45 3 Vol.45, No.3 2014 5 OCEANOLOGIA ET LIMNOLOGIA SINICA May, 2014 * 1, 2 11 (1. 266071; 2. 100049), Phyto-PAM,,, :, 0.69, 0.2 0.3,, 1000μmol/(s m 2 ), ; 1500μmol/(s m 2 ),,,,,,,, ; ; ; ; Q178.1 doi: 10.11693/hyhz20130400013,, 45%(Field et al, 1998),, (Lalli et al, 1993),, : (HNLC),,, (Kolber et al, 1994; Boyd et al, 2000); (McMinn et al, 2004); (, 2012), ;,, I(PSI) b 6 f, ( ), (Strzepek et al, 2004) * (973), 2011CB403603 ;, XDA05030401 ;, 201005014, E-mail: lijunleiabc@126.com :,,, Email: xsun@qdio.ac.cn : 2013-04-03, : 2013-04-26
3 : 469 : ; ; (Papageorgiou et al, 2007),,, (PS ) (Schreiber et al, 1995) (Bolhar- Nordenkampf et al, 1989),, F v /F m (Häder, 1998), F v /F m, 0.65(Kolber et al, 1988),, F v /F m (Babin et al, 1996),,,, (Strzepek et al, 2004; Jakob et al, 2005; Napoléon et al, 2012),,,, (, 1992), (, 2005),, 12 1,, 2 (, 2002;, 2005;, 2006;, 2007),,,,,,, 1 1.1 2012 12 12 12 13, 10 ( 1), ULM-500 (Walz, Germany) Niskin, 50mL ; 1000mL Logul s ; 500mL GF/F, ( 20 C) a CTD(SBE25-02) 1 Fig.1 Sampling stations in the Jiaozhou Bay 1.2 Phyto-PAM(Walz, Effeltrich, Germany), Phytowin2.13(Walz) (Skeletonema costatum),, 0.2μm,, 2mL, 10min, (Measuring
470 45 Radiation) F 0, (Saturation Pulse) F m, PSII F v /F m =(F m F 0 )/F m, PAR 1μmol/(s m 2 ), 20s (Actinic Light) 100μmol/(s m 2 ) 2000μmol/ (s m 2 ), RLC Platt (1980): α PAR/ Pm ( ) β PAR/ Pm P = Pm 1 e e P, (retr); P m (retr max ); α P-I, ; β ; P m α I k Φ PS (qp) (NPQ)(Bilger et al, 1990): Φ PS =(F m F t )/F m qp=(f m F t )/(F m F 0 ) NPQ=(F m F m )/F m F m, F t 1.3 50mL (Hydro- Bios, Germany) 24h Olympus IX51, 90% 12 24h, Turner-Designs- Model 10 a (QuAAtro, Germany) 2 2.1 12 : (NO 3 -N) (NO 2 -N)(NH + 4 -N) (PO 3 4 -P) (SiO 2 3 -Si) a(chl a),, 1 Tab.1 ( C) 表 1 胶 州 湾 调 查 站 位 温 盐 光 照 营 养 盐 叶 绿 素 a Measurements of water temperature, salinity, irradiance, nutrients, and chlorophyll a in the bay stations (μmol/(s m 2 )) (μmol/l) (μmol/l) (μmol/l) (μmol/l) (μmol/l) A1 3.586 30.749 213.5 19.052 2.714 9.45 0.968 9.543 0.59 A2 3.348 29.678 189.7 80.027 6.794 43.01 2.318 26.881 0.69 B1 4.333 30.816 342.1 11.082 2.084 1.196 0.993 5.827 0.22 C1 1.141 29.569 262.2 47.406 4.757 2.496 0.7 9.309 0.37 C2 8.263 30.795 281.7 11.793 2.018 3.397 0.632 6.016 0.43 C3 4.743 30.428 130.4 44.401 5.065 20.153 1.296 17.85 0.6 D1 8.692 30.795 457.9 11.053 1.854 2.887 0.768 5.77 0.34 D2 8.445 30.81 699.6 12.794 2.29 2.271 0.723 6.76 0.53 D3 8.895 30.839 574.9 8.765 1.736 4.109 0.871 5.17 0.32 D4 9.272 30.86 644.3 6.344 1.186 1.375 0.468 3.98 0.59 a (mg/m 3 ) 2.2,, 12,,,, ( 2), A2 B1 C1 C3, 10 10 4 cell/m 3, C1, 25.48 10 4 cell/m 3,, (Skeletonema costatum) A2 B1 C1 C3 D2 D3, 50% ; (Asteronella kariana) (Nitzschia paradoxa Gmelin), C2 D1 D4,,, A1 ( 2) 12 a, 3 4 2.3 12 2.3.1 PSII F v /F m PSII F v /F m, A2 0.8, C1 0.59, 0.69 ( 5)
3 : 471 表 2 12 月 胶 州 湾 表 层 浮 游 植 物 群 落 结 构 组 成 Tab.2 Species composition of phytoplankton in the Jiaozhou Bay Skeletonema costatum (Grev.) Cleve Schroederella delicatula Paralia sulcata (Ehr.) Cleve Rhizosolenia delicatula Cleve Rhizosolenia setigera Brightwell Biddulpha sinensis Greville Ditylum brightwelli (West) Grunow Thalasiosira rotula Meunier Thalasiosira sp. Melosira moniliformis Chaetoceros densus Cleve C. sp. Nitzschia paradoxa Gmelin N. lorenziana Grunow N. closterium W. Smith N. sp. Pseudonitzschia pungens Coscinodiscus granii Coscinodiscus sp. Cyclotella sp. Asteronella kariana Grunow Synedra sp. Diploneis bombus Ehrenberg Amphiprora alata (Ehr.) Kuetzing Pinnularia sp. Pleurosigma sp. Ceratium fusus (Ehrenberg) Dujardin Prorocentrum micans Ehrenb Euglena sp. Dictyocha fibula Ehrenberg 3 Fig.3 Horizontal distribution of phytoplankton 10 4 cell/m 3 4 a Fig.4 Horizontal distribution of concentration of chlorophyll a mg/m 3 2 Fig.2 Phytoplankton community structure, distribution, and abundance 2.3.2 RLC 6,,,, retr, 1000μmol/(s m 2 ), retr (retr max ), 1500μmol/(s m 2 ), 3, (α) 0.2 0.3, A2, 0.33; retr max
472 45 100 150, C3, 211.4; (I k ) 537.30μmol/(s m 2 ), A2, C3 2.3.3 Φ PS 8, Φ PS, 0μmol/(s m 2 ) 2000μmol/(s m 2 ), Φ PS Fig.5 5 The maximum quantum yield of phytoplankton F v /F m 0, PS PS, 2.3.4 NPQ 9, Fig.6 6 The rapid light curves of phytoplankton
3 : 473 表 3 浮 游 植 物 快 速 光 曲 线 系 数 Tab.3 The photosynthetic parameters obtained from the rapid light curves (α) retr max (μmol/(s m 2 )) I k (μmol/(s m 2 )) A1 0.26 126.61 478.81 A2 0.33 109.52 327.25 B1 0.2 121.9 609.2 C1 0.2 108.92 544.6 C2 0.26 132.2 508.46 C3 0.28 211.4 755 D1 0.2 113.7 568.5 D2 0.26 114.6 440.77 D3 0.19 101.3 533.16 D4 0.23 139.6 606.96 NPQ,, 2.3.5 qp qp, qp, PSII, (Kooten et al, 1990) 0 qp<1, C3 D4 1 ( ), qp, NPQ, Fig.7 7 The actual photochemical efficiency of PSII in the light
474 45 8 Fig.8 Non-photochemical quenching of phytoplankton, qp,,, PS,, ( 10) 3,, F v /F m,, F v /F m (Cermeno et al, 2005),
3 : 475 9 Fig.9 The photochemical quenching of phytoplankton, (Rosenbergl, 1993; Tamigneaux et al, 1999), F v /F m,, /, (package effect)(kiørboe, 1993; Raven, 1998; Sosik, 2002) F v /F m F v /F m 10 20m, PS (Neale et al, 1991; Bergmann et al, 2002; Bouchard et al, 2005),, PSII, (Bracher et al, 2000; Kaiblinger et al, 2007), 20 40m F v /F m, 0.65, F v /F m, F v /F m 20% 30%, 40m F v /F m, 400m 0.1(McMinn et al, 2004) Metz, F v /F m (Vaillancourt et al, 2003), DIN/DIP DSi/DIP F v /F m (Goto et al, 2008), ATP, PSII (Lippemeier et al, 2001), F v /F m
476 45, (F v /F m 0.65) (McMinn et al, 2004),, F v /F m 0.61, (Suzuki et al, 2002) PS F v /F m, 0.58 0.8, 0.69, DIN 37.4μmol/L( ), DIP 0.97μmol/L, DSi 9.71μmol/L, DIN/DIP 38:1, DSi/DIP 10:1, DSi/DIN 0.26, Redfield, 2000 DIN, DIP DSi, (, 2011), (, 2002b),, ( 700μmol/(s m 2 )), 12 RLC,, 1000 1500μmol/(s m 2 ), retr (retr max ), 1500μmol/(s m 2 ),, PSII (White et al, 1999) 12, (α) 0.2 0.3, retr max 100 150 ; (I k ) 537.30μmol/(s m 2 ) α,, (Dubinsky et al, 2009), retr CO 2 (Figueroa et al, 2003), I k,, α 0.2, 1500μmol/(s m 2 ), (, 2012), F v /F m 0.125, α 0.022, 385.1μmol/(s m 2 ),, (McMinn et al, 2004), (α) 0.2 0.3,, I k retr max, PS (, 1999),, NPQ (Schreiber, 2004) 20m,,, NPQ ( 8), 0μmol/(s m 2 ) 2000μmol/(s m 2 ), NPQ,,, (Olaizola et al, 1994; Kashino et al, 2002), (Dugdale et al, 1998),, /, (Logan et al, 1989),,,,, ;,,,
3 : 477,, 12,, (, 2002a;, 2006;, 2007) (2005), 12 1,,,, F v /F m, RLC, α,,, 2 (, 2002a;, 2006;, 2007),,,,, 2 4, :, PSII F v /F m, 0.58 0.8, 0.69 (α) 0.2 0.3,, 1000μmol/(s m 2 ), ; 1500μmol/(s m 2 ),,,,,, I k retr max, /,,,, 2 致 谢 本 研 究 中 的 海 上 调 查 和 样 品 采 集 工 作 得 到 了 本 课 题 组 赵 增 霞 王 世 伟 刘 群 万 艾 勇 老 师 和 宁 娟 杨 洋 同 学 以 及 创 新 号 考 察 船 全 体 工 作 人 员 的 大 力 支 持, 谨 致 谢 忱,,, 2012.., 43(3): 589 594,, 2002a. Ⅱ. :, 32(3): 415 421,,, 2002b.., (2): 39 44,,, 2005.., 36(6): 481 486,,, 2011.., 42(5): 662 669,,, 2005.., 23(3): 328 334,,, 2005.., 36(6): 487 498, 1999.., 16(4): 444 448, 2007.. :, 10 17,, 1992.. :.. :, 136 170 Babin M, Morel A, Claustre H et al, 1996. Nitrogen-and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic marine systems. Deep Sea Research Part I: Oceanographic Research Papers, 43(8): 1241 1272 Bergmann T, Richardson T, Paerl H et al, 2002. Synergy of light and nutrients on the photosynthetic efficiency of phytoplankton populations from the Neuse River estuary, North Carolina. Journal of Plankton Research, 24(9): 923 933 Bilger W, Björkman O, 1990. Role of the xanthophyll cycle in photoprotection elucidated by measurements of lightinduced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynthesis Research, 25(3): 173 185 Bolhar-Nordenkampf H, Long S, Baker N et al, 1989. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current
478 45 instrumentation. Functional Ecology, 3(4): 497 514 Bouchard J N, Campbell D A, Roy S, 2005. Effects of UV-B radiation on the D1 protein repair cycle of natural phytoplankton communities from three latitudes (Canada, Brazil, and Argentina). Journal of Phycology, 41(2): 273 286 Boyd P W, Watson A J, Law C S et al, 2000. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature, 407(6805): 695 702 Bracher A, Wiencke C, 2000. Simulation of the effects of naturally enhanced UV-radiation on photosynthesis of Antarctic phytoplankton. Marine Ecology-Progress Series, 196: 127 141 Cermeno P, Estévez-Blanco P, Maranón et al, 2005. Maximum photosynthetic efficiency of size-fractionated phytoplankton assessed by C 14 uptake and fast repetition rate fluorometry. Limnology and Oceanography, 50(5): 1438 1446 Dubinsky Z, Stambler N, 2009. Photoacclimation processes in phytoplankton: mechanisms, consequences, and applications. Aquatic Microbial Ecology, 56(2 3): 163 176 Dugdale R C, Wilkerson F P, 1998. Silicate regulation of new production in the equatorial Pacific upwelling. Nature, 391(6664): 270 273 Field C B, Behrenfeld M J, Randerson J T et al, 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281(5374): 237 240 Figueroa F L, Conde A R, Gómez I, 2003. Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light conditions. Photosynthesis Research, 75(3): 259 275 Goto N, Kihira M, Ishida N, 2008. Seasonal distribution of photosynthetically active phytoplankton using pulse amplitude modulated fluorometry in the large monomictic Lake Biwa, Japan. Journal of Plankton Research, 30(10): 1169 1177 Häder D P, Porst M, Santas R, 1998. Photoinhibition by solar radiation in the Mediterranean alga Peyssonnelia squamata measured on site. Plant Ecology, 139(2): 167 175 Jakob T, Schreiber U, Kirchesch V et al, 2005. Estimation of chlorophyll content and daily primary production of the major algal groups by means of multiwavelength-excitation PAM chlorophyll fluorometry: performance and methodological limits. Photosynthesis Research, 83(3): 343 361 Kaiblinger C, Greisberger S, Teubner K et al, 2007. Photosynthetic efficiency as a function of thermal stratification and phytoplankton size structure in an oligotrophic alpine lake. Hydrobiologia, 578(1): 29 36 Kashino Y, Kudoh S, Hayashi Y et al, 2002. Strategies of phytoplankton to perform effective photosynthesis in the North Water. Deep Sea Research Part II: Topical Studies in Oceanography, 49(22): 5049 5061 Kiørboe T, 1993. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Advances in marine biology, 29(1): 72 Kolber Z, Zehr J, Falkowski P, 1988. Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem II. Plant Physiology, 88(3): 923 929 Kolber Z S, Barber R T, Coale K H et al, 1994. Iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature, 371(6493): 145 149 Kooten O, Snel J F, 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research, 25(3): 147 150 Lalli C M, Parsons T R, 1993. Biological Oceanography: An Introduction. Pergamon Press, New York, US: 18 19 Lippemeier S, Hintze R, Vanselow K et al, 2001. In-line recording of PAM fluorescence of phytoplankton cultures as a new tool for studying effects of fluctuating nutrient supply on photosynthesis. European Journal of Phycology, 36(1): 89 100 Logan B E, Alldredge A L, 1989. Potential for increased nutrient uptake by flocculating diatoms. Marine Biology, 101(4): 443 450 McMinn A, Hegseth E, 2004. Quantum yield and photosynthetic parameters of marine microalgae from the southern Arctic Ocean, Svalbard. Journal of the Marine Biological Association of the UK, 84(5): 865 871 Napoléon C, Claquin P, 2012. Multi-parametric relationships between PAM measurements and carbon incorporation, an in situ approach. PloS One, 7(7): e40284 Neale P J, Heaney S I, Jaworski G H, 1991. Response to high irradiance contribute to the decline of the spring diatom maximum. Limnology and Oceanography, 36(4): 761 768 Olaizola M, Yamamoto H Y, 1994. Short-term response of the diadinoxanthin cycle and fluorescence yield to high irradiance in chaetoceros muelleri (bacillariophyceae). Journal of Phycology, 30(4): 606 612 Papageorgiou G C, Tsimilli-Michael M, Stamatakis K, 2007. The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. Photosynthesis Research, 94(2): 275 290 Platt T, Gallegos C, Harrison W, 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of marine research, 38: 103 111 Raven J A, 1998. The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Functional Ecology, 12(4): 503 513 Rosenbergl G, 1993. Environmental control and potential fate of size-fractionated phytoplankton production in the Greenland Sea (75"N). Marine ecology progress series, 98: 297 313 Schreiber U, 2004. Pulse-amplitude (PAM) fluorometry and saturation pulse method: an overview. Chlorophyll a Fluorescence. Springer Netherlands, Berlin, Germany: 279 319 Schreiber U, Bilger W, Neubauer C, 1995. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. Ecological Studies: Analysis and Synthesis. Springer Berlin Heidelberg, Berlin, Germany: 100 Sosik H M, Olson R J, 2002. Phytoplankton and iron limitation of photosynthetic efficiency in the Southern Ocean during late summer. Deep Sea Research Part I: Oceanographic Research Papers, 49(7): 1195 1216 Strzepek R F, Harrison P J, 2004. Photosynthetic architecture differs in coastal and oceanic diatoms. Nature, 431(7009): 689 692 Suzuki K, Liu H, Saino T et al, 2002. East-west gradients in the photosynthetic potential of phytoplankton and iron concentration in the subarctic Pacific Ocean during early summer. Limnology and Oceanography, 1581 1594 Tamigneaux E, Legendre L, Klein B et al, 1999. Seasonal dynamics and potential fate of size-fractionated phytoplankton in a temperate nearshore environment
3 : 479 (Western Gulf of St Lawrence, Canada). Estuarine, Coastal and Shelf Science, 48(2): 253 269 Vaillancourt R D, Sambrotto R N, Green S et al, 2003. Phytoplankton biomass and photosynthetic competency in the summertime Mertz Glacier Region of East Antarctica. Deep Sea Research Part II: Topical Studies in Oceanography, 50(8): 1415 1440 White A J, Critchley C, 1999. Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. Photosynthesis Research, 59(1): 63 72 PHOTOSYNTHETIC CHARACTERISTICS OF PHYTOPLANKTON IN WINTER IN THE JIAOZHOU BAY LI Jun-Lei 1, 2, SUN Xiao-Xia 1 (1. Jiaozhou Bay Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China) Abstract The photosynthetic characteristics of phytoplankton in Chinese offshore was less known because the studies were few. In this paper, Phyto-PAM (Pulse Amplitude Modulation) was applied to measure F v /F m (maximum quantum yield of PSII), RLCs (rapid light curves), qp, and NPQ (photochemical and non-photochemical quenching of phytoplankton). Phytoplankton community structure, distribution, and abundance, and the environmental parameters were also investigated to study the in situ photochemical vitality of phytoplankton in December (wintertime) in the Jiaozhou Bay. Results show that the photochemical vitality and potential of phytoplankton were active during this period; F v /F m maintained at about 0.69; most of the light utilization efficiencies (α) were between 0.2 to 0.3. Typical RLCs suggest that saturated electron transport appeared at PAR of 1000μmol/(s m 2 ), when PAR rose to 1500μmol/(s m 2 ), retr (relative electron transport rate) began to decline, Φ PS (the actual photochemical efficiency of PS ) reduced to the minimum and NPQ increased. Excess light energy was dissipated in heat, protecting marine phytoplankton photosynthesis apparatus from the damage of high intensity irradiation. Though phytoplankton abundance was extremely low in December. Strong photochemical activity combined with relatively stable hydrological, biological environment, and rich nutrients would lead to the peak of phytoplankton abundance in February in the Jiaozhou Bay. Key words Jiaozhou Bay; phytoplankton; community structure; photosynthetic characteristics; nutrient