), z 0 0, z = z(x, y), x z x = x/z., (x 0, y 0, z 0 ), z 0 > 0, z = 1 x 2 y 2, z x = x/z = x/ 1 x 2 y 2.,.

I,. :,?,?

II, xy- v x-, y- α,β. v = (cos α, cos β). y cosβ O β α v cosα x 3:

III f(x, y) v 3.6. f(x, y) P 0 (x 0, y 0 ), v = (cos α, cos β) (, cos 2 α + cos 2 β = 1). f(x 0 + t cos α, y 0 + t cos β) f(x 0, y 0 ) lim t 0 t, f P 0 v. f. (x0,y 0 ) v

IV v = (1, 0) v = (0, 1), f v f x, f y. f v v.,. 3.7. f(x, y) P 0 (x 0, y 0 ), v = (cos α, cos β). f P 0, f P 0 v, f v = f x (x 0, y 0 ) cos α + f y (x 0, y 0 ) cos β. x0,y 0 p. 116, 40(3)

f(x, y) P 0 (x 0, y 0 ), v = (cos α, cos β) f v = (f x, f y ) P0 v. (x0,y 0 ) (f x, f y ) P0 f P 0, f P0 f(p 0 )., f(p 0 ) v = f(p 0 ) v cos ( f(p 0 ), v)., :,, ;,,.

f/ f = 1 (f x, f y ), fx 2 + fy 2. (x, y, f(x, y)) 1 (f x, f y, f (fx 2 + fy 2 )(1 + fx 2 + fy 2 x 2 + fy 2 ) ). ( ).

, f(x, y) = sin(x 2 + y 2 ) x 2 + y 2 = 1. 4:

I 9. x + y + z = a 2az + a 2 = x 2 + y 2 γ P 0 (0, a, 0), a > 0. γ : x(t) = t, y(t) = a (2a t)t z(t) = ± (2a t)t t,

II, t [0, 2a], γ, γ(0) = P 0 = (0, a, 0): γ (0) = ( 1, t a a t, 1) (2a t)t (2a t)t t=0 = (1, 1 0, 1 0 1),.?

III F (x, y, z) = x + y + z a, G(x, y, z) = x 2 + y 2 + 2az a 2. P 0 y = y(x), z = z(x), F x + F y y + F z z = 0, G x + G y y + G z z = 0. (y, z ) Jacobi ( ) (F, G) (y, z) = det Fy G y 0. F z G z

IV, P 0, (F, G) (y, z) = det ( ) 1 2y = 0 1 2a, P 0, x y = y(x), z = z(x)., y, x = x(y), z = z(y). ( ) ( ) x 1 ( ) ( Fx F z = z Fy 0 = G x G z G y 1)

V, P 0 γ (0, 1, 1). P 0 x 0 0 = y a 1 = z 0 1. x(t) = 0 y(t) = a + t z(t) = t

VI P 0 ( ) (x 0), (y a), (z 0) (0, 1, 1) = 0, y a z = 0., : F, G, P 0, dx + dy + dz = 0, 2ady + 2adz = 0,

VII dx = 0, dz = dy. γ (x(t), y(t), z(t), ( ( ) ), (x (t), y (t), z (t)) = (0, y (t), y (t)), (0, 1, 1). p. 116, 44(3).

I S F (x, y, z) = 0, P 0 (x 0, y 0, z 0 ), F. γ(t) = (x(t), y(t), z(t)) S P 0, F (x(t), y(t), z(t)) = 0, γ(t 0 ) = P 0, γ (t) = 0. F x (P 0 )x (t 0 ) + F y (P 0 )y (t 0 ) + F z (P 0 )z (t 0 ) = 0, F (P 0 ) γ (t 0 ) = 0,

II F (P 0 ) S P 0 ( )., S P 0 F (P 0 ) ((x x 0 ), (y y 0 ), (z z 0 ) ) = 0, F x (P 0 )(x x 0 ) + F y (P 0 )(y y 0 ) + F z (P 0 )(z z 0 ) = 0., x x 0 F x (P 0 ) = y y 0 F y (P 0 ) = z z 0 F z (P 0 ).

III, z = f(x, y)( ), F (x, y, z) = f(x, y) z F = (f x, f y, 1). z = f(x, y). x = x 0, z(y) = f(x 0, y) (0, 1, f y ), y = y 0, z(x) = f(x, y 0 ) (1, 0, f x ), (0, 1, f y ) (1, 0, f x ) = (f x, f y, 1),.,,.

Taylor, f(x) x 0 n, f(x) = f(x 0 ) + f (x 0 )(x x 0 ) + f (x 0 ) (x x 0 ) 2 + 2! + f (n) (x 0 ) (x x 0 ) n + R n (x), n!, R n (x) = { o ( (x x0 ) n), Peano f (n+1) (ξ) (n+1)! (x x 0 ) n+1, ξ x 0 x f x 0 n + 1

Taylor I Taylor f(x 0 + x) = f(x 0 ) + x x f(x 0 ) + 1 2! ( x)2 2 xf(x 0 )+ + 1 n! ( x)n n xf(x 0 ) + R n (x), { Rn (x) = o( x n ), Peano ( x) n+1 x n+1 (x 0 +θ x) (n+1)!,

Taylor II Taylor f(x, y) (x 0, y 0 ) n + 1, f(x 0 + x, y 0 + y) = n k=0 1 k! ( x x + y y ) k f(x 0, y 0 ) + R n (x, y), R n (x, y) = { o(ρ n ), 1 (n+1)! ( x x + y y ) (n+1) f(x 0 + θ x, y 0 + θ y), Peano.

f(x) x 0 x 0 f (x 0 ) = 0. f(x) x 0, x 0 f (x 0 ) > 0( ), f (x 0 ) < 0( ).

Taylor, f (x 0 ) f(x 0, y 0 )( = (f x, f y )) x0,y 0, f (x 0 ) fxx f Jacobi(f) = xy., f(x, y) f yx f yy P 0 (x 0, y 0 ) f(x, y) P 0, P 0 f f x (P 0 ) = f y (P 0 ) = 0 f(p 0 ) = 0. f(x, y) P 0, P 0 f xx (P 0 ) > 0& det Jacobi(f)(P 0 ) > 0( ) f xx (P 0 ) < 0& det Jacobi(f)(P 0 ) > 0( ).

10. f(x, y) = x 2 y 2 + 2 D = { (x, y) : x 2 + y 2 /4 1 } 证明. f = (2x, 2y) = 0 = x = 0 = y, det Jacobi(f)(0, 0) = 4 < 0 (0, 0) f D = {θ [0, 2π] : x = cos θ, y = 2 sin θ} f f(x, y) D = cos 2 θ 4 sin 2 θ + 2 = 2 + 5 cos 2 θ. f(0, ±2) = 2, f(±1, 0) = 3.

u = f(x, y), ϕ(x, y) = 0 f(x, y) D := {(x, y) : ϕ(x, y) = 0} F (x, y, λ) = f(x, y) + λϕ(x, y)..

I 11.,, A B y x z C

II 证明. x, y, z, ABC S(x, y, z) = 1 (sin x + sin y + sin z) 2 ϕ(x, y, z) = x + y + z 2π = 0. F (x, y, z, λ) = S(x, y, z) + λϕ(x, y, z),

III F = 0, S x + λϕ x = 0, S y + λϕ y = 0, S z + λϕ z = 0, ϕ = 0 = { cos x = cos y = cos z = 2λ, x + y + z = 2π. x, y, z (0, π), x = y = z = 2π/3, ABC

I p. 110: 3(2)( ); 4(3); p. 111: 5( ) ( ): f: R n \ {0} R. f k (, t > 0, x = (x 1,..., x n ) R n \ {0}, f(tx) = t k f(x)), x f(x) = kf(x)., g(t, x) = f(tx), t g(t, x) = kg(t, x)/t ODE. p. 111: 7(1)( ) : { x sin 1 y f(x, y) = + y sin 1 x, xy 0, 0, xy = 0,

II O(0, 0). (,,,.,.) p. 113: 25 p. 116: 40(3)( ), u = x arctan(y/z) P 0 (1, 2, 2) v, v M 0 (5, 5, 15). p. 117: 46(1); 47 p. 118: 56 :

III 1. f = f xx + f yy + f zz, f(x, y, z) = f(r) (r, φ, θ) 2. 2 f(x, y) 3. f(x, y, z) = sin(x 2 + y 2 + z) P 0 (0, 0, 0) Taylor

I [1],. II: [M]., :, 2008.