GB 50009 2001 Karman Kaimal Davenport 1 TSI IFA300 GB 50009 PSI 2001 DTCnet GB 50009 312. 5 Hz 20 s 2001 1 2-12 2 a b α = 0. 22 Fig. 2 Mean wind veloc



Similar documents
LaDefense Arch Petronas Towers 2009 CCTV MOMA Newmark Hahn Liu 8 Heredia - Zavoni Barranco 9 Heredia - Zavoni Leyva

Microsoft Word - chead095.doc

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 5 Oct /35 TU3521 P315.

适 用 性 甚 至 安 全 性 造 成 威 胁 [2] 因 振 动 过 度 导 致 的 事 故 时 有 发 生 2000 年, 伦 敦 千 禧 桥 由 于 行 人 行 走 时, 结 构 产 生 了 大 幅 振 动, 在 对 外 开 放 仅 两 天 后 就 被 迫 关 闭 [] ; 2011 年, 韩

Fig. 1 1 Plan of typical floor 2 Fig. 2 Analysis model Table 1 Period results s SATWE ETABS SAP2000 ABAQUS T

Fig. 1 Frame calculation model 1 mm Table 1 Joints displacement mm

0 1 / m m 2 ~ 3. 9m 3. 2m 1 / m 23. 6m mm 3 300mm 32. 1% 38. 1% 250mm C60 ~ C50 ~ C40 C

m m m ~ mm

m K K K K m Fig. 2 The plan layout of K K segment p

m 2, m 2,,,, 20. 5m,, 4. 6 m 2 3, m, 87200m 2,, ( ) Leoadaly 1 C40, 2200mm 2650mm, 30m, 49000kN 71000kN, 193m, 156m,,, 2 1,

#4 ~ #5 12 m m m 1. 5 m # m mm m Z4 Z5

總目186-運輸署

Mnq 1 1 m ANSYS BEAM44 E0 E18 E0' Y Z E18' X Y Z ANSYS C64K C70C70H C /t /t /t /mm /mm /mm C64K

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 6 Dec

the requirements of load - bearing rescue and turning of the large fire engine can be served as an outdoor safety area. 5 The second floor

cm /s c d 1 /40 1 /4 1 / / / /m /Hz /kn / kn m ~

doc

g 100mv /g 0. 5 ~ 5kHz 1 YSV8116 DASP 1 N 2. 2 [ M] { x } + [ C] { x } + [ K]{ x } = { f t } 1 M C K 3 M C K f t x t 1 [ H( ω )] = - ω 2

m m m

4 155 earthquake resilient structure 1 Yahya Kurama 2 Bulent Erkmen 3 Jose Restrepo 4 Brian Smith C40 HRB mm mm 125 mm 2

12-1b T Q235B ML15 Ca OH Table 1 Chemical composition of specimens % C Si Mn S P Cr Ni Fe

~ 4 mm h 8 60 min 1 10 min N min 8. 7% min 2 9 Tab. 1 1 Test result of modified

標準 BIG 中文字型碼表 A 0 9 B C D E F 一 乙 丁 七 乃 九 了 二 人 儿 入 八 几 刀 刁 力 匕 十 卜 又 三 下 丈 上 丫 丸 凡 久 么 也 乞 于 亡 兀 刃 勺 千 叉 口 土 士 夕 大 女 子 孑 孓 寸 小 尢 尸 山 川 工 己 已 巳 巾 干 廾

Torre Mayor Y A09 A m m m g γ

ABC Amber Text Converter

附件一 摘要格式範例

mm ~

T R 1 t z v 4z 2 + x 2 t = 2 槡 v t z 200 m/s x v ~

Ⅰ Ⅱ Ⅲ Ⅳ

~ ~ Y 3 X / / mm 400 ~ 700 C40 ~ C ~ 400 C40 ~ C ~

经 济 与 管 理 耿 庆 峰 : 我 国 创 业 板 市 场 与 中 小 板 市 场 动 态 相 关 性 实 证 研 究 基 于 方 法 比 较 视 角 87 Copula 模 型 均 能 较 好 地 刻 画 金 融 市 场 间 的 动 态 关 系, 但 Copula 模 型 效 果 要 好 于

VLBI2010 [2] 1 mm EOP VLBI VLBI [3 5] VLBI h [6 11] VLBI VLBI VLBI VLBI VLBI GPS GPS ( ) [12] VLBI 10 m VLBI 65 m [13,14] (referen


08陈会广

通 过 厂 变 带 电, 这 种 设 计 减 少 了 机 组 自 带 厂 用 电 负 荷 能 力, 降 低 了 锅 炉 满 足 FCB 时 最 低 稳 燃 工 况, 同 时 造 成 燃 烧 调 整 量 加 大 本 电 厂 在 FCB 试 验 时, 电 泵 不 联 启, 始 终 保 持 汽 泵 运 行


Microsoft Word - 1--齐继峰_new_.doc

Vol. 22 No. 4 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Aug GPS,,, : km, 2. 51, , ; ; ; ; DOI: 10.

标题

Microsoft Word D 孙竹森.doc

mm 110mm BRBF 4 HRB400 14mm mm MPa MPa BRBF BRBF BRB BRBF Fig. 1 1 Dormitory building before and a

1602 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS TQ A Prospect of the structure of oxygen generating

km km mm km m /s hpa 500 hpa E N 41 N 37 N 121

华山山前断裂中段晚第四纪活动的地貌表现及响应

[1-3] (Smile) [4] 808 nm (CW) W 1 50% 1 W 1 W Fig.1 Thermal design of semiconductor laser vertical stack ; Ansys 20 bar ; bar 2 25 Fig

79 PKPM2010 /SATWE Midas Civil K mm m kn / m kn /m 2 ZK kn /1. 6 m 200 /1. 6 /5. 55 = kn /

Revit Revit Revit BIM BIM 7-9 3D 1 BIM BIM 6 Revit 0 4D 1 2 Revit Revit 2. 1 Revit Revit Revit Revit 2 2 Autodesk Revit Aut

Microsoft Word tb 赵宏宇s-高校教改纵横.doc

定稿

m 6. 6m m m ~ m m 4. 0m ~ ~

<4D F736F F D20C8EDCDC1B5D8BBF9CDB2BBF9CAD4B2C9C6BDCCA8B5C4CACAD3C3D0D4B7D6CEF6>


% GIS / / Fig. 1 Characteristics of flood disaster variation in suburbs of Shang

Microsoft PowerPoint - Aqua-Sim.pptx

标题

240 生 异 性 相 吸 的 异 性 效 应 [6] 虽 然, 心 理 学 基 础 研 [7-8] 究 已 经 证 实 存 在 异 性 相 吸 异 性 相 吸 是 否 存 在 于 名 字 认 知 识 别 尚 无 报 道 本 实 验 选 取 不 同 性 别 的 名 字 作 为 刺 激 材 料, 通

第二部分

Transcription:

檮 檮 檮 檮 檮 檮 檮 檮 檮 檮 檮 檮 檮 檮 檮 檮 檮 檮 殑 檮 檮 殑 殑 殑 * 1 1 2 1. 4100822. EXPERIMENTAL INVESTIGATION ON WIND LOAD CHARACTERISTICS OF ROOF STRUCTURE FOR JILIN RAILWAY STATION Zhang Mingliang 1 Li Qiusheng 1 2 1. College of Civil EngineeringHunan UniversityChangsha 410082China 2. Department of Building and ConstructionCity University of Hong KongHongkongChina Abstract Based on the wind-tunnel test of rigid model of Jilin Railway Stationthe mean and fluctuating pressure coefficientsthe lift coefficients of the roof were presented and discussed with and without the surrounding buildings. Analyses of the characteristics of the local shape coefficient distributions and wind-induced responses were conducted. It was found that negative pressures suctionsoccurred on the railway station roof in generalthe values of the lift coefficients of the roof were negativeand high negative pressure coefficients occurred on the eavescantilevered roof and the bulge part of the roof on the main station building. Relatively smaller suctions occurred on the platform awnings of the station because of open surrounding configurations there. The surrounding buildings have some shielding effect on the local shape coefficients of the roofbut can not ignore the situation where they are increased in some areas. Wind-induced responses were significant on the corner of platform awningscantilevered roof and the bulge part of the roof. The conclusions obtained from this study are expected to be useful in the wind-resistant design of long-span steel roof structures with complex shapes. Keywords railway stationwind tunnel testlift coefficientshape coefficientwind-induced response 1 267 m 72 m 367 m 175 m 43 m 1 17 m * 90815030 1983 5 E - mailzml@ hnu. edu. cn 2011-10 - 25 Industrial Construction Vol. 42 No. 4 2012 2012 42 4 123

GB 50009 2001 Karman Kaimal Davenport 1 TSI IFA300 GB 50009 PSI 2001 DTCnet GB 50009 312. 5 Hz 20 s 2001 1 2-12 2 a b α = 0. 22 Fig. 2 Mean wind velocity and turbulence intensity profiles in the wind tunnel test Fig. 1 1 Wind tunnel scaled modelwith surrounding buildings Davenport - - - Kaimail 2 - -- -- -Karman 3 2. 1 2. 2 3 m 2 m 20 m ABS GB 50009 2001 C 5% α = 0. 22 5 C 2 1 782 4 z 0. 6 m v 362 28 10 m / s3 0. 6 m 30 n / u z 28 ns v n/ σ 2 50 516 n z u z S v n 0 ~ 360 σ 2 3 15 24 124 2012 42 4 Fig. 3 Wind speed PSD at top of the model 1 200

5 C prms 4 Fig. 4 Typical measuring point distribution on the wind tunnel scaled model of Jilin railway station Fig. 5 5 Definition of wind attack angles 3 μ smax μ smin μ smin 1 c pi t = p C it- p f 1 p 0 - p c pi t i C槇 p da cosθ C p i t f = A p 0 p A θ C槇 p Δc pi t = p u i t- p d i t 2 p 0 - p Δc pi t i p u i t p d i t M y + C y'+ K y = Pt 8 槡 C prms = N 125 k = 1 C pik - C p 2 / N - 1 C pik i N 3 C pmax C pmin C pmax = C p + gc prms 4a C pmin = C p - gc prms 4b C p g 13 g = 3. 5 rms μ si ( ) z μ si = C r pi z i 2α 5 C pi α z i z r 6 μ s = n μ si A i i = 1 6 n A i i = 1 4 5 6 C pi 7 Pt c pi t j 1 2 q j + 2ξ j ω j q' j + ω 2 j q j = F jt 3 M j 9

M j j F j t 210 j F j t = L1 L2 0 0 px y tφ j x ydxdy 10 px y t x y φ j x y j L 1 L 2 j F j t C Fj t C Fj t = F jt Q H B j 11 β = 240 6 Q H = 1 2 ρv2 H B j = L 1 L2 0 0 φ 2 j x ydxdy C Fj t Q H j 珔 a j 珔 a j = F j M j 2πf j 2 = Q H C Fj ^q j = m j 2πf j 2 Q H C Fj m j 2πf j 2 [ ] 1 + π f j S Fjf j 4ξ j σ 2 Fj 1 2 q j 12a 12b M j j m j ξ j j f j j 6 f js Fj f j j σ 2 Fj a β = 210 b β = 240 Fig. 6 Contour of the mean wind pressure coefficients for the critical wind direction f j σ Fj j 6 σ y = N ^q 2 j φ 2 j x y 13-1. 6 j = 1 槡 - 1. 0 σ y = N ω 4 j φ 2 j x y^q 2 j 14 j = 1 槡 4 4. 1 0. 8 β = 126 2012 42 4

- 1. 0 4 7-1. 2-0. 2 ~ - 1. 0 1 8 2 7 Fig. 8 Variation of mean wind pressure coefficients a b of typical measuring points with azimuths Fig. 7 Contours of the worst negative mean wind pressure coefficients distributions on the roof a b * A01 C15 A01 C15 A03 C18 A03 C18 A09 C19 A09 C19 A15 C20 A15 C20 3 A01 105 ~ 195-1. 8-2. 2 22. 2% 8b C15 8 8a 127

165 ~ 345 A01 β = 180 9b 4. 2 4. 3 5 9 a b * A01 C15 A01 C15 A03 C18 A03 C18 A09 C19 A09 C19 A15 C20 9 A15 C20 Fig. 9 Variation of fluctuating wind pressure coefficients of typical measuring point with azimuths 10 11 1 C15 A03 C15-2. 0-2. 7 35% A03 315-2. 4 2 11a C15 11b A01 115 ~ 225 1 9a 1 A01 24. 9% 128 2012 42 4

a b * C15 A01 C15 A01 C18 A03 A03 C18 C19 A09 C19 A09 C20 A15 10 C20 A15 Fig. 10 Variation of the mean local shape coefficients of typical measuring points with azimuths 31% C15 33. 3% 15. 5% 12 1 2 1 Table 1 Local shape coefficients of typical points 0 180 90 270 / % / % A01-1. 73-1. 30 24. 9-2. 71-1. 87 31. 0 A03-2. 60-2. 36 9. 2-3. 69-3. 43 7. 0 A09-1. 65-1. 33 19. 4-2. 17-1. 86 14. 3 A15-0. 97-0. 78 19. 6-1. 48-1. 38 6. 8 C15-2. 01-2. 68-33. 3-4. 33-5. 00-15. 5 C18-1. 79-1. 40 21. 8-2. 77-2. 39 13. 7 C19-1. 54-1. 26 18. 2-3. 29-2. 57 21. 9 C20-1. 47-1. 46 0. 7-2. 50-2. 55-2. 0 a b * C15 A01 C15 A01 C18 A03 C18A03 C19 A09 C19 A09 C20 A15 C20 A15 120 ~ 225 4. 4 270 ~ 360 12 180 11 Fig. 11 Variation of the minimum local shape coefficients of typical measurign points with azimuths 3 129

12 38% a b * Fig. 12 Variation of lift coefficients of net wind pressure on roofs with azimuths 5-2. 68 33. 3% 2-2. 4 2 7 8 2 Table 2 Comparison of wind-induced responses of typical point 9 / / / / / / mm mm % m s - 2 m s - 2 A01 1. 185 0. 705 68. 09 0. 030 0. 018 66. 67 A03 1. 338 1. 228 8. 96 0. 034 0. 031 9. 68 A09 0. 288 0. 559-48. 48 0. 007 0. 014-50. 00 A15 0. 975 1. 170-16. 67 0. 025 0. 030-16. 67 C15 1. 534 1. 286 19. 28 0. 240 0. 193 24. 35 C18 0. 761 0. 779-2. 31 0. 110 0. 112-1. 79 C19 1. 059 0. 774 36. 82 0. 153 0. 112 36. 61 C20 0. 652 0. 812-19. 70 0. 099 0. 124-20. 16 6 % 2 β = 210-1. 6 β = 240-1. 0 3 4 5 6-2. 01 1GB 50009 2001 S. 2. J. 2011 38 10 1 130 2012 42 4 1-6. 3. J. 2009 36 8 12-17. 30

4 1 4 2 30% 80% 100% 1. R. 2008. 50% 2. J. 2008 283 147-149. 3. J. 2006 231 9-12. 3 5 2007. 2 4. J. 2002 281 7-9. 6GB 50152 92 7GB 50010 2002. M. S. S. 130 4. 10. J. J. 2011 441 1-10. 5Fu J YXie Z NLi Q S. Equivalent Static Wind Loads on Long- Span Roof Structures J. Journal of Structural Engineering 2008 1341115-1128. 6Li CLi Q SHuang S Het al. Large Eddy Simulation of Wind Loads on a Long-Span Spatial Lattice Roof J. Wind and Structures2010 131 57-82. 20022012 1423-1428. 11. J. 2005 23 2 183-187. 12. J. 20033610 7-14. 13American Society of Civil Engineers. Wind Tunnel Studies of 7. Buildings and StructuresASCE Manuals and Reports on J. 2005234 490-495. Engineering Practice No. 67Task Committee on Wind Tunnel 8. Testing of Buildings and Structures M. Aerodynamics J. 2002 234 20-26. Committee Aerospace Division1999. 9. 14 ER H. M. J. 20053810 39-43. 1992. load 1. 2. 3. loading 30 2012 42 4