Gauss div E = 1 ε 0 ρ(x, y, z), (1.3) E (x, y, z)ε 0 ρ(x, y, z) E = 0 (curl E = 0), (1.4) E = u(x, y, z), (1.5) u ( )(1.5) (1.3) u(x, y, z) = 1 ε 0 ρ(

Size: px
Start display at page:

Download "Gauss div E = 1 ε 0 ρ(x, y, z), (1.3) E (x, y, z)ε 0 ρ(x, y, z) E = 0 (curl E = 0), (1.4) E = u(x, y, z), (1.5) u ( )(1.5) (1.3) u(x, y, z) = 1 ε 0 ρ("

Transcription

1 Laplace Laplace() Poisson () Laplace Poisson Laplace Poisson ( ) GreenLaplace Green ( )Laplace Poisson Harnack Laplace Laplace 1. Laplace ( ) u n i=1 u x i = 0 (1.1) Poisson u n i=1 u x i = f(x 1,, x n ) (1.) u = u(x 1,, x n ) f(x 1,, x n ) n =, Laplace Poisson 1

2 Gauss div E = 1 ε 0 ρ(x, y, z), (1.3) E (x, y, z)ε 0 ρ(x, y, z) E = 0 (curl E = 0), (1.4) E = u(x, y, z), (1.5) u ( )(1.5) (1.3) u(x, y, z) = 1 ε 0 ρ(x, y, z). (1.6) (1.6) Poisson ρ 0 Laplace u = 0. (1.7) Laplace P 0 : (x 0, y 0, z 0 )mp : (x, y, z) F (x, y, z) m r P P 0 P 0 r = (x x 0 ) + (y y 0 ) + (z z 0 ) P 0 P F (x, y, z) ( m x x0 F (x, y, z) =, y y 0, z z ) 0. (1.8) r r r r F (1.8) F u(x, y, z) = m r (1.9) F = u.

3 ρ(x, y, z) dξdηdζ u(x, y, z) = ρ(ξ, η, ζ) (x ξ) + (y η) + (z ζ). (1.10) ulaplace u = u xx + u yy + u zz = 0, (1.11) ρ(x, y, z)hölder upoisson u = 4πρ. (1.1) (1.11)(1.1)u 0, (x, y, z) R\, u = 4πρ, (x, y, z) ρ(x, y, z) Hölder (1.13) ρ u t = T ( ) u x + u + F (t, x, y). (1.14) y F (x, y) u t (1.14) (1.15)Poisson u x + u (x, y) = F. (1.15) y T PoissonLaplace Laplace Laplace(1.1) Poisson(1.) 3

4 1.1 Laplace(1.1) (1.1) (1.1) (1.) ( ) t (1.1) (1.) ( Dirichlet ) R n g u = u(x 1,, x n ) (1.1)( (1.)) (1.16) ( Neumann) u = g. (1.16) Dirichlet Γ gu = u(x 1,, x n )Γ (1.1)( (1.)) Γ Γ n u n u n = g. (1.17) Γ (1.17) Neumann Dirichlet Neumann ( )u Laplace(1.1) (n = 3) u = g g 4

5 u = ϕ u ϕ ϕ Laplace(1.1) (n = 3) ϕ n = 0. Laplace Laplace Dirichlet Neumann LaplaceLaplace ΓΓ Dirichlet u Γ = 1. u 1 1 u = (x + y + z ) 1/ Laplace lim r u(x, y, z) = 0 (r = x + y + z ). (1.18) (1.18) u 1 1. Laplace Dirichlet R 3 Γ g u(x, y, z)(i)γ Q Laplace (ii) Q Γ(iii) (1.18) (iv) Γ Neumann u Γ = g. (1.19) Γ gu(x, y, z) (i) Γ Q Laplace (ii) Q Γ(iii) (1.18) (iv) ΓQ ñ(γ ) u ñ u ñ = g. (1.0) Γ 5

6 1. DirichletNeumann nlaplace 1.5 Poisson(1.)Poisson Laplace(1.1) fhölder (n = 3 (1.10) )Laplace(1.1) 1. u(x 1,, x n ) = f(r)( r = x x n) n ( u x1 x u xnx n = 0) f(r) = c 1 + c r n (n ), f(r) = c 1 + c ln 1 r (n = ), c 1, c. (r, θ, ϕ) u = 1 ( r u ) r r r 3. (r, θ, z) u = 1 r + 1 r sin θ r 4. (1) ax + by + c (a, b, c ); () x y xy; (3) x 3 3xy 3x y y 3 ; ( sin θ u ) + θ θ ( r u ) + 1 u r r θ + u z. 1 u r sin θ ϕ. (4) shny sin nx shny cos nx chny sin nx chny cos nx (n ); 6

7 shx (5) chx + cos y sin y chx + cos y. 5. Laplace (1) ln r θ; () r n cos nθ r n sin nθ(n ) (3) r ln r cos θ rθ sin θ r ln r sin θ + rθ cos θ. 6. Laplace (0 x a, 0 y b) u xx + u yy = 0, u(0, y) = u(a, y) = 0, u(x, 0) = sin πx, u(x, b) = 0. a 7. Laplace Dirichletu(x, y) 7

8 . ( ) Laplace Poisson Laplace Poisson Laplace( Poisson) ( ) ( ).1 Euler-Lagrange Hamilton q i (t)(i = 1,, n) q i (t)(i = 1,, n) Lagrange L (t, q i, q i ) [t 1, t ] t () δ t t 1 L (t, q i, q i )dt = 0. (.1) δq i t=t1 = 0, δq i t=t = 0 (i = 1,, n) (.1) (.) Lagrange L d ( ) L = 0 q i dt q i (i = 1,, n). (.) (.1) y = f(x)x x f( ) f (x) = 0( 1

9 f (x)( )f(x)( ) ) y = y(x)[a, b] () I[y] b a F (x, y(x), y (x))dx, (.3) F (.3)F y = y(x) I[y]y(x) y(x) I[y] y(x) F (x, y, y ) y(x) x y(a) = y, y(b) = y (.4) y y (.4)I[y] y(x)y(x) δy(x)y(x) + δy(x)δy(x) y(x) (.3) F (x, y + δy, y + δy ) = F (x, y, y ) + F F δy + y y δy, I[y + δy] I[y] = b a ( ) F F δy + y y δy (x)dx. I[y]δI[y] b ( ) F F δi[y] = δy + y y δy (x)dx. (.5).1 a I[y] F y d ( ) F = 0. dx y (.6)

10 y = y(x)i[y]y(x) δy(x) = εη(x), (.7) εη(x) η(a) = η(b) = 0. (.8) (.8)y + εη(.4).1. y y y(x) y 0 y(x) + εη(x) a b x.1: y(x) y(x) + εη(x) I[y + εη(x)] = b a F (x, y(x) + εη(x), y (x) + εη (x))dx (.9) εε = 0y(x) + εη(x) = y(x) y(x)i[y] ε = 0ε I[y + εη(x)] (.9) b a di[y + εη] dε = 0. ε=0 (.8)(.10) b ( ) F 0 = a y η (x)dx + F x=b y η x=a b [ F = y d ( )] F (x)η(x)dx. dx y a ( F y η + F ) y η (x)dx = 0. (.10) 3 b a [ d ( F dx y ) ] η (x)dx

11 η(x) F y d ( ) F = 0. dx y.1. (.6) Euler-Lagrange E-L n u(x 1,, x n ) I[u] = F (x 1,, x n, u(x 1,, x n ), u x1 (x 1,, x n ),, u xn (x 1,, x n )) dx 1 dx n, (.11) R n u u = g(x 1,, x n ), (x 1,, x n ). (.1).1. I[u] F n u i=1 x i ( F u xi ) = 0. (.13) u = u(x 1,, x n )I[u] u(x) u(x 1,, x n )δu(x)u(x) + δu(x) δu(x) u(x) δu(x) = εη(x) ε η(x) = η(x 1,, x n ) η = 0. (.14) (.14) u + εη(.1) (.11) [ F u η + n i=1 di[u + εη] dε = 0. ε=0 ] F η xi (x 1,, x n )dx 1 dx n = 0. (.15) u xi 4

12 Green(.14) (.15) F 0 = u ηdx 1 dx n + η ( Du F n) ds [ ] F n = η u ( ) Fuxi dx 1 dx n, x i i=1 η n i=1 x i ( Fuxi ) dx1 dx n (.16) η = η(x) (.14) Du F = (F ux1,, F uxn ) n η (.16) F n u (.13) i=1 x i ( F u xi (.13)(.11) Euler-Lagrange F F = 1 i=1 n ( ) u, x i E-L Laplace n u u = = 0. x i i=1 ) = 0. (.17) E-L.1 I[u 1,, u m ] = F (x, u 1 (x),, u m (x), Du 1 (x),, Du m (x))dx 1 dx n, ( ui x = (x 1,, x n ) Du i =,, u ) i x 1 x Euler-Lagrange n u u (.3) y(a) = y 0, y(b), (.18) 5

13 y 0 x = b y (.3) y = y(x) x = b I[y] x = b y(b) y = y(x) I[y](.3) F (x, y(x), y (x)) E-L(.16) δy(x) = εη(x) ε η(x) (.16) F y η(x) b a + b a η(a) = 0. (.19) di[y + εη] dε = 0 ε=0 [ F y d ( F dx y )] η(x)dx = 0. (.0) (.19) E-L(.16)η(b) (.0) F y = 0. (.1) x=b (.1) b y(b) y (b) I[u] = F (x, y, u(x, y), u x (x, y), u y (x, y))dxdy + G(s, u, u s )ds, (.) R s u s = u s F G..3 I[u]( (.) ) F u ( ) F ( ) F = 0 (.3) x u x y u y [ F dy u x ds F dx u y ds + G u d ( )] G = 0. ds u s (.4) 6

14 .3. δu(x, y) (.4) (.) F G F = u x + u y, G = σu, (.5) σ u E-L u = u xx + u yy = 0, (.6) ( dy u x ds u dx σu) y ds + = 0, ( σu) u n + = 0, (.7) n (.7) u (.6) (.7) Laplace. Oxy g(x, y)u(x, y) (x, y) ( Oxy) f(x, y) 7

15 V = =, { T [ ( ) ( ) ] } u u + x y fu dxdy, T ((6.7) )J(u) J(u) J(u) = { [ ( ) ( ) ] } 1 u u + fu dxdy, (.8) x y f = f T. ( g(x, y)) g V 0 = { v v C () C 1 (), v = g }, (.9) V 0 u u V 0 J(u) = min v V 0 {J(v)}. (.30) Laplace Poisson (.30) u = f,.1 (Dirichlet) u = g, (.31) (.30)u V 0 (.31) u (.31)V 0 u (.30) u (.30)(.11) F F = 1 [ ( ) ( ) ] u u + fu, x y 8

16 (.13)(.8)E-L u + f = 0. u V 0 V 0 ( (.9) ) u = g. u (.31) u V 0 Poisson (.31) w C () C 1 () w = 0 ( u + f)wdxdy = 0. Green( ) ( u w x x + u ) w y y fw dxdy = 0. (.3) v V 0 w = v u. w C () C 1 () w = 0, (.33) w (.3)J(v) (.3) ( u w J(v) = J(u + w) = J(u) + x x + u ) w y y fw dxdy + 1 [ ( ) ( ) ] w w + dxdy x y = J(u) + 1 [ ( ) ( ) ] w w + dxdy. x y (.33) J(v) J(u), w 0u(.30) u (.30).1 (.1) J(v) 9

17 J(v) V 0 Poisson (.31), (.8).3 E-L ( ) E-L ( + k )u = f ( ), (.34) ( σu) u n + = g, (.35) R n kf g σ n Ĩ[u] u { ( + k )u + f } dx. (.36) Green( )u, v C () C 1 () Ĩ[u] = (.35) Ĩ[u] = guds u vdx = v u n ds v udx, (.37) u u n ds u dx + k u dx + fudx. (.38) σu ds u dx + k u dx + fudx. 10

18 (.37) δĩ[u] = [( + k u )u + f]δudx n δuds σuδuds + gδuds = [( + k )u + f]δudx gδuds, (.35) (.34) (.36) Ĩ[u] I[u] Ĩ[u] + guds = u{( + k )u + f}dx + guds. (.34)-(.35)(.35) (.39) Rayleigh-Ritz (.39) Rayleigh-Ritz I[y] b a F (x, y(x), y (x))dx (.40) y(a) = y, y(b) = y, (.41) y y n c 1, c,, c n (.41) ỹ(x) = ϕ(x; c 1,, c n ), (.4) y(x)(.40)i[ỹ]c 1,, c n I[c 1,, c n ]. I[c 1,, c n ] c i = 0 (i = 1,,, n) I[ỹ]c i (i = 1,,, n) (.4) (.40)-(.41) 11

19 1. I[y] = b a F (x, y, y, y )dx y(a) = y 1, y(b) = y, y (a) = y 3, y (b) = y 4, y i (i = 1,, 3, 4) E-L F y d ( ) ( ) F + d F = 0. dx y dx y. (1) I[y] = b a y(1 + y )dx; () I[y] = b y a x dx; 3 (3) I[y] = b a (x y + y )dx. 3. E-L I[y, z] b a F (x, y(x), z(x), y (x), z (x))dx y(a) = y 1, y(b) = y, z(a) = z 1, z(b) = z, y 1, y, z 1, z 4. J(v) = 1 [ ( u ) + x u V ( ) u + y ( ) ] { } u 1 dxdydz + z Γ σu gu ds, J(u) = min v V J(v), V = C () C 1 (). 1

20 3. Green Green Laplace Dirichlet 3.1 Green R 3 Γ( )P (x, y, z), Q(x, y, z) R(x, y, z) Γ ( P x + Q y + R ) dv = (P α 1 + Qα + Rα 3 ) ds, (3.1) z Γ dv ds Γ α = (α1, α, α 3 ) = (cos( n, x), cos( n, y), cos( n, z)), (3.) nγ u, v C () C 1 (). (3.1) P = u v x, Q = u v y, R = u v z, u vdv = = x + y + z, Γ u v ( u n ds v x x + u v y y + u v z z n = α 1 x + α y + α 3 z ) dv, (3.3) Laplace n (3.3) Green (3.3) u v v udv = Γ v u ( u n ds v x x + u v y y + u v z z ) dv. (3.4) 13

21 (3.3)(3.4) (u v v u)dv = Γ ( u v n v u ) ds. (3.5) n (3.5)Green Green 3. Green v = r 1 P 0 P = [ (x x 0 ) + (y y 0 ) + (z z 0 ) ] 1/, (3.6) P 0 (x 0, y 0, z 0 ) P (x, y, z) v = 1 P 0 Laplace r P0 P u = u xx + u yy + u zz = 0. (3.7) Laplace(3.7) Laplace v P 0 v Green GreenP 0 εb ε ( \ B ε )( \ B ε ) v \ B ε uvgreen(3.5) ( u r 1 r 1 u ) ) dv = (u r 1 u r 1 ds, (3.8) \B ε n n Γ B ε B ε B ε \ B ε B ε r 1 n Bε u r 1 u = 0, r 1 = 0. (3.9) = r ( 1 r n ds = 1 ε ) = 1 r = 1 ε, B ε uds = 4πu, (3.10) uu B ε 1 u B ε r n ds = 1 u ds = 4πε u ε B ε n n, (3.11) 14

22 u n u n B ε(3.8) ε 0 Γ (u r 1 n u(p 0 ) = 1 ( ( u(p ) 4π Γ n ) u r 1 ds + 4πu 4πε u n n = 0. 1 r P0 P ) 1 r P0 P ) u(p ) ds P. (3.1) n up 0 (3.1)Γ (3.1)u P 0 P 0 Γ Γ [ u n ( ) 1 1 r r ] u ds = n 0 P 0 R 3 \, πu(p 0 ) P 0 Γ, 4πu(P 0 ) P 0, u Poisson (3.1) u(p 0 ) = 1 ( ( u(p ) 4π Γ n 1 r P0 P (3.15) ) (3.13) u = f, (3.14) 1 r P0 P ) u(p ) ds P 1 n 4π f(p ) dv P. (3.15) r P0 P (3.1)(3.15) Poisson(3.14) 3.3 v(p 0 ) 1 4π Green 15 f(p ) dv P (3.16) r P0 P

23 3.1 uγ Laplace( u ) Γ u ds = 0. (3.17) n (3.17) Γ (3.5) u v Laplace (Neumann) u = 0 (x ), u n = f (x Γ) Γ f Γ fds = ( ) u R 3 P 0 P 0 a B a u(p 0 ) = 1 uds. (3.18) 4πa B a (3.1)P 0 B a u(p 0 ) = 1 ( ( ) u(p ) 1 1 4π B a n r P0 r P P0 P ) u(p ) ds P. (3.19) n B a r P0 P = a. 3.1 B a 1 r P0 P u(p ) n ds P = 1 u(p ) a B a n ds P = 0. (3.0) ( ) 1 = ( ) 1 = 1 n r B a r r B a r = 1 Ba a, 16

24 B a u n ( 1 r (3.0)(3.1) (3.19) (3.18) ) ds = 1a u(p 0 ) = 1 uds. 4πa B a B a uds. (3.1) (3.1)(3.1) u u n u(p ) Γ B a (3.18)(3.18) a < a 0 B a (3.1)a a 0 B a0 (3.18) a 0 P 0 a B a B a0 Γ 3.1: B a B a

25 3.3 () R 3 u = u(x, y, z) u u u u m( 3.3 )up 0 m P 0 r > 0 B r rb r B r B r u m u B r P m up B r u < mu B r (3.18) 1 uds < 1 mds = m. (3.) 4πr B r 4πr B r 1 uds = u(p 4πr 0 ) = m. B r (3.) B r u mp 0 r r B r u mb r u m u = m P P 0 P 1 lb ri (i = 1,, m) m i=1b ri l B r1 P 0 B r B r1 B rn B rn 1 (3.) 18

26 P 0 B r1 P 1 B r P m P B rm 3.: l B ri B ri (i = 1,, m)u = mp u(p ) = m P u m u u 3. uu 3.3 u v u v u(x, y, z) v(x, y, z), (x, y, z). u v 3.5 Laplace Laplace(Poisson) Dirichlet( ) Dirichlet u = u x + u y + u z = 0, u = g(x), (3.3) R 3 g 19

27 3.4 g (3.3) (3.3) u 1 u (u 1 u ) 0 u = u 1 u Laplace u u 0. u 1 u. (3.3) (3.3) g 1 g g 1 g ε, (3.4) ε u 1 u g 1 g u 1 u g 1 g. max{u 1 u } = max {g 1 g } ε, min{u 1 u } = min {g 1 g } ε. max{ u 1 u } max { g 1 g } ε. (3.5) (3.3) Dirichlet u = 0, x, u = g(x), x, u 0, r = x + y + z. 3.5 g (3.6) (3.6) u 1 u (3.6)u = u 1 u u u = 0 (3.7) u(x, y, z) 0, r = x + y + z (3.8) 0

28 u P u(p ) 0 u(p ) > 0. RR B R P B R R (3.3) R c O P B R R 3.3: R c (3.8) R B R u BR < u(p ). (3.9) (3.7)(3.9) R B R u u (3.6) 1. (3.13) P 0 Γ. u(x, y) u = sin θ θu 3. Laplace Neumann fds = 0 4. Laplace Dirichlet 1

29 5. n i,j=1 a ij u + x i x j n i=1 b i u x i + cu = 0, a ij, b i, c (i, j = 1,, n) a ij λ i (i = 1,, n) n a ij λ i λ j a n i,j=1 i=1 λ i (a ), c < 0 u Γu 6. u x + u + cu = 0 (c > 0) y

30 4. Green Green Green Laplace DirichletGreen Green GreenLaplaceDirichlet Poisson Poisson 4.1 Green u u (3.1) u(p 0 ) = 1 4π Γ ( u(p ) n ( 1 r P0 P ) 1 r P0 P ) u(p ) ds P, (4.1) n P 0 (x 0, y 0, z 0 ) Γu u n Γ u(4.1) Laplace(4.1)u u n Γ (u u n ) (4.1)Laplace(3.7) Dirichlet NeumannLaplace(3.7) Dirichlet u = u xx + u yy + u zz = 0, (4.) u Γ = f, (4.3) u Γ u Γ ( 3.4 n (4.)-(4.3) u n Γ )(4.1) u n Green u n g(p, P 0 ) : P Γ(4πr P0 P ) 1 g(p, P 0 ) Γ = 1 1 4πr P0 P. (4.4) Γ

31 Green(3.5) (4.1) Γ u(p 0 ) = ( g u n u g ) ds = 0. n Γ ( G u ) n u G ds, (4.5) n G(P, P 0 ) = 1 4πr P0 P g(p, P 0 ). (4.6) G Laplace(4.) Dirichlet Green (Dirichlet ) (4.4) G = G(P, P 0 ) Γ Green G(P, P 0 )(4.5) (4.)-(4.3) ( u(p 0 ) = f G ) (P )ds P. (4.7) Γ n GreenG = G(P, P 0 ) (4.)-(4.3) (4.7)Dirichlet (4.7) (4.)(4.3) Green Green Green Laplace (4.)Dirichlet g = 0, g Γ = 1 4πr P0 P. Γ (4.8) Dirichlet Dirichlet Laplace Dirichlet Green (i) Green

32 Green Dirichlet (4.7) (ii) Green Dirichlet(iii) (4.7)Dirichlet GreenGreen 4.1 GrennG(P, P 0 ) P = P 0 Laplace(4.) P P 0 G(P, P 0 ) 1 4πr P0 P 4. Γ GreenG(P, P 0 ) < G(P, P 0 ) < 1 4πr P0 P. GrennG(P, P 0 )P P 0 P 1 P G(P 1, P ) = G(P, P 1 ). G(P, P 0 ) 4.5 ds P = 1. Γ n 4.1 Green P 0 1. P 0 4πr P0 P Green G(P, P 0 ) = 1 4πr P0 P g(p, P 0 ) g(p, P 0 ) Green 4.4 P 1 P P P 1 4. Green Green g(p, P 0 ) g Green 3

33 P 0 P 1 P 0 P 1 P 0 P 1 P 1 P 0 P 1 P 0 Γ Green Poisson Green Poisson B R O R(4.1) P 0 (x 0, y 0, z 0 ) OP 0 OP 1 r 0 r 1 = R, (4.9) r 0 = OP 0, r 1 = OP 1. P 1 P 0 B R Q P 1 R r 1 O r 0 P 0 B R 4.1 P 0 P 1 Q B R OQP 0 OQP 1 O OP 0 OQ = OQ OP 1 ( r 0 r 1 = R, (4.9) ), 4

34 OQP 0 OQP 1 Q QP 1 = R r 0 P 0 Q. (4.10) P 1 (4.10) P 0 P 1 R r 0 r P1 P g(p, P 0 ) = 1 4π R 1, r 0 r P1 P = P 1P B R Green ( ) G(P, P 0 ) = 1 1 R 1. (4.11) 4π r P0 r P 0 r P1 P Green(4.11)Laplace(4.) B R Dirichlet (4.7) G n B R r P0 P u BR = f (4.1) = r 0 + r r 0 r cos η, r P1 P = r 1 + r r 1 r cos η, r = OP η = (OP 0, OP )OP 0 OP (4.9) (4.11) Green ( G(P, P 0 ) = 1 4π 1 r 0 + r r 0 r cos η ) R. r 0 r R rr 0 cos η + R 4 B R G n = G r=r r r=r = 1 { } r r 0 cos η 4π (r + r0 r 0 r cos η) (r0r R r 0 cos η)r 3/ (r0r R rr 0 cos η + R 4 ) r=r 3/ = 1 R r0 4πR (R + r0 Rr 0 cos η). 3/ (4.7)B R Dirichlet(4.), (4.1) u(p 0 ) = 1 R r0 4πR B R (R + r0 Rr 0 cos η) f(p )ds 3/ P. (4.13) 5

35 u(r 0, θ 0, ϕ 0 ) = R 4π π π 0 0 R r0 f(r, θ, ϕ) sin θdθdϕ, (4.14) (R + r0 Rr 0 cos η) 3/ (r 0, θ 0, ϕ 0 ) P 0 (R, θ, ϕ) B R P OP 0 OP (sin θ 0 cos ϕ 0, sin θ 0 sin ϕ 0, cos θ 0 ), (sin θ cos ϕ, sin θ sin ϕ, cos θ), cos η = cos θ cos θ 0 + sin θ sin θ 0 (cos ϕ cos ϕ 0 + sin ϕ sin ϕ 0 ) = cos θ cos θ 0 + sin θ sin θ 0 cos(ϕ ϕ 0 ). (4.13) (4.14)Poisson Green Poisson Dirichletz > 0 u = u(x, y, z)z = 0f(x, y) u z=0 = f(x, y). P 0 : (x 0, y 0, z 0 ) z = 0P 0 : (x 0, y 0, z 0 )(z 0 > 0) Green [ ] G(P, P 0 ) = 1 1 4π (x x0 ) + (y y 0 ) + (z z 0 ) 1. (x x0 ) + (y y 0 ) + (z + z 0 ) (4.15) z > 0 z = 0 z- n = z. z > 0u 1 u(p ) = O( OP ), u n (P ) = O( 1 OP ) ( OP ), (3.1) () Green (4.7) (4.7) z > 0 6

36 Laplace(4.) Dirichlet u(x 0, y 0, z 0 ) = 1 4π = z 0 π [ f(x, y) z (A A + )] dxdy z=0 f(x, y) dxdy, [(x x 0 ) + (y y 0 ) + z0] 3/ (4.16) A ± = 1 (x x0 ) + (y y 0 ) + (z ± z 0 ). (4.16) z > 0 Poisson Green Poisson Laplace Dirichlet u = u xx + u yy = 0, (x, y), (4.17) u = f(θ), (4.18) = {(x, y) x + y < R }(R > 0 ) = {(x, y) x + y = R } θ GreenGreen 1 4πr 1 π ln r 1 ( 1) Green [ ( )] G(P, P 0 ) = 1 ln 1 R ln. π r P0 r P 0 r P1 P r P0 P = r 0 + r r 0 r cos η, r P1 P = r 1 + r r 1 r cos η, η = (OP 0, OP )OP 0 OP 4.. OP 0 OP (cos θ 0, sin θ 0 ) (cos θ, sin θ) cos η = cos(θ θ 0 ) = cos θ cos θ 0 + sin θ sin θ 0. r 1 r 0 = R 7

37 r = R G n = G r=r r { r=r [ ( 1 = ln r π = 1 { π = 1 πr 1 r 0 + r r 0 r cos η ln r r 0 cos η r + r 0 rr 0 cos η R r0. R Rr 0 cos η + r0 R r 0 r R rr 0 cos η + R 4 )]} r=r r 0r R r 0 cos η r 0r R rr 0 cos η + R 4 } r=r P P 1 R O η P r 0 0 r 1 4. P 0 P 1 (4.7) Dirichlet(4.17)-(4.18) u(r 0, θ 0 ) = 1 R r0 f(θ)ds πr x +y =R R Rr 0 cos η + r0 = 1 π (R r0)f(θ) dθ. π 0 R Rr 0 cos(θ θ 0 ) + r0 Poisson (4.19) 4.3 Laplace Dirichlet Poisson (4.19)u(4.17). 8

38 GreenG(P, P 0 )P, P 0 P G(P, P 0 ) P 0 (4.19) u(4.17) P 0 P (4.19) G n u(4.18) (r 0, θ 0 ) (R, θ) (4.19) u(r 0, Q 0 ) f(θ). (4.19)ϕ = θ θ 0 f(θ)cos(θ θ 0 ) θ π(4.19) u(r 0, θ 0 ) = 1 π Green ( 4.5 ) 1 π u(r 0, θ 0 ) f(θ) = 1 π π π π π π π (R r0)f(ϕ + θ 0 ) dϕ. (4.0) R Rr 0 cos ϕ + r0 R r0 dϕ = 1. R Rr 0 cos ϕ + r0 R r0 [f(ϕ + θ R Rr 0 cos ϕ + r0 0 ) f(θ)]dϕ. (4.1) r 0 R θ 0 θ f(θ)ε δ ϕ [ δ, δ] θ θ 0 [ π, π] f(ϕ + θ 0 ) f(θ) ε. ( π, δ), ( δ, δ), (δ, π), (4.1)I 1 I I 3 u(r 0, θ 0 ) f(θ) = I 1 + I + I 3, u(r 0, θ 0 ) f(θ) I 1 + I + I 3. I I 1 I 3 9

39 ( π, δ) cos ϕ cos δ R Rr 0 cos ϕ + r 0 R Rr 0 cos δ + r 0 = (R r 0 ) + Rr 0 (1 cos δ) 4Rr 0 sin δ. f f(ϕ + θ 0 ) f(θ) K 1, K 1 I 1 = 1 π δ π R r0 [f(ϕ + θ R Rr 0 cos ϕ + r0 0 ) f(θ)]dϕ K 1(R r0)(π δ) 8πRr 0 sin δ. (4.) I 3 I 3 K 3(R r0)(π δ) 8πRr 0 sin δ, (4.3) K 3 (4.) (4.3) r 0 RI 1 I 3 II I I = 1 π δ ε 1 π ε 1 π δ δ R r 0 R Rr 0 cos ϕ + r 0 0, R r0 [f(ϕ + θ R Rr 0 cos ϕ + r0 0 ) f(θ)]dϕ δ π π R r0 dϕ R Rr 0 cos ϕ + r0 R r0 dϕ = ε R Rr 0 cos ϕ + r0. ε(r 0, θ 0 ) (R, θ)u(r 0, θ 0 )f(θ) (4.4) u(r 0, θ 0 ) f(θ). 10

40 (4.19) u Dirichlet (4.17)- (4.18) 1. Green Green G(P 1, P ) = G(P, P 1 ). 3. Poisson u xx + u yy + u zz = 0 (x + y + z < 1), u(r, θ, ϕ) r=1 = 3 cos θ + 1 (r, θ, ϕ ) 4. u a C (1) u C = A cos ϕ; () u C = A + B sin ϕ. 5. LaplaceDirichlet u = u xx + u yy = 0 (y > 0), u y=0 = f(x) 11

41 5. ( ) Poisson (4.13) Poisson 5.1 u(p ) = u(x, y, z)q QQ lim {r u(p )} = 0, (5.1) P Q P Q r P Q = P Q P Q u Q u(p )Q ( Q) Q B R QRQ B R LaplaceB R Laplace B R B R u Poissonũ B R Q u ũ. uq ũq v = u ũ. v(i)b R Q (ii) Q(5.1) (iii) B R v B R \{Q} lim {r v(p )} = 0; (5.) P Q P Q ( 1 v ε (P ) = ε r QP v 0. (5.3) 1 R ), (5.4) ε > 0v ε (a) B R v ε 0 (b) B δ B R (5.1) δ B δ Q δ B δ. 1

42 B δ δ Q R B R 5.1 B R B δ ε (5.)δ > 0 B δ v v ε, B R v = v ε 0. ( 3.3)P v(p ) v ε (P ). (5.5) P ε 0 v(p ) = 0.P v 0.δ > 0B R \{Q} (5.3) Poisson 5. u(p 0 )x 0, y 0, z 0 P0 : (x 0, y0, z0)ux 0 x 0, y 0 y0, z 0 z0 P0 P0 BB R. u(p 0 ) ub Poisson u 13

43 B u(p 0 ) = 1 4πR = 1 4πR B B R r0 u(p ) (R + r0 Rr 0 cos η) ds 3/ P u(p ) R r0 ds r 3 P. P 0 P P 0 u(p 0 ) P 0 B (R r 0)r 3 P 0 P = [R (x 0 + y 0 + z 0)][(x x 0 ) + (y y 0 ) + (z z 0 ) ] 3/ (5.6) : (0, 0, 0)x 0, y 0, z 0 = [R (x 0 + y0 + z0)][x + y + z (xx 0 + yy 0 + zz 0 ) + x 0 + y0 + z0] 3/ [ = [R (x 0 + y0 + z0)] {R 1 (xx ]} 0 + yy 0 + zz 0 ) (x 0 + y0 + z0) 3/, R (5.7) x 0, y 0, z 0 (x, y, z) B (x 0, y 0, z 0 ) x 0, y 0, z 0 u(p 0 ) P 0 = P 0 P 0 u(p 0 ) Poisson 5.3 {u k } {u k }u f k = u k. (5.8) f k {f k } ε > 0 N N n, m > N f n f m ε. n, m u n u m ε. Cauchy {u k }u. {u k } uu 14

44 P 0 P 0 B. B u k Poisson(4.14) π π u k (r 0, θ 0, ϕ 0 ) = R u k (R, θ, ϕ) 4π 0 0 (R r0) sin θ dθdϕ, {R + r0 Rr 0 [cos θ cos θ 0 + sin θ sin θ 0 cos(ϕ ϕ 0 )]} 3/ (5.9) RB(r 0, θ 0, ϕ 0 )P 0 {u k (R, θ, ϕ)} u(5.9) k π π u(r 0, θ 0, ϕ 0 ) = R u(r, θ, ϕ) 4π 0 0 (R r0) sin θ dθdϕ. {R + r0 Rr 0 [cos θ cos θ 0 + sin θ sin θ 0 cos(ϕ ϕ 0 )]} 3/ (5.10) upoisson ub Harnack {u k }P u P R B R. Q B R B R upoisson(4.13) u(q) = 1 R r0 4πR B R (R + r0 Rr 0 cos η) u(m)ds M. 3/ u 0u P u(q) R r 0 (R + r 0 ) 3 R r 0 (R + r 0 Rr 0 cos η) 3/ R r 0 (R r 0 ) 3, 1 u(m)ds M R r 0 1 u(q) u(m)ds 4πR B R (R + r 0 ) M R + r 0 4πR B R (R r 0 ). R r 0 (R + r 0 ) R u(p ) u(q) R + r 0 R u(p ). (5.11) (R r 0 ) 15

45 {u k } v k (5.11) v k = u k u k 1 0 (k =, 3, ). R r 0 (R + r 0 ) R v k(p ) v k (Q) R + r 0 (R r 0 ) R v k(p ). (5.1) m n(n > m) u n u m = n k=m+1 v k. (5.1) u k (Q) B R 5.3 {u k (Q)} B R u(q). {u k (P )} M lp Ml {u k } M {u k } u. D B i (i = 1,,, m)dd m i=1b i. {u k } B i P i {u k } B i (i = 1,,, m) D 5.4Harnack 5.5 (5.11) Harnack ud DC max{u} C min{u}. (5.13) D D D r. Dm r 0 r 0 r (r r 0 )r (r + r 0 ) 9, (r + r 0 )r 6. (5.14) (r r 0 ) (5.11) D r P 1 P 9 u(p 1) 6u(P ), u(p 1 ) 7u(P ). (5.15) 16

46 u D r C = (7)m (5.13) 1. Q u(p ) Q ( u(p ) = o ln 1 ), r P Q u(p )Q Q. u(p ) Q h α (0, 1] r α QP hp Qu 1 r QP α = 1. 17

47 6. Laplace u 0 n n ( ) B R R u = u(x, y, z)b R B R (x, y, z) u(x, y, z) > u(x 0, y 0, z 0 ), (6.1) P 0 : (x 0, y 0, z 0 ) B R u(x, y, z)p 0 γ γ P 0 P 0 u γ > 0. (6.) B R up 0 P 0 u 0. γ a v(x, y, z) = exp{ a(x + y + z )} exp{ ar }, (6.3) (i) B R x + y + z = R v 0 (ii) { } (x, y, z) R 4 x + y + z R v a v > 0. v = [ 6a + 4a (x + y + z ) ] exp{ a(x + y + z )}. 1

48 x + y + z 1 4 R, a (a > 6/R ) v > 0. v (iii) v dv r > 0 dv dr dr < 0 B R : x + y + z = R P 0 v γ = dv cos ( γ, r) > 0. (6.4) dr w(x, y, z) = u(x, y, z) εv(x, y, z) u(x 0, y 0, z 0 ). (6.5) ε > 0 w(x, y, z) 0, (x, y, z). (6.6) x + y + z = R 4 u(x, y, z) > u(x 0, y 0, z 0 ) ε > 0 w w > 0 x + y + z = R w > 0. w = ε v < 0, w = B R B R w 0 (6.6) (6.5)(6.6) w(x, y, z) 0 = w(x 0, y 0, z 0 ), (x, y, z). P 0 (6.4) w γ 0, u γ ε v γ u γ 0. ε v γ > 0.

49 (6.) 6. Γ P B P P Γ u(x, y, z)p 0 Γ () P 0 u u n n ( ) P0 B P0 P 0 Γ u(x, y, z) u B P0 u P u n P 0 Γ u u ( u) n < 0 u > 0. n 6. Laplace Laplace Laplace Neumann u = u x + u y + u z = 0 u n = g. (6.7) (6.7) u (6.7)u + c(c )(6.7) (6.7) Laplace Neumann u 1 u (6.7)u = u 1 u u = u n = 0. u 3

50 (P 0 )6.uP 0 u n < 0. P0 u n = 0 u Laplace Neumann R 3 P ( c = R 3 \ ) B P 6.1 c B P P c 6.1. c. u = u x + u y + u z = 0, x R3 \, u ν = g, u 0 ( r = (6.8) x + y + z ), ν c g 6.4 (6.8) (6.8)u 1 u. u = u 1 u u ν = 0, (6.9) u c c r u u 0. uε > 0 RR B R P u(p ) ε. (6.10) 4

51 B R R. R u. u R 6.u u B R (6.10) R u ε. ε c u Laplace C () C 1 () Poisson u C () C 1 () u = 0 u n = 0 u E(u) = 1 [ ( u ) ( ) ( ) ] u u + + dxdydz x y z = 1 [ x ( u u x ) + y ( u u y u Green E(u) = 1 ) + z u u n ds. ( u u ) ] u u dxdydz. z u = 0 u n = 0. E(u) = 0, u x = u y = u z = 0, u. (6.11) u = 0 u 0, Poisson C () C 1 () (6.11)Poisson 5

52 ( σu) u n + = f (σ > 0) 3. (i) (iii) v(x, y, z) x + y + z R v > 0. 6

5 (Green) δ

5 (Green) δ 2.............................. 2.2............................. 3.3............................. 3.4........................... 3.5...................... 4.6............................. 4.7..............................

More information

微积分 授课讲义

微积分 授课讲义 2018 10 aiwanjun@sjtu.edu.cn 1201 / 18:00-20:20 213 14:00-17:00 I II Taylor : , n R n : x = (x 1, x 2,..., x n ) R; x, x y ; δ( ) ; ; ; ; ; ( ) ; ( / ) ; ; Ů(P 1,δ) P 1 U(P 0,δ) P 0 Ω P 1: 1.1 ( ). Ω

More information

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P.

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P. () * 3 6 6 3 9 4 3 5 8 6 : 3. () ; () ; (3) (); (4) ; ; (5) ; ; (6) ; (7) (); (8) (, ); (9) ; () ; * Email: huangzh@whu.edu.cn . () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) :

More information

koji-13.dvi

koji-13.dvi 26 13 1, 2, 3, 4, 5, 6, 7 1 18 1. xy D D = {(x, y) y 2 x 4 y 2,y } x + y2 dxdy D 2 y O 4 x 2. xyz D D = {(x, y, z) x 1, y x 2, z 1, y+ z x} D 3. [, 1] [, 1] (, ) 2 f (1)

More information

DS Ω(1.1)t 1 t 2 Q = t2 t 1 { S k(x, y, z) u } n ds dt, (1.2) u us n n (t 1, t 2 )u(t 1, x, y, z) u(t 2, x, y, z) Ω ν(x, y, z)ρ(x, y, z)[u(t 2, x, y,

DS Ω(1.1)t 1 t 2 Q = t2 t 1 { S k(x, y, z) u } n ds dt, (1.2) u us n n (t 1, t 2 )u(t 1, x, y, z) u(t 2, x, y, z) Ω ν(x, y, z)ρ(x, y, z)[u(t 2, x, y, u = u(t, x 1, x 2,, x n ) u t = k u kn = 1 n = 3 n = 3 Cauchy ()Fourier Li-Yau Hanarck tcauchy F. JohnPartial Differential Equations, Springer-Verlag, 1982. 1. 1.1 Du(t, x, y, z)d(x, y, z) t Fourier dtn

More information

E = B B = B = µ J + µ ε E B A A E B = B = A E = B E + A ϕ E? = ϕ E + A = E + A = E + A = ϕ E = ϕ A E E B J A f T = f L =.2 A = B A Aϕ A A = A + ψ ϕ ϕ

E = B B = B = µ J + µ ε E B A A E B = B = A E = B E + A ϕ E? = ϕ E + A = E + A = E + A = ϕ E = ϕ A E E B J A f T = f L =.2 A = B A Aϕ A A = A + ψ ϕ ϕ .................................2.......................... 2.3.......................... 2.4 d' Alembet...................... 3.5......................... 4.6................................... 5 2 5

More information

Ζ # % & ( ) % + & ) / 0 0 1 0 2 3 ( ( # 4 & 5 & 4 2 2 ( 1 ) ). / 6 # ( 2 78 9 % + : ; ( ; < = % > ) / 4 % 1 & % 1 ) 8 (? Α >? Β? Χ Β Δ Ε ;> Φ Β >? = Β Χ? Α Γ Η 0 Γ > 0 0 Γ 0 Β Β Χ 5 Ι ϑ 0 Γ 1 ) & Ε 0 Α

More information

! # % & ( & # ) +& & # ). / 0 ) + 1 0 2 & 4 56 7 8 5 0 9 7 # & : 6/ # ; 4 6 # # ; < 8 / # 7 & & = # < > 6 +? # Α # + + Β # Χ Χ Χ > Δ / < Ε + & 6 ; > > 6 & > < > # < & 6 & + : & = & < > 6+?. = & & ) & >&

More information

untitled

untitled 4 y l y y y l,, (, ) ' ( ) ' ( ) y, y f ) ( () f f ( ) (l ) t l t lt l f ( t) f ( ) t l f ( ) d (l ) C f ( ) C, f ( ) (l ) L y dy yd π y L y cosθ, π θ : siθ, π yd dy L [ cosθ cosθ siθ siθ ] dθ π π π si

More information

untitled

untitled arctan lim ln +. 6 ( + ). arctan arctan + ln 6 lim lim lim y y ( ln ) lim 6 6 ( + ) y + y dy. d y yd + dy ln d + dy y ln d d dy, dy ln d, y + y y dy dy ln y+ + d d y y ln ( + ) + dy d dy ln d dy + d 7.

More information

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! ! # # % & ( ) ! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) 0 + 1 %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! # ( & & 5)6 %+ % ( % %/ ) ( % & + %/

More information

lim f(x) lim g(x) 0, lim f(x) g(x),

lim f(x) lim g(x) 0, lim f(x) g(x), 2016 11 14 1 15 lim f(x) lim g(x) 0, lim f(x) g(x), 0 0. 2 15 1 f(x) g(x) (1). lim x a f(x) = lim x a g(x) = 0; (2). a g (x) f (x) (3). lim ( ). x a g (x) f(x) lim x a g(x) = lim f (x) x a g (x). 3 15

More information

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. ! # !! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. #! % & & ( ) # (!! /! / + ) & %,/ #! )!! / & # 0 %#,,. /! &! /!! ) 0+(,, # & % ) 1 # & /. / & %! # # #! & & # # #. ).! & #. #,!! 2 34 56 7 86 9

More information

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε ! #!! % & ( ) +,. /. 0,(,, 2 4! 6! #!!! 8! &! % # & # &! 9 8 9 # : : : : :!! 9 8 9 # #! %! ; &! % + & + & < = 8 > 9 #!!? Α!#!9 Α 8 8!!! 8!%! 8! 8 Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :!

More information

&! +! # ## % & #( ) % % % () ) ( %

&! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % ,. /, / 0 0 1,! # % & ( ) + /, 2 3 4 5 6 7 8 6 6 9 : / ;. ; % % % % %. ) >? > /,,

More information

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π ! # % & ( ) + (,. /0 +1, 234) % 5 / 0 6/ 7 7 & % 8 9 : / ; 34 : + 3. & < / = : / 0 5 /: = + % >+ ( 4 : 0, 7 : 0,? & % 5. / 0:? : / : 43 : 2 : Α : / 6 3 : ; Β?? : Α 0+ 1,4. Α? + & % ; 4 ( :. Α 6 4 : & %

More information

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 = !! % & ( & ),,., / 0 1. 0 0 3 4 0 5 3 6!! 7 8 9 8!! : ; < = > :? Α 4 8 9 < Β Β : Δ Ε Δ Α = 819 = Γ 8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε 8 9 0 Μ Ε 8 > 9 8 9 = 8 9 = 819 8 9 =

More information

3 35. f (x), x dy y, lim dx x (fluxion).,, dy dx (differential quotient), (differential coefficient)., dérivée. y = f(x), y/ x (x, y) (x + x, y + y),

3 35. f (x), x dy y, lim dx x (fluxion).,, dy dx (differential quotient), (differential coefficient)., dérivée. y = f(x), y/ x (x, y) (x + x, y + y), 2 3 x y = f(x). x, x y, y, x x = x, y x = y y x x y x x. y y = y. x, x, y lim x 0 x, y = f(x) x, dy dx., x, y. h x, dy dx = lim h 0 f(x + h) f(x). h, y = f(x) x. f(x) x, f(x)., dy dx x, f(x), f (x). dy

More information

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7 !! # & ( ) +,. )/ 0 1, 2 ) 3, 4 5. 6 7 87 + 5 1!! # : ;< = > < < ;?? Α Β Χ Β ;< Α? 6 Δ : Ε6 Χ < Χ Α < Α Α Χ? Φ > Α ;Γ ;Η Α ;?? Φ Ι 6 Ε Β ΕΒ Γ Γ > < ϑ ( = : ;Α < : Χ Κ Χ Γ? Ε Ι Χ Α Ε? Α Χ Α ; Γ ;

More information

u -, θ = 0, k gu = 2 ln E v, v -, θ = π 2, k gv = dθ 2 E. 2. r(u, v) = {a cos u cos v, a cos u sin v, a sin u} k g = sin u dv, θ. E = a 2, F = 0, = a

u -, θ = 0, k gu = 2 ln E v, v -, θ = π 2, k gv = dθ 2 E. 2. r(u, v) = {a cos u cos v, a cos u sin v, a sin u} k g = sin u dv, θ. E = a 2, F = 0, = a 202.. : r = r(u, v) u v, dv = 0, = 0, = ; E dv =. ( k gu = Γ 2 k gv = Γ 22 ( dv ) 3 E F E F 2 = Γ 2 2 E E, ) 3 E F 2 = Γ 22 E F 2., F = 0 E F k gu = Γ 2 2 E E = 2EF u EE v + F E u E F 2 2(E F 2 ) E E =

More information

WL100014ZW.PDF

WL100014ZW.PDF A Z 1 238 H U 1 92 1 2 3 1 1 1 H H H 235 238 92 U 92 U 1.1 2 1 H 3 1 H 3 2 He 4 2 He 6 3 Hi 7 3 Hi 9 4 Be 10 5 B 2 1.113MeV H 1 4 2 He B/ A =7.075MeV 4 He 238 94 Pu U + +5.6MeV 234 92 2 235 U + 200MeV

More information

Cauchy Duhamel Cauchy Cauchy Poisson Cauchy 1. Cauchy Cauchy ( Duhamel ) u 1 (t, x) u tt c 2 u xx = f 1 (t, x) u 2 u tt c 2 u xx = f 2 (

Cauchy Duhamel Cauchy Cauchy Poisson Cauchy 1. Cauchy Cauchy ( Duhamel ) u 1 (t, x) u tt c 2 u xx = f 1 (t, x) u 2 u tt c 2 u xx = f 2 ( Cauchy Duhamel Cauchy CauchyPoisson Cauchy 1. Cauchy Cauchy ( Duhamel) 1.1.......... u 1 (t, x) u tt c 2 u xx = f 1 (t, x) u 2 u tt c 2 u xx = f 2 (t, x) 1 C 1 C 2 u(t, x) = C 1 u 1 (t, x) + C 2 u 2 (t,

More information

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! # &!! ) ( +, ., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! 2 2 & & 1 3! 3, 4 45!, 2! # 1 # ( &, 2 &, # 7 + 4 3 ) 8. 9 9 : ; 4 ), 1!! 4 4 &1 &,, 2! & 1 2 1! 1! 1 & 2, & 2 & < )4 )! /! 4 4 &! &,

More information

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5,

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5, # # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( 0 2 3 ( & +. 4 / &1 5, !! & 6 7! 6! &1 + 51, (,1 ( 5& (5( (5 & &1 8. +5 &1 +,,( ! (! 6 9/: ;/:! % 7 3 &1 + ( & &, ( && ( )

More information

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02 ! # % & ( ) +, ) %,! # % & ( ( ) +,. / / 01 23 01 4, 0/ / 5 0 , ( 6 7 8! 9! (, 4 : : ; 0.!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ 5 3 3 5 3 1 Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / 3 0 0 / < 5 02 Ν!.! %) / 0

More information

WL100079ZW.PDF

WL100079ZW.PDF ε I x = r + R + R + R g o x = R ε + v v 2 v1 a = = t t t 2 1 R x { ( 1) ( 2)" " ( 3) ( 4), ( 5)" " ( 6) ( 7) ( 8)" " ( 9) ( 10) ( 11) ( 12) ( 13) ( 14) ( 15) ( 17) {

More information

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ; ! #! % & ( ) +!, + +!. / 0 /, 2 ) 3 4 5 6 7 8 8 8 9 : 9 ;< 9 = = = 4 ) > (/?08 4 ; ; 8 Β Χ 2 ΔΔ2 4 4 8 4 8 4 8 Ε Φ Α, 3Γ Η Ι 4 ϑ 8 4 ϑ 8 4 8 4 < 8 4 5 8 4 4

More information

《分析化学辞典》_数据处理条目_1.DOC

《分析化学辞典》_数据处理条目_1.DOC 3 4 5 6 7 χ χ m.303 B = f log f log C = m f = = m = f m C = + 3( m ) f = f f = m = f f = n n m B χ α χ α,( m ) H µ σ H 0 µ = µ H σ = 0 σ H µ µ H σ σ α H0 H α 0 H0 H0 H H 0 H 0 8 = σ σ σ = ( n ) σ n σ /

More information

Π Ρ! #! % & #! (! )! + %!!. / 0% # 0 2 3 3 4 7 8 9 Δ5?? 5 9? Κ :5 5 7 < 7 Δ 7 9 :5? / + 0 5 6 6 7 : ; 7 < = >? : Α8 5 > :9 Β 5 Χ : = 8 + ΑΔ? 9 Β Ε 9 = 9? : ; : Α 5 9 7 3 5 > 5 Δ > Β Χ < :? 3 9? 5 Χ 9 Β

More information

m0 m = v2 1 c 2 F G m m 1 2 = 2 r m L T = 2 π ( m g 4 ) m m = 1 F AC F BC r F r F l r = sin sinl l F = h d G + S 2 = t v h = t 2 l = v 2 t t h = v = at v = gt t 1 l 1 a t g = t sin α 1 1 a = gsinα

More information

4 A C n n, AA = A A, A,,, Hermite, Hermite,, A, A A, A, A 4 (, 4,, A A, ( A C n n, A A n, 4 A = (a ij n n, λ, λ,, λ n A n n ( (Schur λ i n

4 A C n n, AA = A A, A,,, Hermite, Hermite,, A, A A, A, A 4 (, 4,, A A, ( A C n n, A A n, 4 A = (a ij n n, λ, λ,, λ n A n n ( (Schur λ i n ,?,,, A, A ( Gauss m n A B P Q ( Ir B = P AQ r(a = r, A Ax = b P Ax = P b, x = Qy, ( Ir y = P b (4 (4, A A = ( P Ir Q,,, Schur, Cholesky LU, ( QR,, Schur,, (,,, 4 A AA = A A Schur, U U AU = T AA = A A

More information

& & ) ( +( #, # &,! # +., ) # % # # % ( #

& & ) ( +( #, # &,! # +., ) # % # # % ( # ! # % & # (! & & ) ( +( #, # &,! # +., ) # % # # % ( # Ι! # % & ( ) & % / 0 ( # ( 1 2 & 3 # ) 123 #, # #!. + 4 5 6, 7 8 9 : 5 ; < = >?? Α Β Χ Δ : 5 > Ε Φ > Γ > Α Β #! Η % # (, # # #, & # % % %+ ( Ι # %

More information

untitled

untitled 4 6 4 4 ( n ) f( ) = lim n n +, f ( ) = = f( ) = ( ) ( n ) f( ) = lim = lim n = = n n + n + n f ( ), = =,, lim f ( ) = lim = f() = f ( ) y ( ) = t + t+ y = t t +, y = y( ) dy dy dt t t = = = = d d t +

More information

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 / ! # %& ( %) & +, + % ) # % % ). / 0 /. /10 2 /3. /!. 4 5 /6. /. 7!8! 9 / 5 : 6 8 : 7 ; < 5 7 9 1. 5 /3 5 7 9 7! 4 5 5 /! 7 = /6 5 / 0 5 /. 7 : 6 8 : 9 5 / >? 0 /.? 0 /1> 30 /!0 7 3 Α 9 / 5 7 9 /. 7 Β Χ9

More information

ü ü ö ä r xy = = ( x x)( y y) ( x x) ( y y) = = x y x = x = y = y rxy x y = Lxy = x x y y = xy x y ( )( ) = = = = Lxx = x x = x x x ( ) = = = Lyy = y y = y y ( ) = = = r xy Lxy = ( ) L L xx yy 0

More information

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 & ! # % & ( ) % + ),. / & 0 1 + 2. 3 ) +.! 4 5 2 2 & 5 0 67 1) 8 9 6.! :. ;. + 9 < = = = = / >? Α ) /= Β Χ Β Δ Ε Β Ε / Χ ΦΓ Χ Η Ι = = = / = = = Β < ( # % & ( ) % + ),. > (? Φ?? Γ? ) Μ

More information

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9, ! # !! )!!! +,./ 0 1 +, 2 3 4, 23 3 5 67 # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, 2 6 65, 2 6 9, 2 3 9, 2 6 9, 2 6 3 5 , 2 6 2, 2 6, 2 6 2, 2 6!!!, 2, 4 # : :, 2 6.! # ; /< = > /?, 2 3! 9 ! #!,!!#.,

More information

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! < ! # % ( ) ( +, +. ( / 0 1) ( 2 1 1 + ( 3 4 5 6 7! 89 : ; 8 < ; ; = 9 ; ; 8 < = 9! ; >? 8 = 9 < : ; 8 < ; ; = 9 8 9 = : : ; = 8 9 = < 8 < 9 Α 8 9 =; %Β Β ; ; Χ ; < ; = :; Δ Ε Γ Δ Γ Ι 8 9 < ; ; = < ; :

More information

ο HOH 104 31 O H 0.9568 A 1 1 109 28 1.01A ο Q C D t z = ρ z 1 1 z t D z z z t Qz = 1 2 z D z 2 2 Cl HCO SO CO 3 4 3 3 4 HCO SO 2 3 65 2 1 F0. 005H SiO0. 032M 0. 38 T4 9 ( K + Na) Ca 6 0 2 7 27 1-9

More information

1. PDE u(x, y, ) PDE F (x, y,, u, u x, u y,, u xx, u xy, ) = 0 (1) F x, y,,uu (solution) u (1) u(x, y, )(1)x, y, Ω (1) x, y, u (1) u Ω x, y, Ωx, y, (P

1. PDE u(x, y, ) PDE F (x, y,, u, u x, u y,, u xx, u xy, ) = 0 (1) F x, y,,uu (solution) u (1) u(x, y, )(1)x, y, Ω (1) x, y, u (1) u Ω x, y, Ωx, y, (P 2008.9-2008.12 Laplace Li-Yau s Harnack inequality Cauchy Cauchy-Kowalevski H. Lewy Open problems F. John, Partial Differential Equations, Springer-Verlag, 1982. 2002 2008 1 1. PDE u(x, y, ) PDE F (x,

More information

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι ! # % & ( ) +,& ( + &. / 0 + 1 0 + 1,0 + 2 3., 0 4 2 /.,+ 5 6 / 78. 9: ; < = : > ; 9? : > Α

More information

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η 1 )/ 2 & +! # % & ( ) +, + # # %. /& 0 4 # 5 6 7 8 9 6 : : : ; ; < = > < # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ #

More information

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+ ! #! &!! # () +( +, + ) + (. ) / 0 1 2 1 3 4 1 2 3 4 1 51 0 6. 6 (78 1 & 9!!!! #!! : ;!! ? &! : < < &? < Α!!&! : Χ / #! : Β??. Δ?. ; ;

More information

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ ( ! # %! & (!! ) +, %. ( +/ 0 1 2 3. 4 5 6 78 9 9 +, : % % : < = % ;. % > &? 9! ) Α Β% Χ %/ 3. Δ 8 ( %.. + 2 ( Φ, % Γ Η. 6 Γ Φ, Ι Χ % / Γ 3 ϑκ 2 5 6 Χ8 9 9 Λ % 2 Χ & % ;. % 9 9 Μ3 Ν 1 Μ 3 Φ Λ 3 Φ ) Χ. 0

More information

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, )

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) ! # % & # % ( ) & + + !!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) 6 # / 0 1 + ) ( + 3 0 ( 1 1( ) ) ( 0 ) 4 ( ) 1 1 0 ( ( ) 1 / ) ( 1 ( 0 ) ) + ( ( 0 ) 0 0 ( / / ) ( ( ) ( 5 ( 0 + 0 +

More information

untitled

untitled 梦飞翔考研工作室友情提供 QQ:83659 000 () d. 0. 000 d d t tdt si cos 0 0 0 + y + 3z (,, ). y + z. 6 F, y, z + y + 3z F F F y z (,,),,, y (,,),, 8, z (,,),, 6. y + z 6 3 y + 3y 0. C y C +. 梦飞翔考研工作室 QQ:83 p y p C 3.

More information

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 = ! # % # & ( ) % # ( +, & % # ) % # (. / ). 1 2 3 4! 5 6 4. 7 8 9 4 : 2 ; 4 < = = 2 >9 3? & 5 5 Α Α 1 Β ΧΔ Ε Α Φ 7 Γ 9Η 8 Δ Ι > Δ / ϑ Κ Α Χ Ε ϑ Λ ϑ 2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ!

More information

AU = U λ c 2 c 3 c n C C n,, n U 2 U2 C U 2 = B = b 22 b 23 b 2n b 33 b 3n b nn U = U ( U 2, U AU = = = ( ( U 2 U 2 U AU ( U2 λ λ d 2 d 3 d n b 22 b 2

AU = U λ c 2 c 3 c n C C n,, n U 2 U2 C U 2 = B = b 22 b 23 b 2n b 33 b 3n b nn U = U ( U 2, U AU = = = ( ( U 2 U 2 U AU ( U2 λ λ d 2 d 3 d n b 22 b 2 Jordan, A m? (264(, A A m, A (, P P AP = D, A m = P D m P, P AP 837, Jacobi (, ( Jacobi,, Schur 24 Cayley-Hamilton 25,, A m Schur Jordan 26 Schur : 3 (Schur ( A C n n, U U AU = B, (3 B A n n =, n, n λ

More information

stexb08.dvi

stexb08.dvi B 1 1.1 V N 1 H = p 2 i 2m i 1. Z = β =(k B T ) 1. 1 h 3N N! exp( βh)d p 1 d p N d x 1 x N 2. F ( F = k B T log Z ) 3. ( ) F p = V T 1.2 H μ μh μh N H T 1. Z Z 1 N Z 1 Z 2. F S ( ) F S = T 3. U = F + TS

More information

PowerPoint Presentation

PowerPoint Presentation 1 1 2 3 4 2 2004 20044 2005 2006 5 2007 5 20085 20094 2010 4.. 20112116. 3 4 1 14 14 15 15 16 17 16 18 18 19 19 20 21 17 20 22 21 23 5 15 1 2 15 6 1.. 2 2 1 y = cc y = x y = x y =. x. n n 1 C = 0 C ( x

More information

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2 ! # %!% # ( % ) + %, ). ) % %(/ / %/!! # %!! 0 1 234 5 6 2 7 8 )9!2: 5; 1? = 4!! > = 5 4? 2 Α 7 72 1 Α!.= = 54?2 72 1 Β. : 2>7 2 1 Χ! # % % ( ) +,.

More information

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π ! # #! % & ( ) % # # +, % #. % ( # / ) % 0 1 + ) % 2 3 3 3 4 5 6 # 7 % 0 8 + % 8 + 9 ) 9 # % : ; + % 5! + )+)#. + + < ) ( # )# < # # % 0 < % + % + < + ) = ( 0 ) # + + # % )#!# +), (? ( # +) # + ( +. #!,

More information

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α Ε! # % & ( )%! & & + %!, (./ 0 1 & & 2. 3 &. 4/. %! / (! %2 % ( 5 4 5 ) 2! 6 2! 2 2. / & 7 2! % &. 3.! & (. 2 & & / 8 2. ( % 2 & 2.! 9. %./ 5 : ; 5. % & %2 2 & % 2!! /. . %! & % &? & 5 6!% 2.

More information

9. =?! > = 9.= 9.= > > Η 9 > = 9 > 7 = >!! 7 9 = 9 = Σ >!?? Υ./ 9! = 9 Σ 7 = Σ Σ? Ε Ψ.Γ > > 7? >??? Σ 9

9. =?! > = 9.= 9.= > > Η 9 > = 9 > 7 = >!! 7 9 = 9 = Σ >!?? Υ./ 9! = 9 Σ 7 = Σ Σ? Ε Ψ.Γ > > 7? >??? Σ 9 ! # %& ( %) & +, + % ) # % % )./ 0 12 12 0 3 4 5 ). 12 0 0 61 2 0 7 / 94 3 : ;< = >?? = Α Β Β Β Β. Β. > 9. Δ Δ. Ε % Α % Φ. Β.,,.. Δ : : 9 % Γ >? %? >? Η Ε Α 9 Η = / : 2Ι 2Ι 2Ι 2Ι. 1 ϑ : Κ Λ Μ 9 : Ν Ο 0

More information

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ ! # % & & ( ) +, %. % / 0 / 2 3! # 4 ) 567 68 5 9 9 : ; > >? 3 6 7 : 9 9 7 4! Α = 42 6Β 3 Χ = 42 3 6 3 3 = 42 : 0 3 3 = 42 Δ 3 Β : 0 3 Χ 3 = 42 Χ Β Χ 6 9 = 4 =, ( 9 6 9 75 3 6 7 +. / 9

More information

2007 GRE Math-Sub Nov 3, 2007 Test time: 170 minutes

2007 GRE Math-Sub Nov 3, 2007 Test time: 170 minutes 2007 GRE Math-Sub Nov 3, 2007 Test time: 170 minutes ... zqs... 10 66 60... fz zqs vonneumann vonneumann sub... Bless by Luobo June 21, 2008 1. 2. g(x) = e 2x+1, cos 3x 1 lim x 0 x 2 g(g(x)) g(e) lim x

More information

1 2 1.1............................ 2 1.2............................... 3 1.3.................... 3 1.4 Maxwell.................... 3 1.5.......................... 4 1.6............................ 4

More information

untitled

untitled + lim = + + lim = + lim ( ) + + + () f = lim + = + = e cos( ) = e f + = e cos = e + e + + + sin + = = = = = + = + cos d= () ( sin ) 8 cos sin cos = ( ) ( sin ) cos + d= ( + ) = cos sin cos d sin d 4 =

More information

; < 5 6 => 6 % = 5

; < 5 6 => 6 % = 5 ! # % ( ),,. / 0. 1, ) 2 3, 3+ 3 # 4 + % 5 6 67 5 6, 8 8 5 6 5 6 5 6 5 6 5 6 5 9! 7 9 9 6 : 6 ; 7 7 7 < 5 6 => 6 % = 5 Δ 5 6 ; Β ;? # Ε 6 = 6 Α Ε ; ; ; ; Φ Α Α Ε 0 Α Α Α Α Α Α Α Α Α Α Α Α Α Β Α Α Α Α Α

More information

-2 4 - cr 5 - 15 3 5 ph 6.5-8.5 () 450 mg/l 0.3 mg/l 0.1 mg/l 1.0 mg/l 1.0 mg/l () 0.002 mg/l 0.3 mg/l 250 mg/l 250 mg/l 1000 mg/l 1.0 mg/l 0.05 mg/l 0.05 mg/l 0.01 mg/l 0.001 mg/l 0.01 mg/l () 0.05 mg/l

More information

3978 30866 4 3 43 [] 3 30 4. [] . . 98 .3 ( ) 06 99 85 84 94 06 3 0 3 9 3 0 4 9 4 88 4 05 5 09 5 8 5 96 6 9 6 97 6 05 7 7 03 7 07 8 07 8 06 8 8 9 9 95 9 0 05 0 06 30 0 .5 80 90 3 90 00 7 00 0 3

More information

( )

( ) ( ) * 22 2 29 2......................................... 2.2........................................ 3 3..................................... 3.2.............................. 3 2 4 2........................................

More information

: ; # 7 ( 8 7

: ; # 7 ( 8 7 (! # % & ( ) +,. / +. 0 0 ) 1. 2 3 +4 1/,5,6 )/ ) 7 7 8 9 : ; 7 8 7 # 7 ( 8 7 ; ;! #! % & % ( # ) % + # # #, # % + &! #!. #! # # / 0 ( / / 0! #,. # 0(! #,. # 0!. # 0 0 7 7 < = # ; & % ) (, ) ) ) ) ) )!

More information

996,,,,,,, 997 7, 40 ; 998 4,,, 6, 8, 3, 5, ( ),, 3,,, ;, ;,,,,,,,,,

996,,,,,,, 997 7, 40 ; 998 4,,, 6, 8, 3, 5, ( ),, 3,,, ;, ;,,,,,,,,, ,, AB,, ( CIP) /, 000 ( /, ) ISBN 704009448 F47 CIP ( 000) 86786 55 00009 0064054588 ht tp www hep edu cn ht tp www hep com cn 006404048 787960/ 6 05 370 000 730,, 996,,,,,,, 997 7, 40 ; 998 4,,, 6, 8,

More information

= > : ; < ) ; < ; < ; : < ; < = = Α > : Β ; < ; 6 < > ;: < Χ ;< : ; 6 < = 14 Δ Δ = 7 ; < Ε 7 ; < ; : <, 6 Φ 0 ; < +14 ;< ; < ; 1 < ; <!7 7

= > : ; < ) ; < ; < ; : < ; < = = Α > : Β ; < ; 6 < > ;: < Χ ;< : ; 6 < = 14 Δ Δ = 7 ; < Ε 7 ; < ; : <, 6 Φ 0 ; < +14 ;< ; < ; 1 < ; <!7 7 ! # % # & ( & ) # +,,., # / 0 1 3. 0. 0/! 14 5! 5 6 6 7 7 7 7 7! 7 7 7 7 7 7 8 9 : 6! ; < ; < ; : 7 7 : 7 < ;1< = = : = >? ) : ; < = > 6 0 0 : ; < ) ; < ; < ; : < ; < = = 7 7 7 Α > : Β ; < ; 6 < > ;:

More information

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % #! # # %! # + 5 + # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % ,9 989 + 8 9 % % % % # +6 # % 7, # (% ) ,,? % (, 8> % %9 % > %9 8 % = ΑΒ8 8 ) + 8 8 >. 4. ) % 8 # % =)= )

More information

非线性系统控制理论

非线性系统控制理论 AIsdo 985 5 6 Fobeus Albeo Isdo Nolea Cool Ssems Spe-Vela 989 He Njmeje Aja Va de Sca Nolea Damcal Cool Ssems Spe-Vela 99 988 4 99 5 99 6J-JESloe 99 7 988 4 6 5 8 6 8 7 8 9 4 9 9 9 4 5 6 7 Dsbuos 8 Fobeus

More information

Β Χ + Δ Ε /4 10 ) > : > 8 / 332 > 2 / 4 + Φ + Γ 0 4 Η / 8 / 332 / 2 / 4 + # + Ι + ϑ /) 5 >8 /3 2>2 / 4 + ( )( + 8 ; 8 / 8. 8 :

Β Χ + Δ Ε /4 10 ) > : > 8 / 332 > 2 / 4 + Φ + Γ 0 4 Η / 8 / 332 / 2 / 4 + # + Ι + ϑ /) 5 >8 /3 2>2 / 4 + ( )( + 8 ; 8 / 8. 8 : !! # % & % () + (. / 0 ) 1 233 /. / 4 2 0 2 + + 5. 2 / 6 ) 6. 0 ) 7. 8 1 6 / 2 9 2 :+ ; < 8 10 ; + + ( =0 41 6< / >0 7 0?2) 29 + +.. 81 6> Α 29 +8 Β Χ + Δ Ε /4 10 )+ 2 +. 8 1 6 > 2 9 2 : > 8 / 332 > 2

More information

( ) (! +)! #! () % + + %, +,!#! # # % + +!

( ) (! +)! #! () % + + %, +,!#! # # % + +! !! # % & & & &! # # % ( ) (! +)! #! () % + + %, +,!#! # # % + +! ! %!!.! /, ()!!# 0 12!# # 0 % 1 ( ) #3 % & & () (, 3)! #% % 4 % + +! (!, ), %, (!!) (! 3 )!, 1 4 ( ) % % + % %!%! # # !)! % &! % () (! %

More information

8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, ; > 8? : 5 4 +? Α > 6 + > 3, > 5 <? 9 5 < =, Β >5

8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, ; > 8? : 5 4 +? Α > 6 + > 3, > 5 <? 9 5 < =, Β >5 0 ( 1 0 % (! # % & ( ) + #,. / / % (! 3 4 5 5 5 3 4,( 7 8 9 /, 9 : 6, 9 5,9 8,9 7 5,9!,9 ; 6 / 9! # %#& 7 8 < 9 & 9 9 : < 5 ( ) 8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, 5 4

More information

Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3 Ε Φ Γ ΕΙΙ 3 Χ 3 Φ 4 Κ? 4 3 Χ Λ Μ 3 Γ Ε Φ ) Μ Ε Φ? 5 : < 6 5 % Λ < 6 5< > 6! 8 8 8! 9 9 9! 9 =! = 9!

Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3 Ε Φ Γ ΕΙΙ 3 Χ 3 Φ 4 Κ? 4 3 Χ Λ Μ 3 Γ Ε Φ ) Μ Ε Φ? 5 : < 6 5 % Λ < 6 5< > 6! 8 8 8! 9 9 9! 9 =! = 9! # %!!! ( ) ( +, +. ( / 0 1) ( 21 1) ( 2 3 / 4!! 5 6 7 7! 8 8 9 : ; < 9 = < < :! : = 9 ; < = 8 9 < < = 9 8 : < >? % > % > % 8 5 6 % 9!9 9 : : : 9 Α % 9 Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3

More information

4. 计 算 积 分 : ż ż βi fdl = f(x(t), y(t), z(t)) a x 1 (t) 2 + y 1 (t) 2 + z 1 (t) 2 dt L i α i ż ż βi 或 者 在 二 维 情 形 中 fdl = f(x(t), y(t)) a x 1 (t) 2 +

4. 计 算 积 分 : ż ż βi fdl = f(x(t), y(t), z(t)) a x 1 (t) 2 + y 1 (t) 2 + z 1 (t) 2 dt L i α i ż ż βi 或 者 在 二 维 情 形 中 fdl = f(x(t), y(t)) a x 1 (t) 2 + 微 积 分 B2 曲 面 曲 线 积 分 小 结 马 晓 光 2014 年 5 月 15 日 1 第 一 型 曲 线 曲 面 积 分 这 一 部 分 的 积 分 区 域 是 没 有 定 向 的 解 题 的 关 键 是 计 算 长 度 微 元 dl 和 面 积 微 元 ds 1.1 第 一 型 曲 线 积 分 积 分 区 域 是 一 条 曲 线 L, 可 以 在 二 维 平 面 内, 也 可 以 在

More information

untitled

untitled 6 + a lim = 8, a =. a l. a a + a a a a lim = lim + = e, a a a e = 8 a= l ( 6,, ), 4 y+ z = 8. + y z = ( 6,, ) 4 y z 8 a ( 6,, ) + = = { } i j k 4,,, s = 6 = i+ j k. 4 ( ) ( y ) ( z ) + y z =. + =, () y

More information

➀ ➁ ➂ ➃ Lecture on Stochastic Processes (by Lijun Bo) 2

➀ ➁ ➂ ➃ Lecture on Stochastic Processes (by Lijun Bo) 2 Stochastic Processes stoprocess@yahoo.com.cn 111111 ➀ ➁ ➂ ➃ Lecture on Stochastic Processes (by Lijun Bo) 2 (Stationary Processes) X = {X t ; t I}, n 1 t 1,..., t n I, n F n (t 1,..., t n ; x 1,..., x

More information

G(z 0 + "z) = G(z 0 ) + "z dg(z) dz z! # d" λ "G = G(z 0 ) + #cos dg(z) ( & dz ) * nv #., - d+ - - r 2 sin cosds e / r # ddr 4.r 2 #cos! "G = G(z 0 )

G(z 0 + z) = G(z 0 ) + z dg(z) dz z! # d λ G = G(z 0 ) + #cos dg(z) ( & dz ) * nv #., - d+ - - r 2 sin cosds e / r # ddr 4.r 2 #cos! G = G(z 0 ) 2005.7.21 KEK G(z 0 + "z) = G(z 0 ) + "z dg(z) dz z! # d" λ "G = G(z 0 ) + #cos dg(z) ( & dz ) * nv #., - d+ - - r 2 sin cosds e / r # ddr 4.r 2 #cos! "G = G(z 0 ) + #cos dg(z) ( & dz ) * nv 2+ + ds -

More information

υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ è é é è υυ ν ε ε è α α α α α α α α α τ E h L. ν = λ = h p Ξ v k ν pe nµ Λ ν µ ν µ ε µ π ~ n p n np ~ π N Ξ + p n o o Λ Ξ Ξ SU 3

More information

P r = 1 + ecosθ 2 V = V + V 1 2 2V1V2 cosθ 2 2 = ( V V ) + 2V V ( 1 cos θ) 1 2 1 2 40000 V = 0. 5( / ) 24 60 60 λ m = 5100A = 0.51 Å 2 u e d s 3 1 e uud udd 3 2 3 e 1 3 e V = 2 9. 8 2000 = 198 V

More information

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α # % & ( ) # +,. / 0 1 2 /0 1 0 3 4 # 5 7 8 / 9 # & : 9 ; & < 9 = = ;.5 : < 9 98 & : 9 %& : < 9 2. = & : > 7; 9 & # 3 2

More information

( )... ds.....

( )... ds..... ...... 3.1.. 3.1.. 3.1: 1775. g a m I a = m G g, (3.1) m I m G. m G /m I. m I = m G (3.2)............. 1 2............ 4.................. 4 ( )... ds..... 3.2 3 3.2 A B. t x. A B. O. t = t 0 A B t......

More information

, 13, 90, 20.,,,,..,,,.,..

, 13, 90, 20.,,,,..,,,.,.. , 13, 90, 20.,,,,..,,,.,.. ............................................. 1 1............................ 4 1.1........................... 4 1.2.......................... 4 2.................................

More information

,,,,,,., Penrose i,, i j X A {i,, i j }-, X A {, 3}-, A,3 ; A Moore- Penrose A = A,2,3,4., A 5,, Moore-Penrose A {}- A, A. m n Moore-Penrose A, {}- A,

,,,,,,., Penrose i,, i j X A {i,, i j }-, X A {, 3}-, A,3 ; A Moore- Penrose A = A,2,3,4., A 5,, Moore-Penrose A {}- A, A. m n Moore-Penrose A, {}- A, , Ax = b A m n m = n, x = A b., A, A A = UR : x = R U b 6.. A Ax = A b, A A. A = R U, A A = I n,, A, A A. n < m, AA = In m m 6..2 A n < m, AA = I m,, A = R U A. A? A, B, AB BA,., A m n F n F m. A A F m

More information

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ ! # % & ( ) % + ( ), & ). % & /. % 0 1!! 2 3 4 5# 6 7 8 3 5 5 9 # 8 3 3 2 4 # 3 # # 3 # 3 # 3 # 3 # # # ( 3 # # 3 5 # # 8 3 6 # # # # # 8 5# :;< 6#! 6 =! 6 > > 3 2?0 1 4 3 4! 6 Α 3 Α 2Η4 3 3 2 4 # # >

More information

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ ! # % & ( ) +,. / 0 1 + 2. 3 4. 56. / 7 89 8.,6 2 ; # ( ( ; ( ( ( # ? >? % > 64 5 5Α5. Α 8/ 56 5 9. > Β 8. / Χ 8 9 9 5 Δ Ε 5, 9 8 2 3 8 //5 5! Α 8/ 56/ 9. Φ ( < % < ( > < ( %! # ! Β Β? Β ( >?? >?

More information

untitled

untitled 5 55-% 8-8 8-5% - 7 7 U- lim lim u k k k u k k k k ` k u k k lim.7. 8 e e. e www.tighuatutor.com 5 79 755 [ e ] e e [ e ] e e e. --7 - u z dz d d dz u du d 8d d d d dz d d d d. 5-5 A E B BA B E B B BA

More information

M ( ) K F ( ) A M ( ) 1815 (probable error) F W ( ) J ( ) n! M ( ) T ( ) L ( ) T (171

M ( ) K F ( ) A M ( ) 1815 (probable error) F W ( ) J ( ) n! M ( ) T ( ) L ( ) T (171 1 [ ]H L E B ( ) statistics state G (150l--1576) G (1564 1642) 16 17 ( ) C B (1623 1662) P (1601--16S5) O W (1646 1716) (1654 1705) (1667--1748) (1687--H59) (1700 1782) J (1620 1674) W (1623 1687) E (1656

More information

B = F Il 1 = 1 1 φ φ φ B = k I r F Il F k I 2 = l r 2 10 = k 1 1-7 2 1 k = 2 10-7 2 B = ng Il. l U 1 2 mv = qu 2 v = 2qU m = 2 19 3 16. 10 13. 10 / 27 167. 10 5 = 5.0 10 /. r = m ν 1 qb r = m ν qb

More information

10-03.indd

10-03.indd 1 03 06 12 14 16 18 é 19 21 23 25 28 30 35 40 45 05 22 27 48 49 50 51 2 3 4 é é í 5 é 6 7 8 9 10 11 12 13 14 15 16 17 18 19 é 20 21 22 23 ü ü ü ü ü ü ü ü ü 24 ü 25 26 27 28 29 30 31 32 33 34 35 36 37 38

More information

ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν Α Γ Β 1 Α Ο Α : Α 3. / Π Ο 3 Π Θ

ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν Α Γ Β 1 Α Ο Α : Α 3. / Π Ο 3 Π Θ # % & ( ) +,& ( + &. / 0 1 2 3 ( 4 4 5 4 6 7 8 4 6 5 4 9 :.; 8 0/ ( 6 7 > 5?9 > 56 Α / Β Β 5 Χ 5.Δ5 9 Ε 8 Φ 64 4Γ Β / Α 3 Γ Β > 2 ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν 3 3 3 Α3 3

More information

新生儿护理(下).doc

新生儿护理(下).doc ...1...1...5...8...9...12...28 BB...30 17...31...38...40...43...45...46...49...52...54...57...60 I ...62...65...69...70...77...80 72...81...82...85...89...90...92...94...95...95... 101... 102... 103...

More information

7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ;

7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ; ! #! % & % ( ) ( +, & %. / & % 0 12 / 1 4 5 5! 6 7 8 7 # 8 7 9 6 8 7! 8 7! 8 7 8 7 8 7 8 7 : 8 728 7 8 7 8 7 8 7 8 7 & 8 7 4 8 7 9 # 8 7 9 ; 8 ; 69 7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β

More information

: Π Δ 9 Δ 9 Δ 9 7 Θ Μ 9 8 Ρ Σ # = Μ 0 ; 9 < = 5 Λ 6 # = = # Μ Μ 7 Τ Μ = < Μ Μ Ο = Ρ # Ο Ο Ο! Ο 5 6 ;9 5 5Μ Ο 6

: Π Δ 9 Δ 9 Δ 9 7 Θ Μ 9 8 Ρ Σ # = Μ 0 ; 9 < = 5 Λ 6 # = = # Μ Μ 7 Τ Μ = < Μ Μ Ο = Ρ # Ο Ο Ο! Ο 5 6 ;9 5 5Μ Ο 6 ! # % # & ( ) +, #,. # / 0. 0 2 3 4! 5 6 5 6 7 8 5 6 5 6 8 9 : # ; 9 < = 8 = > 5 0? 0 Α 6 Β 7 5ΧΔ ΕΦ 9Γ 6 Η 5+3? 3Ι 3 ϑ 3 6 ΗΚ Η Λ!Κ Η7 Μ ΒΜ 7 Ν!! Ο 8 8 5 9 6 : Π 5 6 8 9 9 5 6 Δ 9 Δ 9 Δ 9 7 Θ Μ 9 8 Ρ

More information

9 : : ; 7 % 8

9 : : ; 7 % 8 ! 0 4 1 % # % & ( ) # + #, ( ) + ) ( ). / 2 3 %! 5 6 7! 8 6 7 5 9 9 : 6 7 8 : 17 8 7 8 ; 7 % 8 % 8 ; % % 8 7 > : < % % 7! = = = : = 8 > > ; 7 Ε Β Β % 17 7 :! # # %& & ( ) + %&, %& ) # 8. / 0. 1 2 3 4 5

More information

08-01.indd

08-01.indd 1 02 04 08 14 20 27 31 35 40 43 51 57 60 07 26 30 39 50 56 65 65 67 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ω ρ ε 23 λ ω < 1 ω < 1 ω > 0 24 25 26 27 28 29 30 31 ρ 1 ρ σ b a x x i +3 x i

More information

% %! # % & ( ) % # + # # % # # & & % ( #,. %

% %! # % & ( ) % # + # # % # # & & % ( #,. % !!! # #! # % & % %! # % & ( ) % # + # # % # # & & % ( #,. % , ( /0 ) %, + ( 1 ( 2 ) + %, ( 3, ( 123 % & # %, &% % #, % ( ) + & &% & ( & 4 ( & # 4 % #, #, ( ) + % 4 % & &, & & # / / % %, &% ! # #! # # #

More information

untitled

untitled 1.1 1.1.1 1.1.2 A, B, C, X, Y, Z 1 a, b, c, x, y, z N, Z, Q R 1.1.3 a A a A a A a A a A a A a A b A a, b A a 1 A,, a n A a 1,, a n A 1.1.4 1.1.5 3 N 3 2 Q 2 R 3 2 N 2 Q {a 1,, a n } {,,,,,,,, }, {, } {,

More information

& &((. ) ( & ) 6 0 &6,: & ) ; ; < 7 ; = = ;# > <# > 7 # 0 7#? Α <7 7 < = ; <

& &((. ) ( & ) 6 0 &6,: & ) ; ; < 7 ; = = ;# > <# > 7 # 0 7#? Α <7 7 < = ; < ! # %& ( )! & +, &. / 0 # # 1 1 2 # 3 4!. &5 (& ) 6 0 0 2! +! +( &) 6 0 7 & 6 8. 9 6 &((. ) 6 4. 6 + ( & ) 6 0 &6,: & )6 0 3 7 ; ; < 7 ; = = ;# > 7 # 0 7#? Α

More information

% % %/ + ) &,. ) ) (!

% % %/ + ) &,. ) ) (! ! ( ) + & # % % % %/ + ) &,. ) ) (! 1 2 0 3. 34 0 # & 5 # #% & 6 7 ( ) .)( #. 8!, ) + + < ; & ; & # : 0 9.. 0?. = > /! )( + < 4 +Χ Α # Β 0 Α ) Δ. % ΕΦ 5 1 +. # Ι Κ +,0. Α ϑ. + Ι4 Β Η 5 Γ 1 7 Μ,! 0 1 0

More information

Solutions to Exercises in "Discrete Mathematics Tutorial"

Solutions to Exercises in Discrete Mathematics Tutorial 1 2 (beta 10 ) 3 SOLVED AND TEXIFIED BY 4 HONORED REVIEWER BBS (lilybbs.us) 1 2002 6 1 2003 1 2 2 ( ) (E-mail: xiaoxinpan@163.com) 3 beta 2005 11 9 ( / ) 40.97% 4 02CS chouxiaoya tedy akaru yitianxing

More information