投影片 1

Similar documents
TB215.doc

Varactor SPICE Models for RF VCO Applications Parameter Description Unit Default IS Saturation current (with N, determine the DC characteristics of th

ANSYS 在航空航天器电磁兼容、电磁干扰分析中的应

PowerPoint Presentation

pages.pdf

Attenuator Design Tutorial

Phase Shifter Design Tutorial

usbintr.PDF

Directional Couplers.doc

Special Materials in CST STUDIO SUITE 2012

,,: 65,A - 10A, 9, M1A1, 85 %: 148,35 72,1/ 6, 17 % (20 15 %) [1 ] ;1994,, 2 2,;2001, ; , ; ; F - 16 ;2 ;; F - 15 ; ;, :,,,, ,,,, M

Ω Ω 75Ω

Combline Cavity Filter Design in HFSS

PCB a 2.5mm b 4.0mm A mm W/cm 3 PCB PCB 2.0mm 1.5mm PCB PCB

PCB Layout using ADS November 29, 2005 PCB Layout using ADS Dr. B. Frank Department of Electrical and Computer Engineering Queen's University Slide 1

DATASHEET SEARCH SITE |

Balun Design

DSCHA Jun 06

CAM350 CAM350 CAM350 CAM350 Export Gerber 274D 274X Fire9000 Barco DPF NC Drill Mill Excellon Sieb Meyer IPC D 350 IPC D A Modification CAM/Ger

第1讲-电磁兼容导论.ppt

Yageo Chip Antenna Sum V doc

A stair-shaped slot antenna for the triple-band WLAN applications

Microsoft Word - AN95007.doc

amp_b3.PDF

, V m 3,, I p R 1 = ( I p + I 1 ) / R 0 I p, R 1 / 4, R m V d, 1. 1 Doherty MRF6P21190 LDMOS,,, Doherty B Freescale M6P21190 ADS 2 Doherty 3 Doherty,

BranchLine Coupler - Quadrature

Microsoft PowerPoint - Pres_ansoft_elettronica.ppt

No Slide Title

3.1.doc

Design System Designer RF Analog - Designer Ptolemy Simulator System level - Designer E D A - s Modelsim RTL EDGE GSM WLAN Numeric Ptolemy Timed NC-Ve

APPLI002.DOC

SGS-Apache BQB proposal_04_11_2003

AWT6166_Rev_0.3.PMD

Microsoft Word - SLVU2.8-4 Rev04.doc

Presentation - Advanced Planar Antenna Designs for Wireless Devices

Introduction In this tutorial, a dipole antenna will be constructed and analyzed using the HFSS simulation software by Ansoft. The example will illust

untitled

RF & MICROWAVE COMPONENTS

Microsoft PowerPoint - seminaari 26_5_04_antenniteknologiat.ppt

HFSS Antenna Design Kit

( ) T arget R ecogn ition),,,,,,, ( IFF, Iden tification F riend o r Foe),,,,,,, ( N CTR, N on2 Cooperative T arget R ecogn ition), (

Balun Design

Novel 2-D Photonic Bandgap Structure For Microstrip Lines - IEEE Microwa ve and Guided Wave Letters

A Miniature GPS Planar Chip Antenna Integrated with Low Noise Amplifier

4.2 DC Bias

書名:

Eminence Workshop (II)

Filter Design in Thirty Seconds

A stair-shaped slot antenna for the triple-band WLAN applications

Full Band Waveguide-to-Microstrip Probe Transitions - Microwave Symposium Digest, 1999 IEEE MTT-S International

Microsoft Word - MWRF_Components.doc


apn1003.qxd

Microsoft Word - Differential Circuit Comparison App note_B.doc

Integrated microstrip and rectangular waveguide in planar form - IEEE Microwave and Wireless Components Letters [see also IEEE Microwave and Guided Wave Letters]

EMI LOOPS FILTERING EMI ferrite noise suppressors

APN1013.qxd

untitled

Application Note template form-tc-004f

Synopsis The Project Manager Definitions Directories Project Configuration Management The HFSS Executive Level Executive Window HFSS Design Flow Stage

FSA W Low Voltage Dual DPDT Analog Switch

Vortrag Arpad.ppt

Folie 1

CSTHandOut

GPRS模块AT指令手册

Transcription:

LNA Design Single Stage AT41411 Study Case

LNA Design Procedure Read Specification Choose Device and get a Data Sheet Prepare S2P data file included noise parameter Check Stability and Add Stabilizer Plot Noise circle and Available Gain circle Tuning Γ S ( and Γ L ) yield to meet Specific. Using SmithChart Utility to Matching Circuit Layout

Refining Design closer to reality SP,HB Simulation... from ideal... EM,CoSimulation... closer to reality

Summary of LNA Data Sim. Parameter Specification Comments SS Frequency Range 2.4 2.483 MHz ISM Band SS DC Current < 7 ma SS DC Voltage, Vcc 3.0 V SS VCE 2.5 V BFP640:VCEMAX= 4.0V SS Gain 15 db min. SS Noise Figure Target: < 1.0 db. SS Input Return Loss 10 db min. SS Output Return Loss 10 db min. SS Reverse Isolation TBD HB Output P1dB +3.2 dbm @ 2400 MHz HB Input 3rd Order Intercept +12 dbm @ each tone. 2400 and 2401 MHz,

P 1dB Compression and TOI(IP 3 ) Output Power (dbm) TOI(IP 3 ) P sat P 1dB Compression region Saturated output power Linear region (slope = small-signal gain) Input Power (dbm)

Surface Mount Components Size Length(mm/mil) Width(mm/mil) 0402 1.0/40 0.5/20 0603 1.6/64 0.8/32 0805 2.0/80 1.25/50 1206 3.2/128 1.6/64 1210 3.2/128 2.5/100

Choosing Substrate Thickness and Dielectric Constant Substrate H=30 mil 0.0-0.2 W=30.000-0.4 db(s(2,1)) -0.6-0.8-1.0-1.2 0805 0603 0402 W=50.000 W=70.000-1.4 2 3 4 5 6 7 8 9 10 ER

Choosing Substrate Thickness and Dielectric Constant 0 Substrate H=10mil db(s(2,1)) -2-4 -6 W=25.000 W=50.000 W=75.000-8 2 4 6 8 10 ER

Linear versus Non- Linear Models Linear Models valid for one bias condition valid for small signal Non- Linear Models device completely characterized valid for all bias conditions valid for non-linear operation!at-41411 Typical Scattering Parameters,!Common Emitter, ZO = 50 W, TA=25 C, VCE=8 V, ICE =E 10 ma!freq. S11 S21 S12 S22 # GHz S MA R 50!GHz Mag. Ang.(Mag.) Ang. Mag. Ang. Mag. Ang. 0.1.85-30 23.20 158.013 64.93-11 0.5.58-112 12.18 109.035 44.62-30 1.0.49-156 6.70 85.044 43.50-33 1.5.49 178 4.58 71.056 47.46-36 2.0.50 160 3.45 59.068 47.45-41 2.5.53 153 2.82 53.075 56.43-43 3.0.55 142 2.37 43.089 54.43-53 Port B Num=2 L LBB L=696.2 ph R= L LBC L=120 ph R= C CBEI C=180.4 ff C CBS C=79 ff C CBCC C=55.9 ff C CBEC C=98.4 ff R RBS R=1200 Ohm BJT_NPN BJT1 Model=BJTM1 Area= Region= Temp= Trise= Mode=nonlinear L LEC L=20 ph R= L LEB L=230.6 ph R= L LCC L=120 ph R= R RES R RCS R=300 Ohm R=1200 Ohm C CES C=180 ff C CCEI C=112.6 ff C CCS C=75 ff L LCB L=682.4 ph R= Port C Num=1 C CBEO C=102.5 ff Port E Num=3 C CCEO C=131.2 ff BJT_Model BJTM1 NPN=yes Kc= Cex= Xtf=10 Ffe= PNP=no Isc=400 fa Cco= Tf=1.8 psec Lateral=no Is=0.22 fa C4= Imax= Vtf=1.5 V RbModel= MDS Bf=450 Nc= 1.8 Imelt= Itf=0.4 A Approxqb=yes Nf=1.025 Cbo= Cje=227.6 ff Ptf=0 Tnom=24.85 Vaf=1000 V Gbo= Vje= 0.8 V Tr=0.2 nsec Trise= Ikf=0.15 A Vbo= Mje=0.3 Kf=7.291E-11 Eg=1.078 Ise=21 fa Rb=3.129 Ohm Cjc=67.43 ff Af=2 Xtb=-1.42 C2= Irb=1.522 ma Vjc=0.6 V Kb= Xti=3 Ne=2 Rbm=2.707 Ohm Mjc=0.5 Ab= AllParams= Br=55 Re=0.6 Ohm Xcjc=1 Fb= Nr=1 Rc=3.061 Ohm Cjs=93.4 ff Rbnoi= Var=2 V Rcv= Vjs=0.6 V Iss= Ikr=3.8 ma Rcm= Mjs=0.27 Ns= Ke= Dope= Fc=0.8 Nk=

Prepare and Read S2P Format(Touchstone) # [HZ/KHZ/MHZ/GHZ] [S/Y/Z/G/H][MA/DB/RI] R 50 # GHz S MA R 50

Measuring S-Parameter For Modeling and Design DUT Two-port calibration reference plane Mathematically extended reference plane De-embedding external software required Accurate S- parameter data (from model or measurement)

Add and Read Noise Parameters to an SnP File

Verify Spice Model Place S-parameter-based component here: Term Term1 Num=1 Z=50 Ohm BFP640_SP Q1 DC DC1 DC Term Term2 Num=2 Z=50 Ohm S_Param SP1 Start=0.1 GHz Stop=6.0 GHz Lin= S-PARAMETERS Place packaged component here: DC_Feed DC_Feed1 Vc I_Probe IC DC_Feed DC_Feed2 DC_Block DC_Block1 BFP640_SPICE Q2 DC_Block DC_Block2 V_DC VCC Vdc=2.5 V V_DC VBB Vdc=0.84317 V tune{ 0.25 V to 1 V by 1e-005 V } Term Term3 Num=3 Z=50 Ohm Term Term4 Num=4 Z=50 Ohm ModelVerif.dsn

-25-20 -15-10 -5 0 5 10 15 20 25 freq (100.0MHz to 6.000GHz) S(1,1) S(3,3) S(2,2) S(4,4) -0.15-0.10-0.05 0.00 0.05 0.10 0.15 freq (100.0MHz to 6.000GHz) freq (100.0MHz to 6.000GHz) S(1,2) S(3,4) S(2,1) S(4,3) freq (100.0MHz to 6.000GHz) ModelVerif.dds Verify Spice Model by Compare S-Parameter

Adding Stablizer CKT sp_hp_at-41411_1_19921201 SNP2 Bias="Bjt: Vce=8V Ic=10mA" Frequency="{0.10-4.00} GHz" Noise Frequency="{0.10-4.00} GHz" R Term R1 Term2 R=39 Ohm tune{ 0 Ohm to 78 Ohm by Num=2 3.9 Ohm } Z=50 Ohm Term Term1 Num=1 Z=50 Ohm L L1 L=22 nh tune{ 0 nh to 44 nh by 2.2 nh } R=

Example A:Design for Max Gain( ) GammaMS[m1] 0.707 / 162.575 GammaML[m1] 0.621 / 9.583 NF=3.1 GammaMS GammaS GammaL GammaIN GammaOut

Impedance Matching Using SmithChart Utility GammaMS[m1] 0.707 / 162.575 ZMS[m1] 8.768 + j7.432 GammaML[m1] 0.621 / 9.583 ZML[m1] 190.668 + j64.090 Zs:Complex Conjugate Of Source Impedance Term Term1 Num=1 Z=50 Ohm DA_SmithChartMatch1_DesignAAmp DA_SmithChartMatch1 F=1 GHz Zs=50 Ohm Zl=(8.768-j*7.432) Ohm Z0=50 Ohm Source=0(50 ohm) Load=Conj(Γ S ) R Rstab R=39 Ohm L Lstab L=22 nh R= DA_SmithChartMatch2_DesignAAmp Term DA_SmithChartMatch2 Term2 F=1 GHz Num=2 Zs=(190.7-j*64.1) Ohm Z=50 Ohm Zl=50 Ohm Z0=50 Ohm Source=Γ L Load= 0(50 ohm)

Choose Matching Circuits Low Pass L C L1 C1 L=4.21 nh C=6.90 pf Low Pass C C2 C=1.10 pf L L2 L=14.34 nh High Pass High Pass C L C1 L1 C=13.73 pf L=3.67 nh R= C L C2 L2 C=1.77 pf L=15.81 nh R=

Example A:Design for Max Gain( ) 25 0 20 m1-10 15-20 nf(2) db(s(2,1)) 10 5 m2-30 -40 db(s(1,2)) db(s(2,2)) db(s(1,1)) 0-50 -5-10 m2 freq= 1.000GHz nf(2)=3.042 m1 freq= 1.000GHz db(s(2,1))=19.100 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 freq, GHz -60-70

Compare Gain performance with four type Matching Circuits 30 20 10 0-10 -20-30 -40-50 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 freq, GHz db(designa_hhpass..s(2,1)) db(designa_hlpass..s(2,1)) db(designa_lhpass..s(2,1)) db(designa_llpass..s(2,1))

Compare NF performance with four type Matching Circuits 30 25 20 15 10 5 db(designa_hhpass..nf(2)) db(designa_hlpass..nf(2)) db(designa_lhpass..nf(2)) db(designa_llpass..nf(2)) 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 freq, GHz

Example B:Design for Min. NF GammaS 0.070 / 59.570 GammaL 0.362 / -9.541 GammaMS GammaL GammaIN Sopt GammaOut GammaML

Example B:Result Min. NF Perfect output match Poor input match, Acceptable Gain good isolation nf(2) db(s(2,1)) 20 15 10 5 0-5 m2 freq= 1.000GHz nf(2)=1.414 m1 m2 m1 freq= 1.000GHz db(s(2,1))=16.649 0-10 -20-30 -40-50 -60-70 db(s(1,2)) db(s(2,2)) db(s(1,1)) -10 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 freq, GHz -80

Example C: Design for Specific Gain, NF and In/Out Return Loss Choose Γ S and Γ L to meet specification: Gain,NF, Γ a and Γ b Ga=18.5 NF=1.8 GammaS Constant S22 GammaA 0.236 IRL -12.538 GammaS 0.413 / 159.909 Zs 22.537 / 18.862 GammaB 0.168 ORL -15.500 GammaL 0.368 / -9.078 ZL 106.755 / -7.652 GammaIN Sopt GammaL

Example C: Design for Specific Gain, NF and In/Out Return Loss ( ) 20 m1 0 15-10 10-20 nf(2) db(s(2,1)) 5 m2-30 db(s(1,2)) db(s(2,2)) db(s(1,1)) 0-40 -5-10 m1 freq= 1.000GHz db(s(2,1))=18.510 m2 freq= 1.000GHz nf(2)=1.812 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 freq, GHz -50-60

Unique inductive feedback LNA design Background: series inductive feedback Increased input resistance small shifts to Γ opt. Increased in-band k-factor(increased inband stability) Decreased gain L

Designs for both low NF and low input VSWR Γ MS Γ S IF Γ opt =Γ MS =>min. NF and min. S11 Γ ML Γ IN Γopt

The effect of Inductive feedback Γ MS 0.2 nh 0.4 nh 0.6 nh Ls Stability&IndFeedback.dsn

Example D Choose for vary good In/Out Return Loss Small degraded NF and Gain Ga=15.78 GammaS NF=1.6 GammaL IRL -20.061 GammaS 0.260 / 156.123 ORL -20.000 GammaL 0.460 / -18.223

Example D:Result 20 m2 0 10 0 m1-10 -20 nf(2) db(s(2,1)) -10-30 db(s(1,2)) db(s(2,2)) db(s(1,1)) -20-40 -30 m1 freq= 1.010GHz nf(2)=1.585 m2 freq= 1.000GHz db(s(2,1))=15.739-50 -40 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 freq, GHz -60

Compare Four Design Example Design NF db Gain db S11 db S22 db A 3.1 19.1 max. <-40 <-40 B 1.41 min. 16.6-4.4 <-40 C 1.8 18.5-12.2-15.0 D 1.59 15.74-20 -20

易迪拓培训 专注于微波 射频 天线设计人才的培养网址 :http://www.edatop.com A D S 视频培训课程推荐 ADS Advanced Design System 是由原美国安捷伦科技 ( 现更名为是德科技 ) 推出的微波射频电路 通信系统和 MMIC/RFIC 仿真设计软件, 其功能强大 应用广泛, 被国内高校 科研院所和大型科技公司使用广为使用 掌握 ADS 无疑能提升相关设计领域工程师的技术实力 提高工作效率 为了帮助工程技术人员更好 更快的学习掌握 ADS 的使用, 易迪拓培训 (www.edatop.com) 特聘多年 ADS 使用经验的资深专家精心制作推出了多套 ADS 视频培训课程, 由浅入深 全面系统地讲授了 ADS 在微波射频电路设计 通信系统设计和电磁仿真设计方面的仿真设计和应用操作 其中, 视频课程多以设计实例边操作边讲解, 工程实践强, 且直观易学, 能够帮助您在最短的时间内学会使用 ADS, 并把 ADS 真正应用到设计研发工作中去... ADS 学习培训课程套装该套装是易迪拓培训和微波 EDA 网联合推出的迄今为止国内最全面 最权威的 ADS 培训教程, 共包含 10 门 ADS 学习培训课程 课程是由具有多年 ADS 使用经验的微波射频与通信系统设计领域资深专家讲解, 并多结合设计实例, 由浅入深 详细而又全面地讲解了 ADS 在微波射频电路设计 通信系统设计和电磁仿真设计方面的内容 能让您在最短的时间内学会使用 ADS, 迅速提升个人技术能力, 把 ADS 真正应用到实际研发工作中去, 成为 ADS 设计专家... 课程网址 : http://www.edatop.com/peixun/ads/13.html 更多 ADS 视频培训课程 : 两周学会 ADS 中文视频培训教程最新版 ADS 的入门和进阶培训课程, 适合 ADS2011 ~ ADS2014 以及更新版本 ADS 的学习 是 ADS 初学者的最佳课程, 网址 :http://www.edatop.com/peixun/ads/14.html ADS 射频模拟电路设计详解 中文视频教程本课程基于新版的 ADS 软件, 由李明洋老师讲授, 讲解了 ADS 在微波射频模拟电路设计中的具体应用, 视频课程, 直观易学, 网址 :http://www.edatop.com/peixun/ads/15.html ADS 高低阻抗线微带滤波器设计 (ADS2014 版 ) 中文视频教程该门课程旨在帮助学员快速 全面 透彻地理解高低阻抗线微带滤波器的设计原理和设计步骤, 帮助学员学会并掌握使用 ADS 软件仿真分析和优化设计微带线滤波器的实际操作 ; 课程网址 : http://www.edatop.com/peixun/filter/128.html 更多 ADS 培训课程, 敬请浏览 :http://www.edatop.com/peixun/ads

` 专注于微波 射频 天线设计人才的培养易迪拓培训网址 :http://www.edatop.com 关于易迪拓培训 : 易迪拓培训 (www.edatop.com) 由数名来自于研发第一线的资深工程师发起成立, 一直致力和专注于微波 射频 天线设计研发人才的培养 ; 后于 2006 年整合合并微波 EDA 网 (www.mweda.com), 现已发展成为国内最大的微波射频和天线设计人才培养基地, 成功推出多套微波射频以及天线设计相关培训课程和 ADS HFSS 等专业软件使用培训课程, 广受客户好评 ; 并先后与人民邮电出版社 电子工业出版社合作出版了多本专业图书, 帮助数万名工程师提升了专业技术能力 客户遍布中兴通讯 研通高频 埃威航电 国人通信等多家国内知名公司, 以及台湾工业技术研究院 永业科技 全一电子等多家台湾地区企业 我们的课程优势 : 成立于 2004 年,10 多年丰富的行业经验 一直专注于微波射频和天线设计工程师的培养, 更了解该行业对人才的要求 视频课程 既能达到现场培训的效果, 又能免除您舟车劳顿的辛苦, 学习工作两不误 经验丰富的一线资深工程师讲授, 结合实际工程案例, 直观 实用 易学 联系我们 : 易迪拓培训官网 :http://www.edatop.com 微波 EDA 网 :http://www.mweda.com 官方淘宝店 :http://shop36920890.taobao.com 专注于微波 射频 天线设计人才的培养易迪拓培训官方网址 :http://www.edatop.com 淘宝网店 :http://shop36920890.taobao.com