LaDefense Arch Petronas Towers 2009 CCTV MOMA Newmark Hahn Liu 8 Heredia - Zavoni Barranco 9 Heredia - Zavoni Leyva

Similar documents
JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 5 Oct /35 TU3521 P315.

Ansys /4 Ansys % 9 60% MU10 M m 1 Fig. Actual situation of measured building 1 Fig. 1 First floor plan of typical r

/MPa / kg m - 3 /MPa /MPa 2. 1E ~ 56 ANSYS 6 Hz (a) 一阶垂向弯曲 (b) 一阶侧向弯曲 (c) 一阶扭转 (d) 二阶侧向弯曲 (e) 二阶垂向弯曲 (f) 弯扭组合 2 6 Hz

Mnq 1 1 m ANSYS BEAM44 E0 E18 E0' Y Z E18' X Y Z ANSYS C64K C70C70H C /t /t /t /mm /mm /mm C64K

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 6 Dec

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip

标题

Fig. 1 Frame calculation model 1 mm Table 1 Joints displacement mm


#4 ~ #5 12 m m m 1. 5 m # m mm m Z4 Z5

cm /s c d 1 /40 1 /4 1 / / / /m /Hz /kn / kn m ~

No m + 204m + 460m + 204m + 48m 964m 36 30m 161 4m Y

m K K K K m Fig. 2 The plan layout of K K segment p

m m m ~ mm

Maup re,,,,,, ;,,,,,,,,,, PC 1985 Cognac,, 80, [ 526 ], 420m 160m [ 728 ], PC,,,,,,,,, , [ 3 ] 3008mm, 488mm, 222mm, ( ) 2880mm , 4914, 6

Fig. 1 1 a-a b-b a-a σ ma = MPa σ a = MPa σ 0a = MPa 0. 9 σ t =135 MPa b-b σ mb = MPa τ b = MPa σ 0b =

~ ~ Y 3 X / / mm 400 ~ 700 C40 ~ C ~ 400 C40 ~ C ~

定稿

f 2 f 2 f q 1 q 1 q 1 q 2 q 1 q n 2 f 2 f 2 f H = q 2 q 1 q 2 q 2 q 2 q n f 2 f 2 f q n q 1 q n q 2 q n q n H R n n n Hessian

WORLD EARTHQUAKE ENGINEERING Vol. 27 No. 4 Dec TU398 A Analysis of energy dissipation and ea

0 1 / m m 2 ~ 3. 9m 3. 2m 1 / m 23. 6m mm 3 300mm 32. 1% 38. 1% 250mm C60 ~ C50 ~ C40 C

SVM OA 1 SVM MLP Tab 1 1 Drug feature data quantization table

/ -6. PEER ~ 0. 5Hz PGA Peak Ground acceleration 0. 0g Fig. Modeling of relative displacement spectrum Ⅳ 0. 0g PG

4 155 earthquake resilient structure 1 Yahya Kurama 2 Bulent Erkmen 3 Jose Restrepo 4 Brian Smith C40 HRB mm mm 125 mm 2

g 100mv /g 0. 5 ~ 5kHz 1 YSV8116 DASP 1 N 2. 2 [ M] { x } + [ C] { x } + [ K]{ x } = { f t } 1 M C K 3 M C K f t x t 1 [ H( ω )] = - ω 2

<4D F736F F D20B8DFB9B0B0D3B0D3F5E0D3A6C1A6CAB5B2E2D3EBBCC6CBE3BDE1B9FBB2EED2ECD4ADD2F2B7D6CEF62DD5C5B9FAD0C22E646F6378>

12-1b T Q235B ML15 Ca OH Table 1 Chemical composition of specimens % C Si Mn S P Cr Ni Fe

ANSYS WF 1 WF 2 2 SP 1 SP 2 1 NBF 1 1 Fig. 1 1 Connection details of specimens 1 Table 1 Specimen s

m m 5m ~ PTFE Q45B 1 670MPa PMSAP MIDAS SAP2000 MIDAS MIDAS s 0.

1, : FLUENT 81 CA4113Z,,,,.,,. [ ] : :, 9 9t (<) + div (u<) = div ( < grad<) + S < (1) t, u, <, <, < S <,, 1., u i i, E,. k - RNG, () (3) [ 3-4 ],. 5

mm 110mm BRBF 4 HRB400 14mm mm MPa MPa BRBF BRBF BRB BRBF Fig. 1 1 Dormitory building before and a

Revit Revit Revit BIM BIM 7-9 3D 1 BIM BIM 6 Revit 0 4D 1 2 Revit Revit 2. 1 Revit Revit Revit Revit 2 2 Autodesk Revit Aut

2 ( 自 然 科 学 版 ) 第 20 卷 波 ). 这 种 压 缩 波 空 气 必 然 有 一 部 分 要 绕 流 到 车 身 两 端 的 环 状 空 间 中, 形 成 与 列 车 运 行 方 向 相 反 的 空 气 流 动. 在 列 车 尾 部, 会 产 生 低 于 大 气 压 的 空 气 流

[1-3] (Smile) [4] 808 nm (CW) W 1 50% 1 W 1 W Fig.1 Thermal design of semiconductor laser vertical stack ; Ansys 20 bar ; bar 2 25 Fig

~ 4 mm h 8 60 min 1 10 min N min 8. 7% min 2 9 Tab. 1 1 Test result of modified

<4D F736F F D20C8EDCDC1B5D8BBF9CDB2BBF9CAD4B2C9C6BDCCA8B5C4CACAD3C3D0D4B7D6CEF6>

) ( ) 2008 (300m ) 1 FRP [1 ] FRP 3 FRP FRP (CFRP) FRP CFRP (fiber reinforced polymer FRP) 60 % 160MPa 2400MPa [2 ] FRP 1 2mm FRP FRP 1 FRP C

3 PC not suitable for this kind of bridge. 3 Considering the shear deformation of the CSWs the correction formulas are obtained for the PC box girder

% GIS / / Fig. 1 Characteristics of flood disaster variation in suburbs of Shang

0 Kelly Fig. 1 Novel damping wall-structure connection diagram a b S1 c S Fig. 2 Desig

m m m

1556 地 理 科 学 进 展 30 卷 他 关 于 农 村 住 房 结 构 与 抗 震 性 能 的 研 究, 则 多 是 从 工 程 抗 灾 的 角 度, 研 究 某 种 构 造 类 型 的 房 屋, 力 图 找 到 传 统 房 屋 的 结 构 失 误 和 新 建 房 屋 中 存 在 的 问 [

< F63756D656E D2D796E2DB9A4D7F72D31C6DABFAF2D31D6D0D2BDD2A9CFD6B4FABBAF2D C4EA2DB5DA35C6DA2D30352D31302DC1C9C4FEBBF9B5D82DB8BEB6F9B2A12E6D6469>

[1] Nielsen [2]. Richardson [3] Baldock [4] 0.22 mm 0.32 mm Richardson Zaki. [5-6] mm [7] 1 mm. [8] [9] 5 mm 50 mm [10] [11] [12] -- 40% 50%

m 2, m 2,,,, 20. 5m,, 4. 6 m 2 3, m, 87200m 2,, ( ) Leoadaly 1 C40, 2200mm 2650mm, 30m, 49000kN 71000kN, 193m, 156m,,, 2 1,

前言

kNΠm 2 5 % GB [4 5 ] ( ) ; m 100 ; 60m m ( A 114 [3 ] B 113) GB

34 22 f t = f 0 w t + f r t f w θ t = F cos p - ω 0 t - φ 1 2 f r θ t = F cos p - ω 0 t - φ 2 3 p ω 0 F F φ 1 φ 2 t A B s Fig. 1

适 用 性 甚 至 安 全 性 造 成 威 胁 [2] 因 振 动 过 度 导 致 的 事 故 时 有 发 生 2000 年, 伦 敦 千 禧 桥 由 于 行 人 行 走 时, 结 构 产 生 了 大 幅 振 动, 在 对 外 开 放 仅 两 天 后 就 被 迫 关 闭 [] ; 2011 年, 韩

m 6. 6m m m ~ m m 4. 0m ~ ~

doc

31 17 www. watergasheat. com km 2 17 km 15 km hm % mm Fig. 1 Technical route of p

Research of numerical simulation of high strength steel welding residual stress and fatigue life By Chen Song

mm ~

d 9340m m a e m 93m 110m 80m 1 b V 110m 80m 9. 4m 24 1 / / c Fig f m Analytical model 1 1

标题

708 北 京 工 业 大 学 学 报 2011 年 以 往 的 试 验 结 果 进 行 对 比, 选 取 15D 20D 作 为 对 比 参 数, 试 件 参 数 见 表 1. Fig. 1 图 1 试 件 尺 寸 及 配 筋 图 ( mm) Geometry and reinforcement

水 资 源 与 水 危 机 2 学 分 32 学 时 Water Resources and Water Crisis 水 资 源 是 人 类 耐 以 生 存 的 基 础 自 然 资 源, 同 时 也 是 生 态 环 境 的 控 制 性 因 素 之 一 ; 在 国 民 经 济 中

标题

中華民國建築學會第十二屆建築研究成果發表會


TGF-β AngⅡ B SD ~ 220g SPF. SCXK No SYXK ~ 25 40% ~ 70% OR37G-C

40 强 度 与 环 境 2010 年 强 烈 的 振 动 和 冲 击 载 荷, 这 就 对 阀 门 管 路 等 部 件 连 接 的 静 密 封 结 构 提 出 了 很 高 的 要 求 某 液 体 火 箭 发 动 机 静 密 封 涉 及 高 压 超 低 温 大 尺 寸 三 个 严 酷 条 件, 具

Dan Buettner / /

Microsoft Word 年第三期09

Thesis for the Master degree in Engineering Research on Negative Pressure Wave Simulation and Signal Processing of Fluid-Conveying Pipeline Leak Candi

Vol. 22 No. 4 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Aug GPS,,, : km, 2. 51, , ; ; ; ; DOI: 10.

Hewes Billington Palermo Pampanin mm 180 mm 1240 mm mm 240 mm 7. 5 C40 10 mm HRB3

标题

United Nations ~ ~ % 2010

* CUSUM EWMA PCA TS79 A DOI /j. issn X Incipient Fault Detection in Papermaking Wa

Torre Mayor Y A09 A m m m g γ

mm 5 1 Tab 1 Chemical composition of PSB830 finishing rolled rebars % C Si Mn P S V 0 38 ~ 1 50 ~ 0 80 ~ ~

11 25 stable state. These conclusions were basically consistent with the analysis results of the multi - stage landslide in loess area with the Monte

( ) [11 13 ] 2 211,,, : (1),, 1990 ( ) ( ),, ; OD, ( ) ( ) ; , ( ), (2) 50 %,, 1999 ( ) ( ) ; (3),,

km km mm km m /s hpa 500 hpa E N 41 N 37 N 121

Soliman Addenbrooke Potts Chehade Shahrour Fig. 1 Plan view for construction site m 2

(Microsoft Word - 11-\261i\256m\253i.doc)

θ 1 = φ n -n 2 2 n AR n φ i = 0 1 = a t - θ θ m a t-m 3 3 m MA m 1. 2 ρ k = R k /R 0 5 Akaike ρ k 1 AIC = n ln δ 2

Microsoft Word tb 赵宏宇s-高校教改纵横.doc

某动车组主变压器风道的谐响应分析

successful and it testified the validity of the designing and construction of the excavation engineering in soft soil. Key words subway tunnel

~ a 3 h NCEP ~ 24 3 ~ ~ 8 9 ~ km m ~ 500 m 500 ~ 800 m 800 ~ m a 200

Microsoft Word - 刘 慧 板.doc

p 3 p 4 p 5 p 6 p 7 p 8 p 9 p 10 p 11 θ 1 θ 2 θ 3 θ 4 θ 5 θ 6 θ 7 θ 8 θ 9 θ d 1 = 0 X c 0 p 1 p 2 X c 0 d pi p j p i p j 0 δ 90

13-15 Lagrange 3. 1 h t + hu + hv = 0 1 x y hu + t x hu gh 2 ( ) + y huv = - gh z 0 ( + x u u 2 2 槡 + v + W C ) 2 x + fhv + z h x 2hv u ( t x )

CFDesign 2 1 CFDesign CFDesign CAD ~ r /min mm 1

59 [1] [2] [3] A A ( 4 ) A A [4]

11 : 1345,,. Feuillebois [6]. Richard Mochel [7]. Tabakova [8],.,..,. Hindmarsh [9],,,,,. Wang [10],, (80 µm),.,. Isao [11]. Ismail Salinas [12],. Kaw

PLAXIS 2D m PLAXIS 3D Foundation mm ~ m ~ mm m m 312 m 200 mm 0. 98

240 生 异 性 相 吸 的 异 性 效 应 [6] 虽 然, 心 理 学 基 础 研 [7-8] 究 已 经 证 实 存 在 异 性 相 吸 异 性 相 吸 是 否 存 在 于 名 字 认 知 识 别 尚 无 报 道 本 实 验 选 取 不 同 性 别 的 名 字 作 为 刺 激 材 料, 通

untitled

KUKA W. Polini L. Sorrentino Aized Shirinzadeh 6 7 MF Tech Pitbull Fox Taniq Scorpo Scorpo Compositum Windows KUKA 1 P 1 P 2 KU

Linn Cove [1,2] 1(a)(b) Figg and Muller epoxy epoxy Linn Cove 183 [3] (a) (b) (c) (d) 1 43

增 刊 谢 小 林, 等. 上 海 中 心 裙 房 深 大 基 坑 逆 作 开 挖 设 计 及 实 践 745 类 型, 水 位 埋 深 一 般 为 地 表 下.0~.7 m 场 地 地 表 以 下 27 m 处 分 布 7 层 砂 性 土, 为 第 一 承 压 含 水 层 ; 9 层 砂 性 土

220 Key words: assembled monolithic concrete shear walls; precast two-way hollow slab; inner joint; slit wall; shear behavior 3 ~ % 80% [1] [

5 9 T m /31 / T r 1 /1 s - 1 AC - C Johnson-Cook. 1 JC 1 mm mm 1 MTS 1 7 # NES % 1 Tab. 1 AC - C AC - C gradation /mm

by industrial structure evolution from 1952 to 2007 and its influence effect was first acceleration and then deceleration second the effects of indust

~ ~ ~

室内设计2015年第5期.indd

Transcription:

39 6 2011 12 Journal of Fuzhou University Natural Science Edition Vol 39 No 6 Dec 2011 DOI CNKI 35-1117 /N 20111220 0901 002 1000-2243 2011 06-0923 - 07 350108 105 m 14 69% TU311 3 A Seismic analysis of long - span connected structures under multi - support and multi - dimensional earthquake excitations LIN Wei CHEN Shang - hong QI Ai HUANG Li - zhi College of Civil Engineering Fuzhou University Fuzhou Fujian 350108 China Abstract Seismic response of long - span connected structure under multi - dimensional and multi - support excitation is investigated Algorithms for seismic analysis under multi - dimensional and multi - support excitations are first established and the effect of different earthquake components and wave passage effect are analyzed And then numerical simulation is carried out on a long - span connected structure under one - dimensional and three - dimensional uniform and travelling wave excitations The results show that seismic response will be increased if multi - dimensional earthquake excitation was considered wave - passage effect will greatly amplify the seismic responses of vertical earthquake components the seismic responses of different elements can either be increased or decreased if wave passage effect was considered and great influence of wave passage effect was noticed for braces near connections between the main tower and corridor furthermore dominant internal force of the corridor structure may be increased by 14 69% under travelling wave excitation Therefore it is necessary for aseismic design of long - span connected structure to take into account of multi - dimensional and multi - support excitation Keywords long - span connected structure seismic analysis multi - dimensional excitation multi - support excitation 0 2011-05 - 06 1980 - E - mail cewlin@ fzu edu cn 51108089 2011J05128

924 39 1 LaDefense Arch Petronas Towers 2009 CCTV MOMA 2 3-4 5-6 Newmark 7 1969 Hahn Liu 8 Heredia - Zavoni Barranco 9 Heredia - Zavoni Leyva 10 1 11 M ss M sb M bs M bb Ẍ s Ẍb + C ss C sb C C bs bb s + K ss K sb K bs Kbb b M C K Ẍ b s F b 1 s b = 0 F b 1 M ss Ẍ s + M sb Ẍ b + C ss s + C sb b + K ss s + K sb b = 0 2 s Y s Y d 0 s b = Y s b + Y d 0 α = - K -1 ss K sb 3 Y s = - K -1 ss K sb b = α b 4

6 925 Y s 2 M ss Ÿ d + C ss Y d + K ss Y d = - M ss Ÿ s - C ss Y s - M sb Ẍ b - C sb b 5 Y 12 s 1 d 0 b 4 6 M ss Ÿ d + C ss Y d + K ss Y d = - M ss Ÿ s - M sb Ẍ b 6 M ss Ÿ d + C ss Y d + K ss Y d = - M ss α + M sb Ẍ b 7 K sb M sb M ss Ÿ d + C ss Y d + K ss Y d = - M ss αẍ b 8 8 2 2 1 60 50 m 105 00 m 39 85 m 55 85 m ANSYS ANSYS 1 ANSYS Matlab 1 x 1 Fig 1 Finite element model 2 2 ANSYS 10 1 2 6 1 2

926 39 Tab 1 1 10 First ten natural frequencies of the structure 1 2 3 4 5 6 7 8 9 10 f /Hz 0 790 0 831 1 015 1 158 1 306 1 631 1 668 2 135 2 236 2 756 Fig 2 2 6 First six mode shapes of the structure 2 3 1976 NS 0 15g x y z x y z 1 0 85 0 65 3 Fig 3 3 Time - history stress response under single - and multi - dimensional excitations

6 927 50001 50004 60048 3 50001 60048 43 7% 69 5% 50004 129 4% 3 c 8 s 4 100 m s - 1 50001 x 19 5% 50004 x 18 4% 22 1% 60048 24 3% 166 9% Fig 4 4 100 m s - 1 5 Time - history of stress responses under single - and Fig 5 Time - history stress responses under travelling wave multi - dimensional travelling wave excitations excitation with different apparent velocities

928 39 2 4 100 500 800 m s - 1 5 2 3 2 3 5 50001 100 m s - 1 31 3% 60048 100 m s - 1 37 4% Tab 2 2 Comparison of peak stress responses under multi - dimensional and multi - point excitations with different apparent velocities MPa 800 m s - 1 500 m s - 1 100 m s - 1 x 12 128 3 11 556 9 9 923 2 10 142 1 50001 17 651 4 13 265 1 14 678 1 10 217 8 17 661 8 16 539 4 15 037 0 12 120 4 x 9 459 4 10 358 9 8 707 6 8 927 3 50004 21 693 7 18 273 0 16 917 3 10 574 1 21 700 8 20 201 4 16 891 8 10 897 5 x 3 064 3 2 476 1 2 075 7 3 164 0 60048 5 193 1 4 893 0 4 990 8 3 935 9 6 146 4 5 671 4 4 408 0 8 445 9 Tab 3 3 Comparison of RMS stress responses under multi - dimensional and multi - point excitations with different apparent velocities MPa 800 m s - 1 500 m s - 1 100 m s - 1 x 4 880 7 4 687 1 4 103 5 4 543 0 50001 5 797 5 4 730 1 4 919 0 3 007 1 5 791 5 5 308 3 4 663 5 3 750 0 x 3 988 3 4 000 3 3 509 1 3 910 1 50004 7 370 2 5 132 1 6 137 8 3 318 4 7 359 5 6 628 3 5 764 8 3 246 1 x 1 260 4 1 151 4 0 983 3 1 421 8 60048 1 936 1 1 742 0 1 767 4 1 164 7 2 055 4 1 939 9 1 587 9 3 235 8 2 5 4 4

6 929 14 69% Tab 4 4 Locations and control forces of control bars under Tianjin earthquake excitations with different apparent velocities l /m p /MPa 12 30 28 931 5-800 m s - 1 12 30 29 462 0 1 83% 500 m s - 1 5 40 26 251 0-9 26% 100 m s - 1 2 70 33 182 8 14 69% 3 1 2 3 4 14 69% 1 J 2009 39 S2 7-10 2 J 2010 31 1 101-109 3 J 2009 29 1 50-57 4 Wang J Cooke N Moss P J The response of a 344 m long bridge to non - uniform earthquake ground motions J Engineering Structures 2009 31 11 2 554-2 567 5 J 2001 18 3 359-364 6 J 2010 26 1 1-6 7 Newmark N M Torsion in symmetrical buildings C / /Proceedings 4th World Conference Earthquake Engineering Santiago s n 1969 19-32 8 Hahn G D Liu Torsional response of unsymmetrical buildings to incoherent ground motions J Journal of Structural Engineering 1994 120 4 1 158-1 181 9 Heredia - Zavoni E Barranco F Torsion in symmetric structures due to ground motion spatial vibration J Journal of Engineering Mechanics 1997 122 9 834-843 10 Heredia - Zavoni E Leyva A Torsional response of symmetric buildings to incoherent and phase delayed earthquake ground motion J Earthquake Engineering and Structural Dynamics 2003 32 1 021-1 038 11 J 2007 24 3 97-103 12 J 2002 19 3 25-30