35 4 Vol.35 No Chinese Journal of Rock Mechanics and Engineering April 2016 FLAC 3D ( ) FLAC 3D CABLE ( ) ( ) U(i) U max (i) CABLE Fish

Similar documents
1704 岩 土 力 学 2012 年 以 底 板 已 经 成 为 巷 道 支 护 体 系 的 一 个 薄 弱 环 节, 是 造 成 巷 道 失 稳 的 关 键 因 素 底 臌 问 题 已 引 起 了 国 内 外 学 者 的 广 泛 重 视, 一 直 是 研 究 的 热 点 问 题 [4] 20 世

doc

压 缩 分 散 型 预 应 力 锚 索 近 年 来 有 了 较 多 的 应 用, 并 取 得 了 良 好 的 加 固 效 果 软 弱 岩 土 体 的 主 要 特 性 是 无 论 其 峰 值 强 度 还 是 残 余 强 度 都 是 很 低 的, 其 承 载 力 低 稳 定 性 差 压 缩 分 散 型

Microsoft Word 方刚_new_.doc

#4 ~ #5 12 m m m 1. 5 m # m mm m Z4 Z5

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip

m K K K K m Fig. 2 The plan layout of K K segment p

m m m ~ mm

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 6 Dec

successful and it testified the validity of the designing and construction of the excavation engineering in soft soil. Key words subway tunnel

1.0 % 0.25 % 85μm % U416 Sulfate expansion deformation law and mechanism of cement stabilized macadam base of saline areas in Xinjiang Song

Soliman Addenbrooke Potts Chehade Shahrour Fig. 1 Plan view for construction site m 2

KJWJ01 Fig. 1 Geological map of the Kajiwa landslide PDH01 60 ~ 70m 80 ~ 90m 80m 2 930m 556m 641m 598m m m 3 2 Ⅰ m 2

708 北 京 工 业 大 学 学 报 2011 年 以 往 的 试 验 结 果 进 行 对 比, 选 取 15D 20D 作 为 对 比 参 数, 试 件 参 数 见 表 1. Fig. 1 图 1 试 件 尺 寸 及 配 筋 图 ( mm) Geometry and reinforcement

增 刊 谢 小 林, 等. 上 海 中 心 裙 房 深 大 基 坑 逆 作 开 挖 设 计 及 实 践 745 类 型, 水 位 埋 深 一 般 为 地 表 下.0~.7 m 场 地 地 表 以 下 27 m 处 分 布 7 层 砂 性 土, 为 第 一 承 压 含 水 层 ; 9 层 砂 性 土

Fig. 1 Frame calculation model 1 mm Table 1 Joints displacement mm

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 5 Oct /35 TU3521 P315.

f 2 f 2 f q 1 q 1 q 1 q 2 q 1 q n 2 f 2 f 2 f H = q 2 q 1 q 2 q 2 q 2 q n f 2 f 2 f q n q 1 q n q 2 q n q n H R n n n Hessian

PLAXIS 2D m PLAXIS 3D Foundation mm ~ m ~ mm m m 312 m 200 mm 0. 98

LaDefense Arch Petronas Towers 2009 CCTV MOMA Newmark Hahn Liu 8 Heredia - Zavoni Barranco 9 Heredia - Zavoni Leyva

cm /s c d 1 /40 1 /4 1 / / / /m /Hz /kn / kn m ~

2 : 151 3),, 50 %,,, 4),,,,, 5),,,,,, 6),,, ; 2,,,, [ 3 ],,,,,,,,,,, 70 %, 2/ 3,,,,,,,,, 3, [4 ],,, [ 5 ], 3 1,,,, 1 [6 ] 1 ( ) Fig 1 The structure of

11 25 stable state. These conclusions were basically consistent with the analysis results of the multi - stage landslide in loess area with the Monte

4 155 earthquake resilient structure 1 Yahya Kurama 2 Bulent Erkmen 3 Jose Restrepo 4 Brian Smith C40 HRB mm mm 125 mm 2

) ( ) 2008 (300m ) 1 FRP [1 ] FRP 3 FRP FRP (CFRP) FRP CFRP (fiber reinforced polymer FRP) 60 % 160MPa 2400MPa [2 ] FRP 1 2mm FRP FRP 1 FRP C

Ansys /4 Ansys % 9 60% MU10 M m 1 Fig. Actual situation of measured building 1 Fig. 1 First floor plan of typical r

Microsoft Word D 孙竹森.doc

H 2 SO ml ml 1. 0 ml C 4. 0 ml - 30 min 490 nm 0 ~ 100 μg /ml Zhao = VρN 100% 1 m V ml ρ g

<4D F736F F D20B8DFB9B0B0D3B0D3F5E0D3A6C1A6CAB5B2E2D3EBBCC6CBE3BDE1B9FBB2EED2ECD4ADD2F2B7D6CEF62DD5C5B9FAD0C22E646F6378>


<4D F736F F D D F30335F BE47B1D3AA4E20A548BCC6ADC8A4E8AA6BB1B4B051A75AC474A5DBBC68AABAA44FBEC7A6E6ACB02E646F63>

18-陈亚莉.FIT)

[1-3] (Smile) [4] 808 nm (CW) W 1 50% 1 W 1 W Fig.1 Thermal design of semiconductor laser vertical stack ; Ansys 20 bar ; bar 2 25 Fig

/MPa / kg m - 3 /MPa /MPa 2. 1E ~ 56 ANSYS 6 Hz (a) 一阶垂向弯曲 (b) 一阶侧向弯曲 (c) 一阶扭转 (d) 二阶侧向弯曲 (e) 二阶垂向弯曲 (f) 弯扭组合 2 6 Hz

untitled

Maup re,,,,,, ;,,,,,,,,,, PC 1985 Cognac,, 80, [ 526 ], 420m 160m [ 728 ], PC,,,,,,,,, , [ 3 ] 3008mm, 488mm, 222mm, ( ) 2880mm , 4914, 6

~ ~ Y 3 X / / mm 400 ~ 700 C40 ~ C ~ 400 C40 ~ C ~

0 Kelly Fig. 1 Novel damping wall-structure connection diagram a b S1 c S Fig. 2 Desig

2 ( 自 然 科 学 版 ) 第 20 卷 波 ). 这 种 压 缩 波 空 气 必 然 有 一 部 分 要 绕 流 到 车 身 两 端 的 环 状 空 间 中, 形 成 与 列 车 运 行 方 向 相 反 的 空 气 流 动. 在 列 车 尾 部, 会 产 生 低 于 大 气 压 的 空 气 流

<4D F736F F D20C8EDCDC1B5D8BBF9CDB2BBF9CAD4B2C9C6BDCCA8B5C4CACAD3C3D0D4B7D6CEF6>

12-1b T Q235B ML15 Ca OH Table 1 Chemical composition of specimens % C Si Mn S P Cr Ni Fe


220 Key words: assembled monolithic concrete shear walls; precast two-way hollow slab; inner joint; slit wall; shear behavior 3 ~ % 80% [1] [

鋼構造論文集第 20 巻第 79 号 (2013 年 9 月 ) AN EVALUATION METHOD FOR ULTIMATE COMPRESSIVE STRENGTH OF STAINLESS STEEL PLATES BASED ON STRESS-STRAIN DIAGRAM * **

(1) ( 1965 ),, 1952 [9] 2.1 (2) 1 53 (E i ), 2 (P i ) (G E (G P, 31 (Q i ) 3, : G E (x,y)= (E i Q(x i, y i )) E i G P (x,y)=

θ 1 = φ n -n 2 2 n AR n φ i = 0 1 = a t - θ θ m a t-m 3 3 m MA m 1. 2 ρ k = R k /R 0 5 Akaike ρ k 1 AIC = n ln δ 2

~ 4 mm h 8 60 min 1 10 min N min 8. 7% min 2 9 Tab. 1 1 Test result of modified

定稿

标题

附件一 摘要格式範例

Mnq 1 1 m ANSYS BEAM44 E0 E18 E0' Y Z E18' X Y Z ANSYS C64K C70C70H C /t /t /t /mm /mm /mm C64K

~ ~ ~

TestNian

Linn Cove [1,2] 1(a)(b) Figg and Muller epoxy epoxy Linn Cove 183 [3] (a) (b) (c) (d) 1 43

标题

Ⅰ、Ⅱ类博士后中期考核表 贾布裕.docx

Fig. 1 1 a-a b-b a-a σ ma = MPa σ a = MPa σ 0a = MPa 0. 9 σ t =135 MPa b-b σ mb = MPa τ b = MPa σ 0b =

85% NCEP CFS 10 CFS CFS BP BP BP ~ 15 d CFS BP r - 1 r CFS 2. 1 CFS 10% 50% 3 d CFS Cli

Mechanical Science and Technology for Aerospace Engineering October Vol No. 10 Web SaaS B /S Web2. 0 Web2. 0 TP315 A

34 22 f t = f 0 w t + f r t f w θ t = F cos p - ω 0 t - φ 1 2 f r θ t = F cos p - ω 0 t - φ 2 3 p ω 0 F F φ 1 φ 2 t A B s Fig. 1

- 3 University of Bristol 1.1 FLAC 3D 1 FLAC 3D FLAC 3D 1

T K mm mm Q345B 600 mm 200 mm 50 mm 600 mm 300 mm 50 mm 2 K ~ 0. 3 mm 13 ~ 15 mm Q345B 25

g 100mv /g 0. 5 ~ 5kHz 1 YSV8116 DASP 1 N 2. 2 [ M] { x } + [ C] { x } + [ K]{ x } = { f t } 1 M C K 3 M C K f t x t 1 [ H( ω )] = - ω 2

0 1 / m m 2 ~ 3. 9m 3. 2m 1 / m 23. 6m mm 3 300mm 32. 1% 38. 1% 250mm C60 ~ C50 ~ C40 C

Fig. 1 Layout of Zipingpu Concrete Face Rock-fill Dam Fig. 2 Typical section of Zipingpu Concrete Face Rock-fill Dam gal

ANSYS WF 1 WF 2 2 SP 1 SP 2 1 NBF 1 1 Fig. 1 1 Connection details of specimens 1 Table 1 Specimen s

31 17 www. watergasheat. com km 2 17 km 15 km hm % mm Fig. 1 Technical route of p

6期

Microsoft Word - 11-秦华伟.doc

Vol. 22 No. 4 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Aug GPS,,, : km, 2. 51, , ; ; ; ; DOI: 10.

Hewes Billington Palermo Pampanin mm 180 mm 1240 mm mm 240 mm 7. 5 C40 10 mm HRB3

有限差分法计算软件在岩土工程中的应用

Technical Acoustics Vol.27, No.4 Aug., 2008,,, (, ) :,,,,,, : ; ; : TB535;U : A : (2008) Noise and vibr

TGF-β AngⅡ B SD ~ 220g SPF. SCXK No SYXK ~ 25 40% ~ 70% OR37G-C

1 Fig. 1 Perspective view of New CCTV Building 13008mm 2, 2811% ( ) 6, HRB400, 1187mm 2, 216% C60, 32095mm 2, Q345, 2 4,, Q345, Q390C, 2, 1 Q235, 5mm

79 PKPM2010 /SATWE Midas Civil K mm m kn / m kn /m 2 ZK kn /1. 6 m 200 /1. 6 /5. 55 = kn /

Microsoft Word - 刘 慧 板.doc

mm ~

% GIS / / Fig. 1 Characteristics of flood disaster variation in suburbs of Shang

THE APPLICATION OF ISOTOPE RATIO ANALYSIS BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETER A Dissertation Presented By Chaoyong YANG Supervisor: Prof.D

PCA+LDA 14 1 PEN mL mL mL 16 DJX-AB DJ X AB DJ2 -YS % PEN

3 : 505.,,,,,,,,,, 21 [1,2 ] , 21,, 21,, : [3 ]. 1. 3,, 10, 2 ( ),,, ; ; 40, [4 ]. 46, : (1),, (2) 16,,,,, (3) 17, (4) 18,, (5) 19,, (6) 20

8 : 731 Key words : narrow annular gap ; curvat ure ; critical heat flux ; annular flow,,,,,,,, ( ),, [122 ] kg/ (m 2 s) MPa

m m 5m ~ PTFE Q45B 1 670MPa PMSAP MIDAS SAP2000 MIDAS MIDAS s 0.

by industrial structure evolution from 1952 to 2007 and its influence effect was first acceleration and then deceleration second the effects of indust

0 ( steel p late shear wall with slits, SPW S) H itaka [ 1 ],, 1 SPW S:, ;, ;,, SPW S,,,, 1 3,,, SPW S,, SPW S, [ 8 ], SPW S,, 1 1 SPW S Fig. 1 Genera

通 过 厂 变 带 电, 这 种 设 计 减 少 了 机 组 自 带 厂 用 电 负 荷 能 力, 降 低 了 锅 炉 满 足 FCB 时 最 低 稳 燃 工 况, 同 时 造 成 燃 烧 调 整 量 加 大 本 电 厂 在 FCB 试 验 时, 电 泵 不 联 启, 始 终 保 持 汽 泵 运 行

2016 年第 9 期 李浩荡等 浅埋深综采工作面过集中煤柱压架机理分析 was formed and jammed the 80 of the powered supports applied in the fully mechanized coal mining face Therefore t

4

5 551 [3-].. [5]. [6]. [7].. API API. 1 [8-9]. [1]. W = W 1) y). x [11-12] D 2 2πR = 2z E + 2R arcsin D δ R z E = πr 1 + πr ) 2 arcsin

第 31 卷 Vol. 31 总第 122 期!"#$%&' Z[\ ]^ _` a, :b c $ ' X $, C $ b c! >, O 47 2$b c 1 X, 9?, S, 4b c =>01, ; O 47 ' 0 $ 01 #, 04b c

Microsoft Word - 001林本海.doc

SVM OA 1 SVM MLP Tab 1 1 Drug feature data quantization table

[1] Nielsen [2]. Richardson [3] Baldock [4] 0.22 mm 0.32 mm Richardson Zaki. [5-6] mm [7] 1 mm. [8] [9] 5 mm 50 mm [10] [11] [12] -- 40% 50%

Microsoft Word 李海波_new_.doc

40 强 度 与 环 境 2010 年 强 烈 的 振 动 和 冲 击 载 荷, 这 就 对 阀 门 管 路 等 部 件 连 接 的 静 密 封 结 构 提 出 了 很 高 的 要 求 某 液 体 火 箭 发 动 机 静 密 封 涉 及 高 压 超 低 温 大 尺 寸 三 个 严 酷 条 件, 具

第二十四屆全國學術研討會論文中文格式摘要

Revit Revit Revit BIM BIM 7-9 3D 1 BIM BIM 6 Revit 0 4D 1 2 Revit Revit 2. 1 Revit Revit Revit Revit 2 2 Autodesk Revit Aut

T R 1 t z v 4z 2 + x 2 t = 2 槡 v t z 200 m/s x v ~

m 2, m 2,,,, 20. 5m,, 4. 6 m 2 3, m, 87200m 2,, ( ) Leoadaly 1 C40, 2200mm 2650mm, 30m, 49000kN 71000kN, 193m, 156m,,, 2 1,

Transcription:

35 4 Vol.35 No.4 2016 4 Chinese Journal of Rock Mechanics and Engineering April2016 FLAC 3D ( 266590) FLAC 3D CABLE ()() U(i)U max (i) CABLE Fish FLAC 3D (1) (2) () (3) FLAC 3D FLAC 3D CABLE TU 43 A 10006915(2016)04075315 Implementation of bolt broken failure in FLAC 3D and its application LI WeitengYANG NingLI TingchunWANG GangMEI YuchunXUAN Chao (Shandong Provincial Key Laboratory of Civil Engineering Disaster PreventionShandong University of Science and Technology QingdaoShandong 266590China) AbstractIn order to solve the problem that CABLE element in FLAC 3D cannot be broken failurea broken criterion U(i)U max (i) was proposed and a modified mechanical model of CABLE element was established. The broken failure function was added to the modified model and the new model was embedded in the main program of FLAC 3D with the FISH language programming. The broken failure of bolt was realized at the single element leveland the macroscopic broken was finally achieved from parts to whole spontaneously. The tensile tests of bolt bar and the roadway bolt-shotcrete support tests were carried out. The load-displacement curve of the cable bar using the modified model presented the broken failure characteristicwhich was in accordance with the actual mechanical behavior of bolt rodand the quantitative broken effect was achieved and the response was sensitive. When the ground stress exceeded a certain valuethe modified bolts and anchor cables broke in the surrounding rockthe mechanical behavior conformed to the broken failure mechanism of bolt or cable anchor in the practical engineering. The simulation accuracy was improved. The application range of FLAC 3D was expandedand the simulation capability was enhanced. Key wordsgeotechnical engineeringflac 3D boltscable anchorscable elementbrokenmodified model 2015011920150318 (51279096)(BS2015NJ003) (2015RCJJ063) Supported by the National Natural Science Foundation of China(Grant No. 51279096)Foundation for Outstanding Young Scientist in Shandong Province(Grant No. BS2015NJ003) and Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents(Grant No. 2015RCJJ063) (1987)2004 E-maillwteng2007@163.com DOI10.13722/j.cnki.jrme.2015.0060

754 2016 1 () [1-4] ()() [5-11] 1 [81214] () [12-15] () () () FLAC 3D [16-19] CABLE J. Nemcik [4] FLAC 2D [20] FLAC 2D 3.3 FLAC 2D CABLE 2 FLAC 3D CABLE (a) (b) 2.1 CABLE CABLE FLAC 3D 2 [21-22] (c) (d) 1 [81214] Fig.1 Broken cable anchors and bolts [81214] m FLAC 3D CABLE () m m () () 2 CABLE [21-22] Fig2 Basic composition and mechanical model of CABLE element [21-22] CABLE CABLE 2 (Node)

35 4 FLAC 3D 755 (element) 3 [21-22] x x Node 1 Node 2 F tmax F() A EA z u 1 U() O 1 U() Node 1 y x F cmax x u 2 Node 2 u s F() 4 CABLE Fig.4 Mechanical model of CABLE element 3 CABLE [21-22] Fig.3 CableSEL coordinate system and relative shear displacement between cable and rock [21-22] KU ( F Fmax ) F Fmax ( FFmax ) (2) CABLE Node Node CABLE ( 2) u s ( 3) Node 3 CABLE 2 2 u 1 u 2 CABLE FLAC 3D [21] 2.2 CABLE CABLE 4 KU ( F Fmax ) F 0 ( FF ) max (1) U U F F F max CABLE 2 (1) (OA ) CABLE K AE K (3) L K A E L (2) ( A ) CABLE F max ( F tmax F cmax ) K 0 CABLE 4 FLAC 3D F max ()() () 2.3 CABLE FLAC 3D CABLE

756 2016 (1) CABLE (2) (3) 3 CABLE 3.1 CABLE () 0() 0 () FLAC 3D CABLE () Ui () U () i U(i)() max (CABLE element) FLAC 3D U max (i) CABLE 5 3 U() KU ( F F U U ) max max max max max F F ( F F U U ) 0 ( UU ) F tmax U cmax max F() A EA 1 O F cmax B C U() U tmax F() 5 FLAC 3D -CABLE Fig.5 Modified model of CABLE element in FLAC 3D (4) (1) (OA ) (2) (AB ) (3) ( B )() F K ΔF () ()() K 0 () 0 CABLE () 3.2 3.2.1 6 CABLE CID = j CABLE ( CABLE FLAC 3D ) FLAC 3D CABLE FLAC 3D i = i+1 stepi F j K j = 0 F jmax CABLE CABLE K j = 0F tj = 0 U ij (j = 1 n) 6 CABLE Fig.6 Implementation process of CABLE element modification U ij U jmax (1) i (step ii = 123) ( FLAC ) (2) K j 0 K j = 0 i = i+1 K j = 0 CABLE F j F jmax ( 1 0.9)( j CABLE ) i = i+1 F j λf jmax CABLE

35 4 FLAC 3D 757 (3) CABLE CABLE U ij (i j CABLE ) U ij U jmax CABLE K j = 0F j = 0 FLAC 3D CABLE U ij U jmax FLAC 3D CABLE CABLE U ij U ijmax K j = 0F j = 0( 5 B ) CABLE CABLE CABLE (CID) (ID) 3.2.2 FLAC 3D Fish CABLE 1 1 sc_length CABLE Fish U ij () 1 FLAC 3D CABLE Table 1 Some used element variables of CABLE element FLT sc_length(sc_ptr cp) no FLT sc_emod(sc_ptr cp) yes FLT sc_xcarea(sc_ptr cp) yes FLT sc_yten(sc_ptr cp) yes 1 sc_xcarea (SC_PTR cp) sc_emod(sc_ptr cp) sc_yten (SC_PTR cp) FLAC 3D xcarea = 0 emod = 0 yten = 0() () 4 4.1 1 22 mm 2 m 266 kn 25% 7 2.1 m 42 0.05 m (CID) 142 1 (CID1 CID42) 2 m(cid241) CID F 1 2 3 4 39 40 41 42 2m 0.05 m (Node) 7 Fig.7 Diagram of tensile test model of bolt bar 3.8 10 4 m 2 2.0 10 11 Pa 266 kn 2 CABLE ( ) CABLE () U max = 0.05 (1+0.25) = 0.062 5 m 1 10 5 m/step 15 000 8 CID2 9 10 11 15 000 12 CID2 8 2 3

758 2016 300 250 /kn 200 150 100 50 0 0 25 50 75 100 /mm 125 8 Fig.8 Load-displacement curves of bolts 12 (CID = 2) Fig.12 Curves of axial force with length of element CID is 2 9 Fig.9 Curves of element length with steps of some elements on bolts 10 Fig.10 Curves of axial force of some elements on bolts with loading steps 11 Fig.11 Axial force and length of each elements on bolts 40.74 mm 0 0 910 (step 0step 710) 710 CID2 266 kn CID2 4 200 CID2 (62.5 mm) 0( 10) CID2 0 CID2 11 CID2 115.3 mm 131% 266 kn CID2 178.8 mm( 62.5 mm 12) 0 UU max U max 62.5 mm 12 U 62.5 mm 0 4.2 2 1 () ()

35 4 FLAC 3D 759 2 4.2.1 2 12 1 16 CABLE 2 A1A6 CABLE 6 530 MPa 2 Table 2 Numerical experimentation schemes /MPa 1 5 2 10 3 15 4 20 5 25 6 30 A1 5 A2 10 A3 15 A4 20 A5 25 A6 30 13 0.8 m 0.9 m19 / 0.9 m 40 kn 3 1.6 m 2 m 100 kn C15 100 mm 8 mm G1G19 S1S3 4.2.2 40 m 40 m 0.8 m( ) 2.5 m 1.5 m 14(a) 3 2 3 4 100 mm 14(b)(d) 3 13 (mm) Fig.13 Profile of support scheme(unitmm)

760 2016 351 337 352 338 339 LINK 340 341 342 343 344 345 346 347 348 349 350 351 366 352 367 353 368 354 369 355 370 356 371 357 372 358 373 359 374 360 375 (a) (b) (c) CID LINK (d) 14 Fig.14 Numerical model of roadwaysurrounding rock and support of test scheme 3 Table 3 Mechanical parameters of surrounding rock and concrete spray layer E/MPa t /MPa c/mpa /() 2 500 0.27 0.8 1.0 28 25 500 0.20 2.0 3.0 50 50 000 0.25 4 Table 4 Strain softening parameters of mudstone 5 Table 5 Parameters of bolt and cable anchor S/cm 2 F s /kn E/GPa P/kN /% 3.80 700 200 100 5 3.80 266 200 40 20 6 0.9 m 1.4 m 2 m 3.9 m c/mpa /() 0 1.00 28.0 1 10 4 0.95 27.5 2 10 4 0.90 27.0 3 10 4 0.80 26.0 1 0.80 26.0 6 Table 6 Parameters of bolt and cable anchor models / /m / / / 60 0.1 1 39 20 24 0.1 1 14 9 4.2.3 (1) FLAC 3D -CABLE ( 0.4 m) 13 14 5 (2) 24 0.1 m 60 0.1 m ( ) (3) ( 14(c) CID = 337 ) 7 7 Table 7 Anchorage agent parameters /MPa /MPa /() 10 000 10 000 25 0 0 0 20 2 45

35 4 FLAC 3D 761 (4) ( 14(d) ) 3 (5) 7 CABLE LINK LINK LINK 14(b) LINK LINK 14(c) 337360 CID 351375 LINK CID337 LINK351 LINK352 LINK366LINK375 LINK353LINK365 (6) 7 (7) 5 14(d) 100 kn (8) 5 0.1 m U max = 0.12 m U max = 0.105 m 4.2.4 FLAC 3D 1 10 5 8 15 16 () 17 F max 8 Table 8 Statistics of calculation results of deformation and plastic zone volume of each schemes /mm /mm /mm /m 3 1 6.83 7.72 9.3 1.15 2 25.80 31.8 31.5 32.66 3 55.90 72.3 68.2 56.36 4 97.80 134.9 118.2 83.48 5 165.30 227.5 195.9 113.00 6 257.10 352.0 288.2 138.99 A1 6.80 7.7 9.3 1.15 A2 27.50 32.9 31.6 34.23 A3 58.80 75.5 68.6 58.25 A4 108.60 151.1 131.3 91.02 A5 187.70 254.5 209.6 124.07 A6 289.00 409.5 303.8 157.97 /mm 450 400 350 300 250 200 150 100 50 0 0 5 10 15 20 25 30 /MPa 15 Fig.15 Curves of maximum deformation of roadway varied 1.20 1.15 1.10 1.05 with ground stress 1.00 5 10 15 20 25 30 /MPa 16 Fig.16 Curves of modified influence coefficient varied with ground stress 4.2.4.1 (1) 5 MPa

762 2016 5 MPaF max = 484.3 kn (a) 1 10 MPaF max = 447.8 kn (b) 2 15 MPaF max = 468.2 kn (c) 3 5 MPaF max = 484.3 kn (d) A1 10 MPaF max = 251.6 kn (e) A2 15 MPaF max = 266 kn (f) A3 20 MPaF max = 519.8 kn (g) 4 25 MPaF max = 611.5 kn (h) 5 30 MPaF max = 685.5 kn (i) 6 20 MPaF max = 266 kn (j) A4 25 MPaF max = 114.6 kn (k) A5 17 Block State None shear-n shear-p shear-n shear-p tension-p shear-p shear-p tension-p 30 MPaF max = 166.9 kn (l) A6 Fig.17 Deformation shapeplastic zone and axial force diagram of bolt and cable anchor

35 4 FLAC 3D 763 1.0 17(a)(d) (2) 10 MPa 1.0 ( 17) (3) () 15 4.2.4.2 (1) 25 MPa 17(h) 17(k) 0 0 () (2) 17 5 MPa 10 MPa 15 MPa 20 MPa ()25 MPa () (3) 4.2.4.3 5 A5 18 19 5 A5 ( ) G3 CID2 CID19 (CID 1 ) S2 CID2 CID50 (CID 1 ) (a) (b) 18 ( 5) Fig.18 Curves of axial force and length of some CABLE elements varied with steps in the original model scheme 5 (a) (b) 19 ( A5) Fig.19 Curves of axial force and length of some CABLE elements varied with steps in the modified model scheme A5

764 2016 20 220.5 kn 221.9 kn (100 ) 170.6 mm 525.5 kn 150.3 mm 265.8 kn /kn 300 250 200 150 100 50 0 50 0 5 10 15 20 25 CID 20 25 MPa 3 # Fig.20 Axial forces of each elements on bolt #3 when geostress is 25 MPa 1819 (100 ) 211 105 mm 700 kn 0 311 120 mm 266 kn 0 0 309.2 271.9 mm 3.2 81.2 kn 2021 5 A5 G3 2 130.6 141.6 mm 30.6% 41.6% 20% 0 /mm 350 300 250 200 150 100 50 0 0 5 10 15 20 25 CID 21 25 MPa G3 Fig.21 Length of each element on bolt G3 when geoseress is 25 MPa 290.9 mm 120 mm 4.2.4.4 22 A5 ( ) A5 (G17/ G18)S2S1G19G2G4G3(G6/B7) G5G1 22 ( A5) Fig.22 Curves of the axial force of bolts and cable varied with steps in scheme A5 17

35 4 FLAC 3D 765 5 5.1 FLAC 3D CABLE (1) (2) 3 12 (3) (4) +++ () FLAC 3D 5.2 CABLE () 20 CID2 0 (1) 3 1 2 (2) () (3) ()U max U max = U max +ΔU (4) () (5) 18 ( 19) 200 (6)

766 2016 5.3 (1) FLAC 3D (2) CABLE (3) (4) (1)(2) FLAC 3D - CABLE (3)(4) FLAC 3D FLAC 3D 6 (1) FLAC 3D CABLE FLAC 3D (2) CABLE U(i) U max (i) CABLE CABLE 0 K 0 CABLE 0 (3) Fish FLAC 3D () () () (4) 10 MPa 1.0 (5) (6) FLAC 3D FLAC 3D CABLE (References) [1]. [J]. 2005 24(21)3 8033 811.(CHENG Liangkui. Research and new progress in ground anchorage[j]. Chinese Journal of Rock Mechanics and Engineering200524(21)3 8033 811.(in Chinese)) [2] KILIC AYASAR EATIS C D. Effect of bar shape on the pull-out capacity of fully-grouted rockbolts[j]. Tunnelling and Underground Space Technology200318(1)16. [3]. [J]. 200524(16)2 8032 813.(HE ManchaoXIE HepingPENG Supinget al. Study on rock mechanics in deep mining engineering[j]. Chinese Journal of Rock Mechanics and Engineering 200524(16)2 8032 813.(in Chinese)) [4] NEMCIK JMAA SAZIZ Net al. Numerical modeling of failure propagation in fully grouted rockbolts subjected to tensile load[j]. International Journal of Rock Mechanics and Mining Sciences2014

35 4 FLAC 3D 767 71293300. [5]. [J]. 2014 39(8)1 4091 417.(HE Manchao. Progress and challenges of soft rock engineering in depth[j]. Journal of China Coal Socicty2014 39(8)1 4091 417.(in Chinese)) [6]. [J]. 201031(1)144151.(LI Yingyong ZHANG Dingli ZHANG Hongbo et al. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[j]. Rock and Soil Mechanics201031(1)144151.(in Chinese)) [7]. [J]. 201129(3)348355.(LUO QiangLI Liang. Investigation into failure mechanism of prestressed anchor cables under concentrated tension in controlling landslide[j]. Journal of Mountain Science2011 29(3)348355.(in Chinese)) [8]. [J]. 201334(8)2 2712 279.(JIANG QuanCHEN JianlinFENG Xiatinget al. Failure format and interactive mechanism of prestressed thru-anchor cable in a large underground caverns[j]. Rock and Soil Mechanics201334(8)2 271 2 279. [9] CROSKY AHEBBLEWHITE B. Failure of rockbolts inunderground mines in Australia[J]. Practical Failure Analysis20033(2)7078. [10]. [J]. 200322(3)383386.(KONG HengWANG MengshuMA Nianjieet al. Study on breaking mechanism of rockbolt-end[j]. Chinese Journal of Rock Mechanics and Engineering 200322(3)383386.(in Chinese)) [11] HE M CGONG W lwang Jet al. Development of a novel energy-absorbing bolt with extraordinarily large elongation and constant resistance International[J]. Journal of Rock Mechanics and Mining Sciences2014672942. [12]. [J]. 201334(8)2 3032 308.(XIAO TongqiangLI HuaizhenXU Yinget al. Breaking mechanism of shoulder bolt of deep coal roadway in tectonic stress area and its control[j]. Rock and Soil Mechanics201334(8)2 3032 308.(in Chinese)) [13]. [J]. 200522(1)5558.(HE BingyinWANG Yu. Diagnoses of bolt and cable breaking in roadway along goof[j]. Ground Pressure and Strata Control200522(1)5558.(in Chinese)) [14]. [J]. 201338(9)1 5371 541.(WU YongzhengKANG Hongpu. Failure mechanism study on tail of high strength bolt[j]. Journal of China Coal Society201338(9)1 5371 541.(in Chinese)) [15]. [J]. 201431(1) 1721.(WANG WeijunLUO LiqiangHUANG Wenzhonget al. Study on supporting failure mechanism and reasonable length of anchor cable in thick soft-weak roof of high-stress coal roadway[j]. Journal of Mining and Safety Engineering201431(1)1721.(in Chinese)) [16]. FLAC 3D [J]. 200728(10)2 1232 127.(CHEN YuminLIU Hanlong. Development and implementation of Duncan-Chang constitutive model in FLAC 3D [J]. Rock and Soil Mechanics200728(10)2 123 2 127.(in Chinese)) [17]. FLAC 3D [J]. 200827(3)572 579.(LAN HangYAO JianguoZHANG Huaxinget al. Development and application of constitutive model of jointed rock mass damage due to mining based on FLAC 3D [J]. Chinese Journal of Rock Mechanics and Engineering200827(3)572579.(in Chinese)) [18]. FLAC 3D [J]. 201433(1)199208.(WANG ChunboDING WenqiQIAO Yafei. Development and application of hardening soil constitutive model in FLAC 3D [J]. Chinese Journal of Rock Mechanics and Engineering201433(1)199208.(in Chinese)) [19]. FLAC 3D [J]. 201435(6)1 8011 808.(TAO HuiCHEN YuminXIAO Yanget al. Development and verification of 3D bounding surface model for rockfill materials in FLAC 3D [J]. Rock and Soil Mechanics201435(6)1 8011 808.(in Chinese)) [20]. FLAC [J]. 200423(13)2 1972 200.(QI TaiyueLU ShiliangGAO Bo. Amended model of bolt element in FLAC and its application[j]. Chinese Journal of Rock Mechanics and Engineering 200423(13)2 1972 200.(in Chinese)) [21] Itasca Consulting Group Inc.. Fast language analysis of continua in 3 dimensions(version 3.0)[M]. [S.l.]Users Manual. Itasca Consulting GroupInc.20056265. [22]. FLAC/FLAC 3D [M]. 2013164167.(CHEN YuminXU Dingping. FLAC/FLAC 3D basis and engineering example[m]. BeijingChina Water Power Press2013164167.(in Chinese))