Chapter Basic MOS Device Physics 0/4/3 Ch Device
MOS Device Structure 0/4/3 Ch Device
NMOS and PMOS with Well 0/4/3 Ch Device 3
MOS Symbols 0/4/3 Ch Device 4
MOS Channel Formation 0/4/3 Ch Device 5
I/ Characteristics 0/4/3 Ch Device 6
I/ Characteristics I = Qd v Qd = WCox(GS TH) Qd(x) = WCox(GS (x) TH) 0/4/3 Ch Device 7
L I/ Characteristics (cont.) ID = WCox[GS (x) TH]v IDdx = WCoxμn[GS (x) TH]d x =0 Given v = μe and E(x) = ID = WCox[GS (x) TH]μn DS = 0 d (x) dx d(x) dx ID = μncox W L [(GS TH)DS DS ] 0/4/3 Ch Device 8
I/ Characteristics (cont.) ID = μncox W L [(GS TH)DS DS ] 0/4/3 Ch Device 9
Operation in Triode eion ID = μncox W L [(GS TH)DS DS ] ID = μncox W L (GS TH)DS, DS << (GS TH) ON = μncox W L (GS TH) 0/4/3 Ch Device 0
Operation in Active (Saturation) eion ID = μncox W L [(GS TH)DS DS ] ' DS = GS TH (Pinch off ) ID = μncox W L (GS TH) 0/4/3 Ch Device
Active eion (cont.) Active eion 0/4/3 Ch Device
Transconductance, m m = ID GS DS cons tan t m = μncox W L ID = μncox W L (GS TH) = ID GS TH 0/4/3 Ch Device 3
Triode and Active eion Transition Active Active 0/4/3 Ch Device 4
Threshold oltae and Body Effect (cont.) TH = TH0 +γ ( ΦF + SB ) ΦF, γ = qεsinsub Cox No Body Effect With Body Effect 0/4/3 Ch Device 5
Channel Lenth Modulation L L ID = μncox W L (GS TH) ( + λds) 0/4/3 Ch Device 6
Channel Lenth Modulation (cont.) ID = μncox m = μncox W L (GS TH) ( + λds) W L (GS TH)( + λds) m = ID GS TH, (unchaned) 0/4/3 Ch Device 7
Subthreshold Conduction GS ID = I 0 exp ζ kt q DS fixed 0/4/3 Ch Device 8
MOS Layout 0/4/3 Ch Device 9
Device Capacitances 0/4/3 Ch Device 0
Layout for Low Capacitance 0/4/3 Ch Device
G-S and G-D Capacitance 0/4/3 Ch Device
MOS Small Sinal Models ro = DS ID = ID / DS = μncox W = L (GS TH) λ λid 0/4/3 Ch Device 3
Bulk Transconductance, mb mb = ID BS = μncox W L (GS TH) TH BS Also, TH BS = TH SB = γ (ΦF + SB) / mb = m γ ΦF +SB = ηm 0/4/3 Ch Device 4
Gate esistance 0/4/3 Ch Device 5
MOS Small Sinal Model with Capacitance 0/4/3 Ch Device 6
C- of NMOS 0/4/3 Ch Device 7
第三章單級放大器 0/4/3 Ch3 Sinle_stae_amp
簡目 3. 基本觀念 3. 共源極組態 3.. 負載電阻之共源極組態 3.. 負載二極體之共源極組態 3..3 負載電流源之共源極組態 3..4 負載三極管之共源極組態 3..5 源極退化之共源極組態 3.3 源極隨耦器 3.4 共閘極組態 3.5 疊接組態 3.5. 摺疊疊接組態 3.6 元件模型的選擇 0/4/3 Ch3 Sinle_stae_amp
放大器之輸入 - 輸出特性 一個放大器之輸入 - 輸出特性通常為一非線函數 n y( t) α + α x( t) + α x ( t) + + x ( ) x x x 0 α n t x 的範圍夠小時 y t) α + α x( ) ( 0 t 0/4/3 Ch3 Sinle_stae_amp 3
類比設計八邊形 0/4/3 Ch3 Sinle_stae_amp 4
負載電阻之共源極組態 Line: in-th=out out = DD out <<( in - TH ) out W = DD D μncox ( in TH ) L W out = in TH = DD D μncox ( in TH ) L out = DD D μnc X and Y axis not same scale W [( ) ox in TH out out out 0/4/3 Ch3 Sinle_stae_amp 5 = DD L on on + D DD = W + μncox D ( in TH L ] )
負載電阻之共源極組態 Line: in-th=out X and Y axis not same scale 0/4/3 Ch3 Sinle_stae_amp 6
繪出圖 3.3(a) 中 M 之汲極電流和轉導對於輸入電壓之關係圖 解 : 例題 3. m =μ n C ox (W/L) DS m =μ n C ox (W/L)( GS - TH ) W out = in TH = DD D μncox ( in TH ) L 0/4/3 Ch3 Sinle_stae_amp 7
電壓增益? out = DD D μnc ox W L ( in TH ) A v W out = = DμnCox ( in TH ) in L = m D A v = W D μncox I D = L I D μ C n ox W L D I D D fixed for next stae bias 0/4/3 Ch3 Sinle_stae_amp 8
包含輸出電阻之共源極小信號模型 r A O D v = m r O + D 0/4/3 Ch3 Sinle_stae_amp 9
例題 3. 假設圖 3.6 之 M 操作於飽和區, 計算電路之小信號電壓增益 解 : 因為 I 之阻抗為無限大, 增益將被 M 之輸出電阻所限制 :A v =- m r O 0/4/3 Ch3 Sinle_stae_amp 0
負載二極體 二極體之阻抗? (/ m ) r O / m = X I X = X /r O + m X 0/4/3 Ch3 Sinle_stae_amp
考慮基板效應之負載二極體 =- X bs=- X X ( + ) + = I r m mb X X O I X X =? = = r = I r X O X m + mb + O m + mb m + mb 0/4/3 Ch3 Sinle_stae_amp
0/4/3 Ch3 Sinle_stae_amp 3 負載二極體之共源極組態 +η = + = m m mb m m v A η η μ μ + = + = ) / ( ) / ( ) / ( ) / ( L W L W I L W C I L W C A D ox n D ox n v
負載二極體元件之電路 Cut off Saturation No need to pass (0,0) 0/4/3 Ch3 Sinle_stae_amp 4
0/4/3 Ch3 Sinle_stae_amp 5 PMOS 負載二極體元件 ) / ( TH GS ox m L W C = μ ) / ( ) ( ) / ( TH GS ox p TH GS ox n m m v L W C L W C A = = μ μ
在圖 3.3 電路中,M 偏壓於飽和區, 且其汲極電流為 I, 當電流源 I S = 0.75I 加至電路中,What is Av? 解 : = μ C ( W / L) I = μ C ( W / L) ( ) m p ox D p ox GS THP Now, I D,new =I /4 A vnew, 例題 3.3 When I D =I μ ( W / L) I μ ( W / L) Av = = μ ( W / L) I μ ( W / L) If fixin (W/L), If fixin ( GS - THP ), I I A D, new m n n m p D p m μn( W / L) I μn( W / L) I = = m μ p( W / L) I I D, new μ p ( W / L) 4, new D, new p ox, new GS THP = = = ( W / L) 4 ID μ pcox( W / L) ( GS THP) 4 m μn( W / L) I μn( W / L) I, = = m, new μ p ( W / L) I = 4 μn( W / L) 4 μn( W / L) 4A μ ( / ) p( W / L) = μ, p W L = new, new ID, new μ p( W / L), new 4 0/4/3 Ch3 Sinle_stae_amp 6 vnew μ pcox( W / L), new( GS THP) I = = 4 μ C ( W / L) ( ) I μ C ( W / L) ( ) p ox GS THP D = = I ( W / L) 4 4 μ ( W / L) μ ( W / L) n = = p A v v
負載電流源之共源極組態 A v = - m (r O r O ) 0/4/3 Ch3 Sinle_stae_amp 7
負載三極管之共源極組態 on = μ C p ox ( W / L) ( DD b THP ) 0/4/3 Ch3 Sinle_stae_amp 8
源極退化之共源極組態 線性特性 Fiure 3.6 in 增加 I D 及 s 之跨壓亦會增加 0/4/3 Ch3 Sinle_stae_amp 9
G m = 源極退化共源極組態的小信號增益 Av = out / in = ( ID / in) D md = GmD = + ID f GS ( in s ID ) f I D f = = = = ( G ) in GS in in GS in GS G A = / =? m v out in out = DD - I D D = + m m S 假設 I D =f( GS ) S s m m 0/4/3 Ch3 Sinle_stae_amp 0 m S Without r o here! ID = μncox W L (GS TH) ( + λds)
源極退化共源極組態之小信號模型推導 G m G Output short ckt current = I = I out = = m m ( r in mb I out X S I ) + out m O m m m in S + [ + ( m + mb) S] ro S + [ + ( ) ] ms m + mb + S ro 0/4/3 Ch3 Sinle_stae_amp = r out O S mb ( I out S ) I r out O S
共源極元件之汲極電流和轉導值無 / 有退化 m m = ID GS DS cons tant Iout Gm = = W in = μncox ( GS TH) Small sinal L G = + S m m S mr + [ + ( + m O mb ) S ] r O 0/4/3 Ch3 Sinle_stae_amp
源極路徑上所視之電阻 A v = + m m D S = m + D S 0/4/3 Ch3 Sinle_stae_amp 3
繪出圖 3.6 之電路小信號電壓增益 Av 和輸入偏壓電壓 i 之關係圖 解 : 例題 3.4 Fiure 3.6 A v = D + m S When s=0 0/4/3 Ch3 Sinle_stae_amp 4
例題 3.5 假設 λ=γ= 0, 計算圖 3.(a) 電路之小信號增益 解 : A v = m + D m 0/4/3 Ch3 Sinle_stae_amp 5
0/4/3 Ch3 Sinle_stae_amp 6 共源極組態之輸出電阻 X S X X S mb m X O I I I r = + + + ] ) ( [ 流經 s 之電流為 I X, = - I X s O S mb m O S O mb m O S O mb m S O S mb m out r r r r r r ] ) ( [ ) ( ] ) ( [ ] ) ( [ + + = + + + + + = + + + = X out X I = 流經 r O 之電流為 I X - ( m + mb ) =I X + ( m + mb ) s I X
對應外加汲極電壓之汲極電流變化 輸出電阻另一想法 加一電壓變量 Δ S m + mb 於輸出節點 Δ =Δ S S + ro m + mb Δ Δ I = S =Δ [ + ( + ) ] r + S m mb S O S Δ = = [ + ( + ) ] r + Exact Solu out m mb S O S 0/4/3 Ch3 ΔISinle_stae_amp 7
0/4/3 Ch3 Sinle_stae_amp 8 + + = + = D S out mb D S out in m D out bs mb m D out ro I ) ( D S out O D S out mb D S out in m O D out S D out O ro out r r r I + + = = 有限輸出阻抗之電壓增益
r o not infinite 有限輸出阻抗之電壓增益 out in = D + S + r O mro D + ( + m mb ) S r O A v mrod[ S+ ro+ ( m+ mb) SrO] = + + r + ( + ) r + r + ( + ) r D S O m mb S O S O m mb S O mro D[ S+ ro+ ( m+ mb) SrO] = S + ro + ( m + mb) SrO D + S + ro + ( m + mb) SrO = Gm( D // out) Iout mro Gm = = in S + [ + ( m + mb) S ] ro Δ = = [ + ( + ) ] r + ΔI out m mb S O S If r o lare, 0/4/3 Ch3 Sinle_stae_amp 9 A v = G m D md = + m S
例題 3.6 計算圖 3.6 電路之電壓增益, 假設 I 0 為一理想電流源 解 : A v = r m O + + r + ( + ) r D S O m mb S O D => mro 0/4/3 Ch3 Sinle_stae_amp 30
第三章 單級放大器 0/4/3 Ch3 Sinle_stae_amp
簡目 3. 基本觀念 3. 共源極組態 3.. 負載電阻之共源極組態 3.. 負載二極體之共源極組態 3..3 負載電流源之共源極組態 3..4 負載三極管之共源極組態 3..5 源極退化之共源極組態 3.3 源極隨耦器 3.4 共閘極組態 3.5 疊接組態 3.5. 摺疊疊接組態 3.6 元件模型的選擇 0/4/3 Ch3 Sinle_stae_amp
源極隨耦器 source follower in,out>>s Gain? in < TH,M 關閉且 out = 0 in > TH 時, W μ nc ox ( in TH out) S = L out 0/4/3 Ch3 Sinle_stae_amp 3
源極隨耦器之增益 W out Av = μ nc ox ( in TH out) S = out in L W TH out μ out ncox ( in TH out) S = L in in TH TH γ out / TH in = = η out = ( Φ F+ SB) = η = in out SB in W μ ( ) ncox in TH out S out = L W in + μncox ( in TH out) S ( + η) L W m = μncox ( in TH out) L S m S Av = + ( m + mb) S + ( + η) S 0/4/3 Ch3 Sinle_stae_ampm 4 = in TH out
源極隨耦器小信號等效電路 A v = m S + ( + η) S 電壓增益與輸入電壓之關係圖 0/4/3 Ch3 Sinle_stae_amp 5
電流源取代電阻之源極隨耦器 使用 NMOS 電晶體作為電流源之源極隨耦器 0/4/3 Ch3 Sinle_stae_amp 6
例題 3.7 假設在圖 3.30(a) 之源極隨耦器中,(W/L) = 0/0.5,I = 00μA, TH0 = 0.6,Φ F = 0.7,μ n C ox = 50μA/ 且 γ= 0.4 (a) 計算 in =. 時的 out (b) 如果 I 如圖 3.30(b) 之 M 來實現, 找出使得 M 維持在飽和區之最小 (W/L) 值 解 : ( in TH out) = I D μncox( W / L (a) out 0.9 ) TH = TH 0 + γ ϕf + SB ϕf = 0.635 (b) ( GS - TH ) 0.9 ( ) = I D GS TH μncox( W / L) 0/4/3 Ch3 Sinle_stae_amp 7
源極隨耦器之輸出阻抗 = X I X m out = X m mb + X mb = 0 0/4/3 Ch3 Sinle_stae_amp 8
考慮基板效應之源極隨耦器 out = m mb = m + mb 0/4/3 Ch3 Sinle_stae_amp 9
戴維尼等效電路表示法 A v = m + mb mb = When / mb open from the rest, current is zero, so =0 and out=in m + m mb 0/4/3 Ch3 Sinle_stae_amp 0
考慮有效通道長度調變效應 A v = mb mb r O r O r O r O L + L m 0/4/3 Ch3 Sinle_stae_amp
例題 3.8 計算圖 3.35 電路之電壓增益 解 : M 源極所視之阻抗為 [/( m + mb )] r O 因此, A v = m m + + mb mb r O r O r O r O + mb mb m 0/4/3 Ch3 Sinle_stae_amp
無基板效應之源極隨耦器 基板效應所造成的非線性可被消除, 通常只可在 PMOSs 中實現, 但會產生比 NMOS 更高之輸出阻抗 Not ood since the ood thin of source follower is low output resistance!! 0/4/3 Ch3 Sinle_stae_amp 3
共源極組態和源極隨耦器之疊加組態 無源極隨耦器時, X 之最小允許值為 GS - TH 考慮源極隨耦器時, X 必須大於 GS +( GS3 - TH3 ) 0/4/3 Ch3 Sinle_stae_amp 4
負載電阻 A v = ro ro L mb ro ro L + mb m (a) (b) out in out in SF CS L + m L / m L 0/4/3 Ch3 Sinle_stae_amp 5
例題 3.9 (a)c 做為一交流短路, 計算其電壓增益 使 M 維持飽和狀態之最大直流輸入信號為何? (b) 為使得一輸入直流位準趨近於 DD, 電路修正為圖 3.39(b), 為確保 M 維持飽和狀態,M,M, M 3 之閘極 - 源極電壓間的關係為何? Level Shiftin 解 : A v =- m [r o r o (/ m )] (a) in 之最大允許直流位準為 DD - GS + TH (b) in = DD X = DD - GS3 DD - GS3 DD - GS + TH 0/4/3 Ch3 Sinle_stae_amp 6
共閘極組態 in > b - TH Cut off in decreases M saturation in decreases out decreases M triode 0/4/3 Ch3 Sinle_stae_amp 7
0/4/3 Ch3 Sinle_stae_amp 8 共閘極組態之輸出 - 輸入特性 TH b D TH in b ox n DD L W C = ) ( μ D TH in b ox n DD out L W C ) ( = μ D in TH TH in b ox n in out L W C = ) ( μ D m TH in b D ox n in out L W C ) ( ) )( ( η η μ + = + = =η = SB TH in TH Enterin triode point At saturation Gain?
例題 3.0 在圖 3.4 中, 電晶體 M 感測到 Δ 並傳送一等比例之電流至一 50Ω 傳輸線 傳輸線之另一端連接一 50Ω 電阻如圖 3.4(a), 與一共閘極組態如圖 3.4(b) 假設 λ=γ= 0 (a) 計算二種情況在低頻時的 out / in (b) 將節點 X 之波反射最小化的條件為何? D = 50Ω A v =- m D /( m + mb )= 50Ω D can be lare 0/4/3 Ch3 Sinle_stae_amp 9
共閘極組態之電壓增益 out out out S + in = 0 r O m mb S + in = D D D out S out r O ( m + mb) out in S + in = out D D D ( + ) r + = r r out m mb O D D mb = 0, s 0, ro > ( ) in O + m + mb O S + S + D S + 0/4/3 Ch3 Sinle_stae_amp m 0 out
例題 3. 計算圖 3.44(a) 電路之電壓增益, 如果 λ 0 且 γ 0 r O mb in, eq = ro + mb m Source follower equation in out ( m + mb) ro + = r + ( + ) r + + in O m mb O S S D D eq = ro mb m r r O out ( m + mb) O + mb = D in r [ ( ) ] O O + + m + r mb ro ro + + D mb m mb m ( m) ro = D = m D [( ) r ] Application?? in bias can be very low. m O 0/4/3 Ch3 Sinle_stae_amp m
0/4/3 Ch3 Sinle_stae_amp 共閘極組態之輸入與輸出阻抗 X X mb m X O X D I r I = + + ] ) ( [ ( ) ( ) D O X D in X m mb O m mb O m mb r I r r + = = + + + + + D = 0 時, mb m O O mb m O X X r r r I + + = + + = ) (
負載理想電流源之共閘極組態 in D + ro D = + + ( + ) r ( + ) r + m mb O m mb O m mb Common source with source deeneration = {[ + ( + ) r ] + r } out m mb O S O D 0/4/3 Ch3 Sinle_stae_amp 3
計算負載一電流源之共閘極態電壓增益 [ 圖 3.47(a)] 解 : out in A v = r O ( + ( + m m + mb ) r mb = m mb O ( + ) r + O ) r 例題 3. O S + + S + D D D s no voltae drop 0/4/3 Ch3 Sinle_stae_amp 4
0/4/3 Ch3 Sinle_stae_amp 5 如範例 3.0 所見, 共閘極組態之輸入信號可能為一電流而非電壓信號, 如圖 3.49 所示 計算 out /I in 和電路之輸出阻抗, 如果輸入電流源顯示其輸出阻抗值等於 P 解 : P D D P P O mb m O O mb m in out r r r I + + + + + + = ) ( ) ( D O P O mb m out r r } ] ) ( {[ + + + = 例題 3.3 D D S S O mb m O O mb m in out r r r + + + + + + = ) ( ) ( 戴維尼等效電路
疊接組態 將一共源極組態和一共閘極組態疊加即為一疊接組態 0/4/3 Ch3 Sinle_stae_amp 6
疊接組態之偏壓條件 0/4/3 Ch3 Sinle_stae_amp 7
疊接組態之輸入 - 輸出特性 x < in TH The circle is a not sure area!? out < b TH in < TH 時,M 和 M 關閉且 out = DD in 增加時, out 下降 in 足夠大時,() X 比 in 少 TH, 強迫 M 進入三極管區 () out 比 b 少 TH, 驅動 M 進入三極管區 0/4/3 Ch3 Sinle_stae_amp 8
疊接組態之小信號等效電路 0/4/3 Ch3 Sinle_stae_amp 9
例題 3.4 計算圖 3.54 之電路的電壓增益, 如果 λ= 0 答 : I = D m in A v = P + ( + ) m mb m P D P ( m + mb) 0/4/3 Ch3 Sinle_stae_amp 30 + P
疊接組態之輸出阻抗 = + out [ + ( m + mb) ro ] ro ro 0/4/3 Ch3 Sinle_stae_amp 3
疊接組態的延伸 三疊接組態 疊接可延伸至三個或更多堆疊元件以達到更高的輸出阻抗, 但需要多餘的電壓頭部空間 0/4/3 Ch3 Sinle_stae_amp 3
負載電流源之疊接組態 如果 M 和 M 都操作於飽和區, 則 G m 近似於 m 且 + v out A = + ( m mb) ro ro ( m mb) ro mro 0/4/3 Ch3 Sinle_stae_amp 33
例題 3.5 計算圖 3.57 中電路之正確電壓增益值, 如果 consider λ out ( m + mb) ro + = r + ( + ) r + + in O m mb O S S D m o in O m mb O O O D out ( m + mb) ro + = D = ( m + mb) ro + r r + ( + ) r r + r + D A = r [( + ) r + ] v m O m mb O 0/4/3 Ch3 Sinle_stae_amp 34
疊接與增加元件長度的比較 Question: Fixed I D, 相同的輸入 / 輸出 (ovx) 電壓振幅限制 (b) or (c ) better in terms of A v? λ / L W ID = μncox ( in TH) L W W L mro = μncox ID μncox ID L λid L ID 將 L 放大四倍會使得 m r O 加倍, 而疊接使其 Av 約為 ( m r O ) 0/4/3 Ch3 Sinle_stae_amp 35
負載 PMOS 之疊接組態 阻抗值為 [ + ( m3 + mb3) ro 3] ro 4 + ro 3 最大輸出移幅為 DD GS TH ) ( GS TH ) 利用輔助定理 Gm m 得到 ( GS3 TH 3 GS4 TH 4 out = {[ + ( m + mb) ro ] ro + ro } {[ + ( m3 + mb3) ro 3] ro 4 + ro 3} A v [( mro ro ) ( m3ro 3r 4)] m out m O 0/4/3 Ch3 Sinle_stae_amp 36
例題 3.6 二個相同的 NMOS 電晶體作為系統中的固定電流源 [ 圖 3.6(a)], 然而, 由於系統的內部電路特性, X 比 Y 高 Δ I I r D D =Δ / o (a) 計算 I D 和 I D 的差異, 如果 λ 0 I I = D D Δ ( + ) r r m3 mb3 O3 O (b) 將疊接元件加至 M 與 M 並重做 (a) 0/4/3 Ch3 Sinle_stae_amp 37
疊接組態屏蔽特性的消失 ( X 減少驅使 M 進入三極管區 ) x drop and make M triode p follows x to drop in order to make I d =I d fixed possible M also enter triode I s fixed I d fixed W [( )( ) ( ) D = μncox b P TH X P X P L ] 0/4/3 Ch3 Sinle_stae_amp 38
摺疊疊接組態 (a) 簡單摺疊疊接組態 ;(b) 適當偏壓之疊接組態 ;(c) 輸入負載一 NMOS 之疊接組態 0/4/3 Ch3 Sinle_stae_amp 39
摺疊疊接組態之大信號特性 M triode M saturation M cut off b makes all these happen!! = I I out DD D D W D = I μ pcox ( DD in TH ) L I D =I I = in DD TH μ pcox( W / L) I D wants larer than I 0/4/3 Ch3 Sinle_stae_amp 40
高電壓增益之摺疊疊接組態 負載疊接之摺疊疊接組態 0/4/3 Ch3 Sinle_stae_amp 4
例題 3.7 計算圖 3.65 之摺疊疊接組態之輸出阻抗, 其中 M 3 運作為一電流源 答 : = + out [ + ( m + mb) ro ]( ro ro 3) ro 0/4/3 Ch3 Sinle_stae_amp 4
第四章差動放大器 0/4/3 Ch4 Differential amp
簡目 4. 單端運作和差動運作 4. 基本差動對 4.. 定性分析 4.. 定量分析 4.3 共模響應 4.4 負載 MOS 之差動對 4.5 Gilbert 細胞電路 0/4/3 Ch4 Differential amp
單端信號和差動信號 單端信號 : 相對於一個定電壓 ( 通常為接地端 ) 量測而得的信號 差動信號 : 二個具有相等但方向相反電壓之節點間所量測而得的信號 其平均電壓稱為共模電壓 0/4/3 Ch4 Differential amp 3
共模排斥 (a) 耦合所帶來之信號破壞 ;(b) 藉由差動運作以減少耦合效應 0/4/3 Ch4 Differential amp 4
共模排斥 供應電壓雜訊對 (a) 單端電路之效應 ;(b) 差動電路之效應 0/4/3 Ch4 Differential amp 5
差動運作 藉由差動運作以減少耦合雜訊 0/4/3 Ch4 Differential amp 6
簡單差動電路 (a) 簡單差動電路 ;(b) 對於輸入共模位準之靈敏度 0/4/3 Ch4 Differential amp 7
基本差動對 out vs. in - in? in in vs. out - out? DD DD - D I SS. 輸出端和輸入的共模位準無關. in = in 時, 其小信號增益為最大值 0/4/3 Ch4 Differential amp 8
電路的共模特性 I D I D vs. in,cm? p vs. in,cm? out out vs. in,cm? P = incm + * on3 m 0/4/3 Ch4 Differential amp 9 on3
差動對的輸入 - 輸出振幅限制 + ( ) GS GS 3 TH 3 in, CM ISS + DD D TH ( in, CM ) TH out DD 0/4/3 Ch4 Differential amp 0
畫出差動對的小信號差動增益與輸入共模位準的關係圖 解 : 例題 4. M,M 進入三極管區 W A = = μc I L m D ox D D 0/4/3 Ch4 Differential amp
差動對的定量分析 I I in in = W μ C μ C L I D +I D =I SS D D n ox n ox W 4ISS ID ID = μncox ( in in) ( in in) L W μncox y = x a x L 4I Δ W L in - in = GS - GS Two eqs, two unknowns, I D, I D SS m D in ΔI D W μncoxw / L = μnc W ox in L 4I Av = μncox I SS D SS Δ L in μncoxw / L out - out = D ΔI 0/4/3 Ch4 Differential amp When in - in =0 Δ =
汲極電流和總轉導對輸入電壓之變化 in in 0 = ID IS S ID 0 W W μncox μnco x L L Δ = in I μ C n SS ox W L ( GS TH ), = I μ C n SS ox W L W 4ISS Gm ( in in ) = ID ID = μncox ( in in) ( in in) L W μncox L 0/4/3 Ch4 Differential amp 3
畫出差動對的輸入 - 輸出特性圖, 當元件寬度和尾電流變化時 答 : 例題 4. W 4ISS ID ID = μncox ( in in) ( in in) L W μncox L W/L I SS Δ = in I μ C n SS ox W L 0/4/3 Ch4 Differential amp 4
差動對小信號特性分析 (from lare sinal) ΔI Δ D in = μnc out - out = D ΔI ox W L 4I SS μ C W n / 4I SS μ C W n ox ox Δ L / L Δ in in When in - in =0 A = ( ) = μ C I W / L v out in in n ox ss D 0/4/3 Ch4 Differential amp 5
差動對小信號分析方法一 : 重疊原理 S = / m = X D in m + m 0/4/3 Ch4 Differential amp 6
差動對小信號分析方法一 : 重疊原理 / m Source follower T = in T =/ m = Y D in m + m 0/4/3 Ch4 Differential amp 7
= 差動對小信號分析方法一 : 重疊原理 X D in = m + m Y D in m + m 當 m = m = m 時 + D ( X Y ) Due to in in = m m ( X Y ) Due to = md in in 由於對稱之故 ( X Y ) Due to = md in in 執行重疊原理 ( X in Y ) in tot = m D 0/4/3 Ch4 Differential amp 8
例題 4.3 在圖 4.7 之電路中,M 為 M 的二倍寬, 如果 in 和 in 之偏壓值相同時, 計算其小信號增益 不能用半電路想法 答 : M, M ate bias the same GS = GS I D =I D =I SS /3 μ C / L) I 0/4/3 Ch4 Differential amp 9 D ( X Y ) Due to = in = ( W m n ox SS + / 3 = m = μncox(w / L)I SS / 3 m 4 4 D mw ( ) 4 m(w) Av = = m D = D = D + 3 3 3 3 3 m m mw ( ) = μncox( W / L) ISS/ =.m( w) D= 0.8m( w) D = μ C W L I m m w n ox SS m ( ) ( / ) / in
對稱電路的輔助定理 p will not chane? D : I = G * m D : I = G * m I+ I = IT G *( ) + G *( ) = I = G *( +Δ ) + G *( Δ ) m 0 p m 0 p T m 0 in p' m 0 in p' = p p' 戴維尼等效觀點 0/4/3 Ch4 Differential amp 0
差動對小信號分析方法二 : 半電路 ( X Y ) /( in ) = m D 0/4/3 Ch4 Differential amp
計算圖 4.0(a) 之電路差動增益, 如果 λ 0 答 : 例題 4.4 半電路 - m ( D r O ) 0/4/3 Ch4 Differential amp
任意輸入信號的差動和共模成份 0/4/3 Ch4 Differential amp 3
計算圖 4.0(a) 之電路中, 例題 4.5 如果 in in 且 λ 0 時, 計算其 X 和 Y ( in in) X = m( D ro) ( in in ) Y = m( D ro) out independent of in,cm 0/4/3 Ch4 Differential amp 4
共模響應 / m A v, CM = out in, CM = /( D m / ) + SS 0/4/3 Ch4 Differential amp 5
例題圖 4.6 之電路使用一電阻而不用電流源來定義一 ma 之尾電流, 假設 4.6 (W/L), = 5/0.5,μ n C ox = 50μA/, TH = 0.6,λ=γ= 0, DD = 3 (a)( SS ) 維持於 0.5 之輸入共模信號為何? in, CM = GS + 0.5 =.73 (b) 計算差動增益為 5 時的 D 值 = 5 D = 3.6kΩ (c) 如果輸入共模位準比 (a) 中所求得的值高 50m 時,M, M 距 triode 多遠?.73 +50m.4 96.8m 0/4/3 Ch4 Differential amp 6 m D μ ncoxw 0.5mA = ID = ( GS TH) L GS =.3 = μ C ( W / L) I m n ox D = 3.5 m*3.6k = 3.58 =.4.4 (.73 0.6) = 0.9 away from triode D / ΔX, Y = Δin CM = 50m.94 = 96. 8m + /( ), = I * X DD D D SS.4 96.8 m (.73+ 50m 0.6) = 0.43 away from triode m SS = 500Ω
共模 - 差動轉換特性 雜訊 Δ in, CM Δ X = Δin, CM D + SS m Δ Y = Δ in, CM ( D +ΔD) + SS m 0/4/3 Ch4 Differential amp 7
電晶體不匹配所造成的非對稱性 I D m in, CM m = Itotal = + [( / / ) + ] + SS m m m m m m I I [( / / ) + ] + in, CM m m X Y = ( D D) D = [ ( )] D SS m m m m = = in, CM m m m m [ ( )] D [ Din, CM] [ + ] m + m ( m + m) SS + SS m + m A CM DM = Δ m D ( + ) + m m SS Δ m = m m 0/4/3 Ch4 Differential amp 8
例題 4.7 兩個差動對如圖疊加起來, 電晶體 M 3 和 M 4 遭遇到 m 之不匹配為 Δ m, 在節點 P 之總寄生電容為 C P, 否則電路則為對稱 有多少供應雜訊將會在輸出端以差動成份出現? 假設 λ=γ=0 答 : A CM DM = ΔmD ( + ) + m m SS A CM DM = ΔmD + ( m3 + m4) ω 0/4/3 Ch4 Differential amp 9 C P
共模排斥比 CM = A A 只考慮 m 不匹配時 m SS m DM CM DM ( ) = ( = ) D SS D X Y Due to in in in T ' + // SS + SS ( // SS = T ') + m m m m m D = SS + + + // + SS D in in SS SS m m m ( + ) ( = SS m m m SS m SS m m m D in D + ( m + m) SS + SS m + ( m + m) SS ( SS m m + m ) = D + ( + ) m m SS in + ) in SS SS ( + ) ( ) = SS m m m X Y Due to in D in + ( m + m) SS 0/4/3 Ch4 Differential amp 30
A 共模排斥比 只考慮 m 不匹配時 CM DM ΔmD = ( + ) + m m SS CM = A A CM DM ( SS m m + m) in ( SS m m + m ) in D X Y + ( m + m) SS ADM = = m 0/4/3 Ch4 Differential amp m SS Δm 3 DM in in in in SS m m m in SS m m m in D + ( m + m) SS ( + ) ( + ) = + m m SS in in ( SS m m + m) ( SS m m + m ) + ( m + m) SS = D m + m + 4m mss = + ( + ) D CM = in = - in, md Smith = D Δm SS m 其中 m =( m + m )/ + + 4 m m m m SS Δ m (+ )
負載 MOS 之差動對 (a) 負載二極體之差動對 A = ( r r v mn mn mp mp μn( W / L) μ ( W / L) ON N OP ) (b) 負載電流源之差動對 A = r r ) mn ( ON OP p P 0/4/3 Ch4 Differential amp 3 v
加入電流源以增加電壓增益 A = = = v m m3 μncox( W / L) ( GS TH) μ C ( W / L) p ox 3 GS3 TH3 I ( ) I GS 3 TH 3 GS TH 3 = = I ( ) 0.I GS 3 TH 3 GS TH GS 3 TH 3 5 ( ) GS TH If fix out bias, 差動增益大約為沒有負載 PMOS 電流源的五倍 0/4/3 Ch4 Differential amp 33
利用疊接以增加電壓增益 A v [( m3ro 3rO ) ( m5ro 5r 7)] m O 0/4/3 Ch4 Differential amp 34
可變增益放大器 (a) 簡單可變增益放大器 ;(b) 提供可變增益的二種組態 0/4/3 Ch4 Differential amp 35
Gilbert 單元 0/4/3 Ch4 Differential amp 36
例題 4.8 解釋為何 Gilbert 單元可以操作為一類比電壓相乘器 解 : cont = cont - cont out = in.f( cont ) 將 f( cont ) 以泰勒展開式展開且只留下其一次項,α cont out =α in cont 0/4/3 Ch4 Differential amp 37
Gilbert 單元 Another way of connection (a)gilbert 單元利用下端之差動對感測輸入電壓 ;(b) 對非常大之正 out 的信號路徑 ;(c) 對非常大之負 out 的信號路徑 0/4/3 Ch4 Differential amp 38
第五章被動與主動電流鏡 0/4/3 Ch5 Current Mirrors
簡目 5. 基本電流鏡 5. 疊接電流鏡 5.3 主動電流鏡 5.3. 大信號分析 5.3. 小信號分析 5.3.3 共模特性 0/4/3 Ch5 Current Mirrors
電流源的應用 0/4/3 Ch5 Current Mirrors 3
電阻分壓電流源 假定 M 位於飽和區, I out μnc ox W L + DD TH 0/4/3 Ch5 Current Mirrors 4
電流源的設計 利用一參考電流來產生許多不同的電流源 0/4/3 Ch5 Current Mirrors 5
0/4/3 Ch5 Current Mirrors 6 基本電流鏡 (a) 提供一反函數之連接二極體元件 ;(b) 基本電流鏡 ) ( ) ( DS TH GS ox n D L W C I λ μ + = ) ( ) ( DS TH GS ox n D L W C I λ μ + = ) / ( ) / ( DS DS D D L W L W I I λ λ + + = 考慮通道長度調變效應
偏壓 - 差動放大器之電流源 0/4/3 Ch5 Current Mirrors 7
例題 5. 計算圖 5.8 中電路之小信號電壓增益 解 : m L (W/L) 3 /(W/L) 0/4/3 Ch5 Current Mirrors 8
疊接電流鏡 Shieldin M Let Y = X possible O + TH Y =? X N TH 節點 P 之最小允許電壓值為 = = + GS0 GS TH ( GS0 TH ) + ( GS TH ) + TH Smith 0/4/3 Ch5 Current Mirrors 9
例題 5.3 在圖 5.0 中, 繪出 X 和 Y 對於 I EF 之關係圖 如果 I EF 需要 0.5 才能做為一電流源時, I EF 其最大值為何? 解 : self study 0/4/3 Ch5 Current Mirrors 0
例題 5.4 在圖 5.(a) 中, 假定所有電晶體都相同, 繪出 I X 和 B 對於 X 之關係圖, 且 X 由一個很大的值開始降低.3 0.5 Tri 0.3 < A TH B A TH M:Tri M3:Sat M3:Tri M:Sat.3 0.5 X < N TH3 T =0.7 O =0.3 0.3 Tri 0/4/3 Ch5 Current Mirrors
低電壓修正疊接組態 () O + TH ( = ) b TH X GS O + TH O Smith ( = ) GS TH A b GS + GS + ( GS TH ) b GS TH O TH + makes minimum o 0/4/3 Ch5 Current Mirrors
()How to create = +? b t O t + O t t + O t GS 7 TH 7 t + O t + O Body effect of t creates t difficult to cancel completely! 0/4/3 Ch5 Current Mirrors 3
()How to create = +? Smith b t O o t + O GSMs THMs W I = μcox ( O) L W = μcox ( O) 4L W5 = μcox ( O 5) L W W =, = 4L = + 5 O 5 O GS 5 t O 0/4/3 Ch5 Current Mirrors 4 t + O t DS!= DS introduces substantial mismatch
主動電流鏡 處理信號之電流鏡 I ΔI out out = I in = ΔI in 0/4/3 Ch5 Current Mirrors 5
主動電流鏡差動對 (a) 結合 M 和 M 汲極電流之觀念 ;(b)(a) 中觀念之實現 0/4/3 Ch5 Current Mirrors 6
大信號分析 (a) 負載一主動電流鏡與實際電流源之差動對 ; (b) 大信號之輸入 - 輸出關係圖 0/4/3 Ch5 Current Mirrors 7
例題 5.5 假設完美的對稱性, 當 DD 由 0 變至 3 時, 繪出圖 5.(a) 中電路之輸出電壓, 假設 DD = 3 且所有元件都操作於飽和區 對稱性 out = F 答 : 0/4/3 Ch5 Current Mirrors 8
非對稱特性 Loadin is not symmetric!! A? 主動電流鏡差動對中的非對稱電壓振幅 A = G = r r ) Smith v m out m, ( O O4 0/4/3 Ch5 Current Mirrors 9
共模特性 A CM? A CM + m, m, SS m3,4 A cm Smith m3 SS 假設 / m3,4 <<r O3,4, 且忽略 r O, / 之影響 0/4/3 Ch5 Current Mirrors 0
CM? 共模特性 CM Ad r r A = cm ( ) [ ] m o o4 m3 SS Smith 假設 / m3,4 <<r O3,4, 且忽略 r O, / 之影響 CM = = A A DM CM m, = ( + ( r O, m, r O3,4 SS ) ) m3,4 m3,4 ( r ( + O, m, r O3,4 m, ) SS ) 0/4/3 Ch5 Current Mirrors
不匹配之差動對 A CM? A CM ( ) r / m m O3 m m3 + ( + ) m m SS Oriinal term A CM Smith m3 SS 0/4/3 Ch5 Current Mirrors