Microsoft Word 周影茹_new_.doc

Similar documents
680 微生物学通报 2008, Vol.35, No.5,, [1 4],,,,, Paracoccus Pseudomonas [2,3] Bacillus [5] Rhodococcus [5],, [6],, [7], 4, 40 h, A1, 99.05% 16S rdna A1 ph A

256 微生物学通报 2009, Vol.36, No.2, 1 异养硝化菌的发现及其脱氮特性 ( ),,,,, [3,4],,,, [5], [5,6],, COD,,,, [7,8],,, 1 Table 1 表 1 一些异养硝化菌的脱氮特性 The denitrification charac

甘蔗糖业2011年电子合订本

L 8 0 g L ~0 700 g L % 6 00% 1 50% 1 3 NaCl 0 50% NH 4 2 SO % KH 2 PO % CaCO % 0 03% ~ 0 04% 2 24 h 0 02

: 307, [], [2],,,, [3] (Response Surface Methodology, RSA),,, [4,5] Design-Expert 6.0,,,, [6] VPJ33 ph 3,, ph, OD, Design-Expert 6.0 Box-Behnken, VPJ3

SHARON, OLAND, CANON, SNAD 1. (N 2 ) (NH 3 ) (NO - 3 ) N 2 NH 3 NH 3 NH 3 NH 3 NH 3 (nitrification) (denitrification) An

5- 此 針 對 特 殊 高 氨 氮 工 業 廢 水, 研 究 經 濟 有 效 的 去 除 氨 氮 的 處 理 方 法 是 很 有 意 義 的 1. 生 物 脫 氮 方 法 1.1 傳 統 生 物 脫 氮 方 法 傳 統 的 生 物 脫 氮 理 論 認 為 微 生 物 脫 氮 是 經 由 有 機 氮

ph ph ph Langmuir mg /g Al 2 O 3 ph 7. 0 ~ 9. 0 ph HCO - 3 CO 2-3 PO mg /L 5 p

±Ä¦¬®É¶¡¤Î¾B³±¹ïªãÂŵæ\(Brassica oleracea L

[1-3] (Smile) [4] 808 nm (CW) W 1 50% 1 W 1 W Fig.1 Thermal design of semiconductor laser vertical stack ; Ansys 20 bar ; bar 2 25 Fig

1.0 % 0.25 % 85μm % U416 Sulfate expansion deformation law and mechanism of cement stabilized macadam base of saline areas in Xinjiang Song

檢 舉 獎 金, 分 別 於 檢 察 官 提 起 公 訴 不 起 訴 處 分 緩 起 訴 處 分 或 經 法 院 判 決 有 罪 確 定 後, 由 受 理 檢 舉 機 關 通 知 檢 舉 人 親 自 具 名 領 取 檢 舉 人 有 數 人 時, 獎 金 平 均 分 配 ; 其 有 先 後 者, 獎

标题

Microsoft Word tb 赵宏宇s-高校教改纵横.doc

H 2 SO ml ml 1. 0 ml C 4. 0 ml - 30 min 490 nm 0 ~ 100 μg /ml Zhao = VρN 100% 1 m V ml ρ g

380 研 究 论 文 发 酵 天 数 双 乙 酰 测 定 : 参 照 GB 标 准 发 酵 液 中 的 化 学 成 分 的 测 定 : 采 用 GC-8A 型 气 相 色 谱 测 定 1.5 离 子 注 入 方 法 [6] 把 待 处 理 的 菌 株 细 胞 均 匀 涂

Microsoft Word - 24.doc

Microsoft Word - 崔宝臣.doc

~ a 3 h NCEP ~ 24 3 ~ ~ 8 9 ~ km m ~ 500 m 500 ~ 800 m 800 ~ m a 200

1 GIS 95 Y = F y + (1 F) (1) 0 0 Y0 kg/hm 2 /day F y 0 y c kg/hm 2 /day [12] y m 20 kg/hm 2 /hour Y = cl cn ch G [ F( y ) T m yo + (2) (1 F)(

吴根良 等 不同前作对设施草莓土壤环境动态变化和经济效益的影响 4 土传病害也因此日趋严重 严重影响草莓的产 量和品质 轮作尤其是水旱轮作是克服连作障 棚揭开大棚膜 其他大棚不揭膜 都按常规进行 水肥 农药的管理 8 月初前作结束后用产品名 碍的有效技术措施之一 其中有关水稻 草 7

GB 15973—1995麻风病诊断标准及处理原则

S/L (g/l) 25 1N HNO 3 ph(12-1) ph ph ph 50 (NIEA W449.00B) (NIEA S321.63B) (NIEA W303.51A) (NIEA W305.51A) 夲 1

Microsoft Word - A _ doc

MBR 1 1# MBR MBR MBR mm mm mm 1 MICRODYN -NADIR BC m μm PLC 2 2 Table 2 Main equipment

Microsoft Word 侯东园_new_.doc

教师招聘中学化学1-11.FIT)

Microsoft Word - 封面.doc

mm ~

32期

22期xin

第二部分


12-1b T Q235B ML15 Ca OH Table 1 Chemical composition of specimens % C Si Mn S P Cr Ni Fe


[1] Nielsen [2]. Richardson [3] Baldock [4] 0.22 mm 0.32 mm Richardson Zaki. [5-6] mm [7] 1 mm. [8] [9] 5 mm 50 mm [10] [11] [12] -- 40% 50%

9期


92 China Biotechnology Vol. 32 No g 3 00ml 5ml 0. 5mol /L 24 % 24 ph NaOH Ca OH ml h 24h 48h 72h OD

文章(copy)

13期

doc

115 的 大 量 废 弃 物 被 丢 弃 或 直 接 燃 烧 [3] 此 外, 海 南 省 文 昌 鸡 年 产 量 约 8 0 只, 鸡 粪 年 产 量 超 过 100 万 t 这 些 富 含 养 分 的 固 体 有 机 废 弃 物 不 进 行 处 理, 不 仅 会 极 大 浪 费 大 量 养 分

activities than commercial antibacterial agents. Moreover, "Extract Cleanser was safe to organisms as the result of toxicity evaluation identified by

<4D F736F F D20B8BDBCFE32A3BAA1B6CEA2C9FACEEFBEFABCC1CAB9D3C3BBB7BEB3B0B2C8ABC6C0BCDBB5BCD4F2A1B7A3A8D5F7C7F3D2E2BCFBB8E5A3A92E646F63>

Microsoft Word 刘秀秀_new_.doc

% GIS / / Fig. 1 Characteristics of flood disaster variation in suburbs of Shang

Microsoft Word - 11-张林_new_.doc

5月15期

untitled

5期xin

目录

<4D F736F F F696E74202D F8FDA8DD790E096BE816990AC89CA816A2E B8CDD8AB B83685D>

/MPa / kg m - 3 /MPa /MPa 2. 1E ~ 56 ANSYS 6 Hz (a) 一阶垂向弯曲 (b) 一阶侧向弯曲 (c) 一阶扭转 (d) 二阶侧向弯曲 (e) 二阶垂向弯曲 (f) 弯扭组合 2 6 Hz

前 言 发 酵 工 艺 学 是 生 物 工 程 及 其 相 关 专 业 的 主 要 课 程 之 一, 在 我 国 高 等 院 校 中 的 开 设 有 四 十 多 年 的 历 史 但 直 到 1995 年 沈 阳 药 科 大 学 熊 宗 贵 教 授 的 发 酵 工 艺 原 理 教 材 ( 药 学 类

助 剂 改 善 其 止 血 效 果 1 实 验 1.1 原 料 和 试 剂 家 蚕 蛹 经 过 提 取 蛹 油 蛋 白 质 后 剩 余 的 残 渣 ( 主 要 成 分 为 蛹 皮 ), 烘 干 除 杂 粉 碎 后 待 用 ; 壳 聚 糖 ( 成 都 市 科 龙 化 工 试 剂 厂 ), 脱 乙 酰

% 8. 48% 3 80 Alcalase Novozymes Alcalase 2. 4 L Bacillus licheniformis 2. 4 AU /g 1. 2 Hitachi S-4700 JEOL JEM-1200EX Olympus Bu

zyk00124zw.PDF

Microsoft Word - 11-秦华伟.doc

, 260mOsm/kg 320 mosm/kg HEPES ph ph ph ( ), ph ( ) NaHCO 3 CO 2 CO 2 CO 2 5 2

Microsoft Word 定版

TGF-β AngⅡ B SD ~ 220g SPF. SCXK No SYXK ~ 25 40% ~ 70% OR37G-C

<30302DB7E2C3E6CDC6BDE9A3A D32A3A92E4D4449>

兽医临床诊断学实验指导

标题

1 { ph

~ 4 mm h 8 60 min 1 10 min N min 8. 7% min 2 9 Tab. 1 1 Test result of modified

1 10mg/kg 20mg/kg -91-

211 better than those in the control group, with significant difference between two groups (P < 0.05). The ocular hypertension of patients in the cont

林学 园艺

Drug Evaluation Research 第 36 卷 第 1 期 2013 年 2 月 料 ), 山 西 皇 城 相 府 药 业 有 限 公 司, 批 号 ( 人 口 服 推 荐 剂 量 为 每 日 3 次, 每 次 4 粒, 成 人 体 质 量 按 60

Microsoft Word _editing


Microsoft Word - 22 栗志民.doc

【中文名称】盐酸;氢氯酸

EXAMINATION RULES

36(4) (2004) Journal of Soil and Water Conservation, 36(4) (2004) earthworms dig soil on surface and prevent plants to grow. But until D

3期

戊 酸 雌 二 醇 片 联 合 宫 颈 注 射 利 多 卡 因 用 于 绝 经 后 妇 女 取 环 的 临 床 效 果 评 价 陆 琴 芬, 等 371 Keywords groups, no removal difficulties and failure, was statistically s

2 ( 自 然 科 学 版 ) 第 20 卷 波 ). 这 种 压 缩 波 空 气 必 然 有 一 部 分 要 绕 流 到 车 身 两 端 的 环 状 空 间 中, 形 成 与 列 车 运 行 方 向 相 反 的 空 气 流 动. 在 列 车 尾 部, 会 产 生 低 于 大 气 压 的 空 气 流

72 Vol. 29, No. 4 / Jul., 2010 (DMP), PAEs (dimethyl isophthalate, DMI) (dimethyl terephthalate, DMT), DMP 2 DMP, (PVC), 20% 30%,,,,,,,, [2] DMP [3],

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 5 Oct /35 TU3521 P315.

65號書名頁-轉外框


892311B009006

第 一 编 总 则 第 一 条 为 保 障 煤 矿 安 全 生 产 和 职 工 人 身 安 全, 防 止 煤 矿 事 故, 根 据 煤 炭 法 矿 山 安 全 法 和 煤 矿 安 全 监 察 条 例, 制 定 本 规 程 第 二 条 在 中 华 人 民 共 和 国 领 域 从 事 煤 炭 生 产 和

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 6 Dec

DOI /j.issn Food Research And Development UPLC-MS/MS 5 0.

Microsoft Word - molecules supple.docx

13期xin

Microsoft Word - 荆红卫 板.doc

1556 地 理 科 学 进 展 30 卷 他 关 于 农 村 住 房 结 构 与 抗 震 性 能 的 研 究, 则 多 是 从 工 程 抗 灾 的 角 度, 研 究 某 种 构 造 类 型 的 房 屋, 力 图 找 到 传 统 房 屋 的 结 构 失 误 和 新 建 房 屋 中 存 在 的 问 [


< F63756D656E D2D796E2DB9A4D7F72D31C6DABFAF2D31D6D0D2BDD2A9CFD6B4FABBAF2D C4EA2DB5DA31C6DA2D30302DB7E2C3E6CDC6BDE9A3A D31A3A92E6D6469>

11JR3.mps

Ansys /4 Ansys % 9 60% MU10 M m 1 Fig. Actual situation of measured building 1 Fig. 1 First floor plan of typical r

1. 前 言 由 於 石 油 價 格 浮 動, 汽 油 價 格 節 節 高 升 及 二 氧 化 碳 等 廢 棄 大 量 排 放 造 成 全 球 環 境 的 改 變, 因 此 世 界 各 國 都 極 力 提 倡 節 能 減 碳 進 而 掀 起 腳 踏 車 城 市 的 風 潮 因 應 目 前 自 行 車

<4D F736F F D20B5DAC1F9D5C22020BBD2B7D6BCB0BCB8D6D6D6D8D2AABFF3CEEFD4AACBD8BAACC1BFB5C4B2E2B6A8A3A8B8C4B9FDA3A92E646F63>

10期( )

2001,30(1):1-4

Transcription:

土壤 (Soils), 2013, 45(4): 683 690 1 一株根际好氧反硝化菌的筛选及其反硝化条件研究 1,2 1,2 1* (1 ( ) 210008; 2 100049) RWX31 NO 3 -N 140 mg/l 24 h 82% N 2 O RWX31 1% Mg 2+ 0.05 g/l NO 2 -N 0 28 ~ 32 ph 7.0 ~ 7.5 C/N 8 ~ 12 DO 6.5 ~ 7.0 mg/l NO 3 -N 90% RWX31 NO 3 -N X52 [1] [2-4] 1983 Robertson [5] Thiosphaera pantotropha [6-9] ph [10] RWX31 1 1.1 1.1.1 (EM g/l) 5 KNO 3 2 KH 2 PO 4 1 K 2 HPO 4 0.5 Mg 2 SO 4 7 H 2 O 0.2 1 ml ph 7.2 1.5 % EM 1.1.2 (g/l) EDTA 50.0 ZnSO 4 7H 2 O 2.2 CaCl 2 2H 2 O 5.5 MnCl 2 4H 2 O 5.06 FeSO 4 7H 2 O 5.0 (NH 4 ) 6 Mo 7 O 24 4H 2 O 1.1 CuSO 4 5H 2 O 1.57 CoCl 2 6H 2 O 1.61 ph 6.0 1.1.3 (DM g/l) 5 KNO 3 ( ) (201003014-1) (30821140542) * (wmshi@mail.issas.ac.cn) (1985 ) E-mail: zhouyingru1985@163.com

684 45 1.011 KH 2 PO 4 1 K 2 HPO 4 0.5 Mg 2 SO 4 7H 2 O 0.2 ph 7.2 1.1.4 Luria-Bertani (LB g/l) 10 5 NaCl 5 ph 7.0 1.5% LB 1.1.5 Steinberg NH 4 Cl 12.5 KH 2 PO 4 1.756 Mg 2 SO 4 7H 2 O 100 Ca(NO 3 ) 2 4H 2 O 98.9 Na 2 EDTA 2H 2 O 1.5 ZnSO 4 7H 2 O 0.18 MnCl 2 4H 2 O 0.18 H 3 BO 3 0.12 NaMoO 4 2H 2 O 0.04 FeCl 3 6H 2 O 0.76 ph 6.8 1.2 1.2.1 10 g ( 5 cm) 10 ml 250 ml EM 160 r/min 28 1 h 1 ml 9 ml EM 28 3 1 ml EM 1.2.2 Lemna minor 3 Steinberg 15 mg/l KNO 3 23 65% / 16 h/8 h 3 10 1.5 ml 1 ml 5 mg/l (Na 5 P 3 O 10 ) 150 W 6 5 s EM [11] 1.2.3 N 2 O 250 ml 100 ml DM 1 ml RWX31 (OD 600 = 0.5) 704 0.22 μm (80% He + 20% O 2 )( 15 min 3 ) 704 160 r/min 30 24 h NO 3 -N TN N 2 O 1.3 RWX31 LB ( 12 h) 1% 100 ml 30 160 r/min OD 600 NO 3 -N NO 2 -N TN LB 1.4 RWX31 1 ml (OD 600 = 0.5) 100 ml 30 160 r/min 24 h OD 600 NO 3 -N NO 2 -N 1.4.1 DM 1.4.2 0.2 0.5 1.0 1.5 2.0 2.5 ml 1.4.3 Mg 2+ DM Mg 2+ 0 0.05 0.10 0.15 0.20 0.25 g/l 1.4.4 NO 2 -N DM TN 140 mg/l NO 2 -N 0 20 40 60 80 100 NO 2 -N 1.5 RWX31 1.5.1 20 25 28 30 32 35 40 1.5.2 ph ph 5.5 6.0 6.5 7.0 7.5 8.0 1.5.3 C/N C/N 2 4 6 8 8.7 10 12 1.5.4 (DO) DO 0 50 100 150 200 250 r/min 1.6 (Bio-Rad 3000 USA) 600 nm NO 3 -N NO 2 -N N-(1- )- TN - DO JPB-607 N 2 O ( Porapak Q 3 m 3 mm) 3 Excel 2003 SPSS 17.0 Duncan (P 0.05

4 685 2 2.1 128 69 140 mg/l NO 3 -N 24 h 6 NO 3 -N 70% 1 1 25 10 34 75% 4 3 [12] [13] [14] 1987 50% ~ 70% (34) 50% RWX31 RWX31 16S rrna RWX31 Pseudomonas [15] 表 1 环境样品中分离反硝化菌株 Table 1 Denitrifying bacteria isolated from different samples (%) ( >75%) (%) 25 3.1 ~ 56.3 0 0 10 32.9 ~ 79.7 1 10 34 15.3 ~ 81.3 3 9 69 3.1 ~ 81.3 4 6 RWX31 DM 80% He + 20% O 2 24 h DO 3.8 ~ 5.9 mg/l O 2 [16] RWX31 N 2 O NO 3 -N 140 25 mg/l TN 144 58 mg/l N 2 O 0 197 mg/kg 24% NO 3 -N 18% NO 3 -N 58% N 2 O-N 1% N 2 RWX31 2.2 RWX31 RWX31 1% DM OD 600 NO 3 -N TN 4 1 RWX31 9 h 21 h 18 ~ 21 h NO 3 -N RWX31 12 h NO 3 -N 12 h 21 h 24 h NO 3 -N 25 mg/l [17] X31 36 h NO 3 -N N 2 O 24 h NO 3 -N 82% 24 h TN NO X -N TN [18] 1 36 h NO 3 -N 80% TN 76% [19]

686 45 CW 24 h 108 mg/l NO 3 -N 75% [4] YL-1 24 h 115 mg/l NO 3 -N 50% [20] 2-8 NO 3 -N 140 mg/l 48 h 92% RWX31 140 mg/l NO 3 -N 24 h 82% RWX31 图 1 菌株 RWX31 生长与 - NO 3 -N 和 TN 去除曲线 Fig.1 Growth curve and -N and TN remove performance of strain RWX31 2.3 2.3.1 RWX31 2 RWX31 24 h 91.5% P. stutzeri D6 [21] D5 [22] 2 RWX31 NO 3 -N 2.3.2 RWX31 RWX31 DM 24 h OD 600 NO 3 -N 表 2 菌株 RWX31 在不同碳源中的反硝化活性 Table 2 Denitrification activity of strain RWX31 in different carbon sources OD 600 NO2 -N (%) 0.013 138.4 0 13.80 0.563 92.8 4.89 30.43 1.534 11.3 5.50 91.54 0.021 138.8 0 4.13 0.025 134.9 0 1.15 0.874 67.6 5.41 49.33 2 0.5% OD 600 1.0% NO 3 -N OD 600 [23] AM-4 2% 图 2 初始接种量对 RWX31 生长和反硝化效率的影响 Fig. 2 Effects of inoculation size on growth and denitrification performance of strain RWX31 2.3.3 Mg 2+ RWX31 Mg 2+ [24] Mg 2+ 3 Mg 2+ 0 NO 3 -N 6.8% Mg 2+ 0.05 g/l Mg 2+ Mg 2+ 0.05 g/l Mg 2+ NO 2 -N [24] Mg 2+

4 687 表 3 Mg 2+ 浓度对 RWX31 反硝化作用的影响 Table 3 Effect of Mg 2+ concentration on denitrification of strain RWX31 Mg 2+ (g/l) OD 600 NO2 -N (%) 0 0.03 0.33 155.71 6.81 0.05 1.58 13.56 22.42 85.60 0.10 1.51 16.36 48.08 69.12 0.15 1.45 0 38.69 75.15 0.20 1.38 8.55 31.15 79.99 0.25 1.38 15.58 42.72 72.56 2.3.4 NO 2 -N RWX31 NO 2 -N 4 NO 2 -N 0 79.9% NO 2 -N NO 2 -N NO 2 -N NO 2 -N 50% RWX31 NO 2 -N NO 2 -N NO 2 -N 20 ~ 30 mg/l NO 2 -N [25] NO X -N NO 2 -N ph NO 2 -N NO 2 -N NO X -N 20 mg/l 140 mg/l NO 2 -N [26] AQ-3 NO 2 -N 20 mg/l 2.4 2.4.1 RWX31 25 ~ 35 [27] ( 3a) 30 - 表 4 NO2 -N 在初始氮源中所占比例对 RWX31 反硝化作用的影响 Table 4 Effect of nitrite proportion on denitrification of strain RWX31 NO2 -N (%) OD 600 NO2 -N -N (%) 0 1.47 0.56 29.23 79.90 20 1.42 28.26 44.84 69.18 40 1.38 21.71 69.17 52.45 60 1.44 28.47 44.44 69.45 80 1.44 34.73 47.15 67.58 100 1.37 21.77 62.03 57.36 24 h 92.7% NO 3 -N 30 [28] F1 NO 3 -N 30 ~ 35 2.4.2 ph RWX31 ph [29] 3b RWX31 ph 7.2 90.3% (ph < 6) (ph > 7.5) RWX31 2.4.3 C/N RWX31 C/N C/N [30] 3c RWX31 C/N C/N 10 NO 3 -N 91.2% C/N RWX31 Chiu [31] C/N Stouthamer [32] C/N 2.4.4 DO RWX31 DO DO [4,33-34] 0 50 r/min (DO 3.5 ~ 5.8 mg/l) NO 3 -N 63% 31.2%

688 45 100 ~ 250 r/min (DO 6.5 ~ 7.0 mg/l) NO 3 -N 90% Robertson Kuenen [16] 3 O 2 ( ) O 2 ( 1% ~ 2% DO 0.1 ~ 0.2 mg/l) O 2 3 100 ~ 250 r/min (DO 6.5 ~ 7.0 mg/l) 100 r/min RWX31 RWX31 Patureau [35] NO X O 2 DO DO RWX31 NO 3 -N DO 100 ~ 250 r/min (DO 6.5 ~ 7.0 mg/l) Fig.3 图 3 培养温度 ph 碳氮比和摇床转速对 RWX31 反硝化作用的影响 Effects of temperature, ph, carbon nitrogen ration and shaking speed on denitrification of strain RWX31 3 RWX31 140 mg/l NO 3 -N 24 h NO 3 -N 82% N 2 O RWX31 RWX31 1% Mg 2+ 0.05 g/l NO 2 -N 28 ~ 32 ph 7.0 ~ 7.5 C/N 8 ~ 12, DO 6.5 ~ 7.0 mg/l RWX31 NO 3 -N 140 mg/l 24 h 90% RWX31 [1],,,,,,,,. [J]., 2012, 44(2): 213-217 [2] Borges MT, Sousa A, De Marco P, Matos A, Honigova P, Castro PML. Aerobic and anoxic growth and nitrate removal capacity of a marine denitrifying bacterium isolated from a recirculation aquaculture system[j]. Microbial Ecology, 2008, 55(1): 107-118 [3] Kim M, Jeong SY, Yoon SJ, Cho SJ, Kim YH, Kim MJ, Ryu EY, Lee SJ. Aerobic denitrification of Pseudomonas putida AD-21 at different C/N ratios[j]. Journal of Bioscience and Bioengineering, 2008, 106(5): 498-502 [4],,,,,. [J]., 2010, 16(3): 394-398

4 689 [5] Robertson LA, Kuenen JG. Anaerobic and aerobic denitrification by sulphide-oxidizing bacteria from waste water[j]. Proceedings of the European Symposium on Anaerobic Waste Water Treatment, 1983: 3-12 [6] Robertson LA, Cornelisse R, Vos P, Hadioetomo R, Kuenen JG. Aerobic denitrification in various heterotrophic nitrifiers[j]. Antonie van Leeuwenhoek, 1989, 56(4): 289-299 [7] Su JJ, Liu BY, Liu CY. Comparison of aerobic denitrification under high oxygen atmosphere by Thiosphaera pantotropha ATCC 35512 and Pseudomonas stutzeri SU2 newly isolated from the activated sludge of a piggery wastewater treatment system[j]. Journal of Applied Microbiology, 2001, 90(3): 457-462 [8] Yang XP, Wang SM, Zhang DW, Zhou LX. Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Bacillus subtilis A1[J]. Bioresource Technology, 2011, 102(2): 854-862 [9],. NO X [J]., 2010, 23(3): 74-77 [10],,,. [J]., 2010, 21(6): 1 581-1 588 [11] Yamaga F, Washio K, Morikawa M. Sustainable biodegradation of phenol by Acinetobacter calcoaceticus P23 isolated from the rhizosphere of duckweed Lemna aoukikusa[j]. Environmental Science & Technology, 2010, 44(16): 6 470-6 474 [12] Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ. Rhizoremediation: a beneficial plant-microbe interaction[j]. Molecular Plant-Microbe Interactions, 2004, 17(1): 6-15 [13],,,,. [J]., 2010, 42(3): 390-397 [14],,,. [J]., 1987, 24(2): 120-126 [15] Zhou YR, Lu YF, Zhang HL, Shi WM. Aerobic denitrifying characteristics of duckweed rhizosphere bacterium RWX31[J]. African Journal of Microbiology Research, 2013, 7(3): 211-219 [16] Robertson LA, Kuenen JG. Aerobic denitrification: A controversy revived[j]. Archives of Microbiology, 1984, 139(4): 351-354 [17],,,. X31 [J]. ( ), 2005, 33(7): 42-46 [18],,. [J]., 2006, 43(3): 430-435 [19], 婓,,. [J]., 2012, 38(1): 13-18 [20],,,,. [J]., 2010, 50 (9):1 164-1 171 [21] Yang XP, Wang SM, Zhou LX. Effect of carbon source, C/N ratio, nitrate and dissolved oxygen concentration on nitrite and ammonium production from denitrification process by Pseudomonas stutzeri D6[J]. Bioresource Technology, 2012, 104: 65-72 [22],. 1 [J]., 2009, 2(3): 48-52 [23],,. [J]. ( ), 2012, 36(1): 35-40 [24]. ( )[D]. :, 2006 [25],,,,,. ph [J]., 2005, 15(8): 91-95 [26],,,. [J]., 2012, 39(2): 154-161 [27] Song ZF, An J, Fu G H, Yang XL. Isolation and characterization of an aerobic denitrifying Bacillus sp. YX-6 from shrimp culture ponds[j]. Aquaculture, 2011, 319(1/2): 188-193 [28],. [J]., 2011(1): 41-44 [29] Thomas KL, Lloyd D, Boddy L. Effects of oxygen, ph and nitrate concentration on denitrification by Pseudomonas species[j]. FEMS Microbiology Letters, 1994, 118(1/2): 181-186 [30],,. [J]., 2009, 32(8): 9-12 [31] Chiu YC, Chung MS. Determination of optimal COD/nitrate ratio for biological denitrification[j]. International Biodete rioration & Biodegradation, 2003, 51(1): 43-49 [32] Stouthamer A. Metabolic pathways in Paracoccus denitrificans and closely related bacteria in relation to the phylogeny of prokaryotes[j]. Antonie van Leeuwenhoek, 1992, 61(1): 1-33 [33] Taylor SM, He Y, Zhao B, Huang J. Heterotrophic ammonium removal characteristics of an aerobic heterotrophic nitrifying- denitrifying bacterium, Providencia rettgeri YL[J]. Journal of Environmental Sciences, 2009, 21(10): 1 336-1 341 [34] Zhang QL, Liu Y, Ai GM, Miao LL, Zheng HY, Liu ZP. The characteristics of a novel heterotrophic nitrification aerobic denitrification bacterium, Bacillus methylotrophicus strain L7[J]. Bioresource Technology, 2012, (108): 35-44 [35] Patureau D, Bernet N, Delgenès JP, Moletta R. Effect of dissolved oxygen and carbon nitrogen loads on denitrification by an aerobic consortium[j]. Applied Microbiology and Biotechnology, 2000, 54(4): 535-542

690 45 Isolation and Denitrification Conditions of Rhizosphere Aerobic Denitrifying Bacterium RWX31 ZHOU Ying-ru 1,2, LU Yu-fang 1,2, SHI Wei-ming 1 (1 State Key Laboratory of Soil and Sustainable Agriculture(Institute of Soil Science, Chinese Academy of Sciences), Nanjing 210008,China; 2 University of Chinese Academy of Sciences, Beijing 100049, China) Abstract: The aim of this study was to screen aerobic denitrifying strain from various environmental sites and to investigate the denitrification conditions for the isolated strain. Enrichment culture technique was used in screening and acclimatization of strain, a rhizosphere aerobic denitrifying bacterium RWX31 was isolated and single-factor experiments were used to investigate the denitrification conditions and characteristics. The nitrate remove efficiency of aerobic denitrifying strain RWX31 was 82% when cultivated in 140 mg/l nitrate for 24 hours, N 2 O could be produced aerobically through aerobic denitrification of strain RWX31. The optimum medium was: sodium citrate as carbon source, 1% inoculation volume, 0.05 g/l Mg 2+ concentration and nitrite proportion of 0 in the initial denitrification nitrogen source. The optimum condition was: temperature 28-32, ph 7.0-7.5, C/N ratio 8-12 and DO concentration 6.5-7.0 mg/l. The highest nitrate removal efficiency was higher than 90% under the above conditions. Rhizosphere bacterium RWX31 was an efficient aerobic denitrifying strain with higher nitrate removal efficiency than reported previously and has application potential. Key words: Rhizosphere, Aerobic denitrifying, Nitrate nitrogen removal efficiency, Condition investigation