序言 Foreword 天通控股股份有限公司是浙江省 国家重点高新技术企业, 中国电子元件百强企业, 是中国首家自然人控股的上市公司 天通控股磁业公司 (TDG Ferrite Division) 作为天通控股的的直属事业体, 是一家软磁铁氧体磁芯专业化制造工厂, 建立于 984 年 经过 0 多年的努力, 已成为中国国内最大的软磁铁氧体生产基地, 工厂占地 500 余亩, 现有员工 3300 余人, 其中技术人员 60 人, 同时设有省级技术研发中心, 拥有先进的试验, 检测设备 公司于 00 年创办了 NiZn 铁氧体材料和磁芯的生产及开发部门 侧重开发和生产 NiZn 功率铁氧体 抗电磁干扰 (EMI) NiZn 铁氧体材料及磁芯 依托 TDG 品牌效应和中外技术的整合, 励图 4 年, 现已成功开发生产出 7 种材料 6 种磁芯类型 700 余个规格, 适合 SMD 的带电极磁芯及用户特殊要求的其它类型的磁芯 客户遍及亚洲欧美 产品规格小 精度高 性能稳, 深受客户信赖和好评 质量是我们一贯的坚持, 用户的满意是我们一贯的追求! As the National and provincial key hi-tech enterprise listed one of the top 00 Chinese electronic components enterprises TDG Holding Co., Ltd was the fi rst company going public in Shanghai SEM shares held by individuals. Belonging to the TDG Holding CO. Ltd, TDG Ferrite Division is specialized in the soft ferrite manufacturing, which was set up in 984. After twenty years hard working, now we have developed to be the biggest soft ferrite manufacturing base in China with total area covering about 40,0000 Sq meters and more than 3300 employees with 60 technical staff. TDG owns a provincial tech researching center which is equipped with the advanced test inspection instrument. Founded in the 00 the NiZn manufacturing and developing division is continuously specialized in researching and manufacturing the NiZn power ferrite core and EMI resistance material and cores. After 4 years working which based on the TDG brand, now we have total developed 7 kinds of materials as well as 6 kinds of the core more than 700 specifi cation applicated for the SMD pin core and others required by our our customers. Our customers spread all over the Asia, America and Europe. The small-sized, high-precised and stabilized products are warmly popularized among our customers. Best quality is TDG s principle and customer satisfaction is our goal.
目录 CONTENT 一 流程图 FLOW DIAGRAM 制造流程图 PRODUCTION FLOW DIAGRAM... 品管流程图 QC FLOW DIAGRAM... 二 材质及特性 MATERIALS AND CHARACTERISITICS... 三 产品系列 PRODUCT SERIES SMD Type Core... SMD Type Core... 7 SMD 3 Type Core... 9 SMD 4 Type Core... 33 DRR Type Core... 35 DRR PIN Type Core... 40 DRC Type Core... 44
目录 CONTENT DRS Type Core... 46 DRH Type Core... 47 SH Type Core... 48 RID Type Core... 49 UU Type Core... 5 RH Type Core... 5 RC Type Core... 54 R Type Core... 55 T Type Core...58 四 参考资料 Consult Data...(6-7)
FLOW DIAGRAM 流程图
STANDARD 规范 本公司对所生产的 NiZn 铁氧体材料等作了如下规范 : 材料命名 : Material naming: T N X Y 表示不同特性的材质表示初始磁导率表示 NiZn 铁氧体材料公司名称的第一个字母 The different characteristic materials in the same series Initial permeability NiZn ferrite material The fi rst letter of company title 例 : Example: T N 40 H 表示具有抗热冲击特性的材质表示 40 0, 故初始磁导率为 400 表示 NiZn 铁氧体材料天通的第一个拼音字母, 代表天通公司 The NiZn ferrite material of thermal shock resistance The initial permeability of 400 NiZn ferrite material The fi rst letter of company title! H B L P N G 抗热冲击系列 NiZn 铁氧体材质高饱和磁通密度系列 NiZn 铁氧体材质低功耗系列 NiZn 铁氧体材质高磁导率系列 NiZn 铁氧体材质通用系列 NiZn 铁氧体材质镁铜锌系列铁氧体材质 The NiZn ferrite material of thermal shock resistance The NiZn ferrite material of high saturation magnetic flux density The NiZn ferrite materi ial of low core loss The NiZn ferrite material of high initial permeability The commom NiZn fer rrite material The MgCuZn ferrite material
材质及特性 Material and Characteristics. 材质系列 Material Series: 材质 Material 初始磁导率 μi 饱和磁感应强度 Bs 相对损耗因子 tanδ/μi Initial permeability Flux density mt KA/m Relative loss factor 0-6 MHz 比温度系数 αμir 0-6 / (0-60 ) 居里温度 Tc Relative temperature Curie Electric Density factor of μ i temperature resistivity 密度 d g/cm 3 电阻率 p Ω m TNB 0±0% 430 4.0 65 0. >30 5.0 0 6 TN0H 00±0% 430 4.0 45 0. 45 >300 5.0 0 6 TN5H 50±0% 40 4.0 30 0.5 30 >300 5.0 0 6 TN5N 50±0% 360 4.0 0 0. 5 >00 5.0 0 6 TN30H 300±0% 45 4.0 30 0. 0 >60 5.0 0 6 TN3N 30±0% 340 4.0 30 0. 0 >50 5.0 0 6 TN40H 400±0% 40 4.0 5 0. 5 >50 5.0 0 6 TN40L 400±0% 440 4.0 0 0. 7 >30 5.0 0 6 TN45B 450±0% 440 4.0 5 0. 5 >60 5.0 0 6 TN65B 650±0% 400 4.0 7 0. 8 >90 5.0 0 6 TN65H 650±0% 400 4.0 5 0. 8 >85 5.0 0 6 TN80L 800±0% 40 4.0 3 0. 9 >90 5.0 0 6 TN80G 800±0% 70 4.0 30 0. 5 >0 4.9 0 5 TN90H 900±5% 340 4.0 0 0. 5 >40 5.0 0 6 TN00B 000±0% 30 4.0 0 0.05 5 >30 5.0 0 6 TN50P 500±0% 80 0.8 0 0. 3 >05 5.0 0 6 TN00B 000±0% 90 4.0 0 0.0 >00 5.0 0 6 注 : 通常特性指标的测试温度为 5, 特别标注除外! 所列材料的特性为该材料的典型值, 实际材料可能稍有不同, 测定样环 :T.7 7.9 6.5(mm) The value of material s characteristics is typical value.sample core:t.7 7.9 6.5(mm) 3
材质及特性 Material and Characteristics 材质 初始磁导率 μ i 饱和磁感应强度 Bs 相对损耗因子 tanδ/μ i 比温度系数 αμir 居里温度 Tc 密度 d 电阻率 p Material Initial permeability Flux density mt KA/m Relative loss factor 0-6 MHz Relative temperature factor of μ i 0-6 / (0-60 ) Curie temperature Density g/cm 3 Electric resistivity Ω. m TNB 0±0% 430 4.0 65 0. >30 5.0 0 6 TNB Complex permeability vs.frequency TNB Relative loss factor vs.frequency Complex permeability μ'/μ''.00e+03.00e+0.00e+0 μ' μ'' Relative loss factor tanδ/μi( 0-6 ).00E+03.00E+0.00E+0.00E+00 0. 0 00 000 Frequency(MHz).00E+00 0. 0 Frequency(MHz) TNB Initial permeability vs.temperature TNB Flux density vs.temperature 7.00E+0 5.00E+0 Initial permeability μi 6.00E+0 5.00E+0 4.00E+0 3.00E+0.00E+0.00E+0 Flux density Bm(mT) 4.50E+0 4.00E+0 3.50E+0 0.00E+00-0 40 8 0 0 60 00 40 Temperature( ) 3.00E+0 0 40 60 80 00 Temperature( )! 所列材料的特性为该材料的典型值, 实际材料可能稍有不同, 测定样环 :T.7 7.9 6.5(mm) The value of material s characteristics is typical value.sample core:t.7 7.9 6.5(mm) 4
材质及特性 Material and Characteristics 材质 初始磁导率 μ i 饱和磁感应强度 Bs 相对损耗因子 tanδ/μ i 比温度系数 αμir 居里温度 Tc 密度 d 电阻率 p Material Initial permeability Flux density mt KA/m Relative loss factor 0-6 MHz Relative temperature factor of μ i 0-6 / (0-60 ) Curie Density temperature g/cm 3 Electric resistivity Ω. m TN0H 00±0% 430 4.0 45 0. 45 >300 5.0 0 6 TN0H Complex permeability vs.frequency TN0H Relative loss factor vs. Frequency Complex permeability μ'/μ''.00e+03.00e+0.00e+0 μ' μ'' Relative loss factor tanδ/μi( 0-6 ).00E+04.00E+03.00E+0.00E+0.00E+00 0. 0 00 000 Frequency(MHz).00E+00 0. 0 Frequency(MHz) TN0H Initial permeability vs.temperature TN0H Flux density vs.temperature 6.00E+0 5.00E+0 Initial permeability μi 5.00E+0 4.00E+0 3.00E+0.00E+0.00E+0 Flux density Bm(mT) 4.50E+0 4.00E+0 3.50E+0 0.00E+00-0 0 60 00 40 80 0 60 300 Temperature( ) 3.00E+0 0 40 60 80 00 Temperature( )! 所列材料的特性为该材料的典型值, 实际材料可能稍有不同, 测定样环 :T.7 7.9 6.5(mm) The value of material s characteristics is typical value.sample core:t.7 7.9 6.5(mm) 5
材质及特性 Material and Characteristics 材质 初始磁导率 μ i 饱和磁感应强度 Bs 相对损耗因子 tanδ/μ i 比温度系数 αμir 居里温度 Tc 密度 d 电阻率 p Material Initial permeability Flux density mt KA/m Relative loss factor 0-6 MHz Relative temperature factor of μ i 0-6 / (0-60 ) Curie temperature Density g/cm 3 Electric resistivity Ω. m TN5H 50±0% 40 4.0 30 0.5 30 >300 5.0 0 6 TN5H Complex permeability vs.frequency.00e+03.00e+04 TN5H Relative loss factor vs.frequency Complex permeability μ'/μ' '.00E+0.00E+0 μ' μ'' Relative loss factor tanδ/μi( 0-6 ).00E+03.00E+0.00E+0.00E+00 0. 0 00 000 Frequency(MHz).00E+00 0. 0 Frequency(MHz) TN5H Initial permeability vs.temperature TN5H Flux density vs.temperature 6.00E+0 5.00E+0 Initial permeability μi 5.00E+0 4.00E+0 3.00E+0 Flux density Bm(mT) 4.50E+0 4.00E+0.00E+0 3.50E+0.00E+0 3.00E+0-0 0 60 00 40 80 0 60 300 0 40 60 80 00 Temperature( ) Temperature( )! 所列材料的特性为该材料的典型值, 实际材料可能稍有不同, 测定样环 :T.7 7.9 6.5(mm) The value of material s characteristics is typical value.sample core:t.7 7.9 6.5(mm) 6
材质及特性 Material and Characteristics 材质 初始磁导率 μ i 饱和磁感应强度 Bs 相对损耗因子 tanδ/μ i 比温度系数 αμir 居里温度 Tc 密度 d 电阻率 p Material Initial permeability Flux density mt KA/m Relative loss factor 0-6 MHz Relative temperature factor of μ i 0-6 / (0-60 ) Curie Density temperature g/cm 3 Electric resistivity Ω. m TN5N 50±0% 360 4.0 0 0. 5 >00 5.0 0 6 TN5N Complex permeability vs.frequency TN5N Relative loss factor vs.frequency.00e+03.00e+04 Complex permeability μ'/μ''.00e+0.00e+0 μ' μ'' Relative loss factor tanδ/μi( 0-6 ).00E+03.00E+0.00E+0.00E+00 0. 0 00 000 Frequency(MHz).00E+00 0..0 0.0 Frequency(MHz) 7.00E+0 TN5N Initial permeability vs.temperature 4.50E+0 TN5N Flux density vs.temperature Initial permeability μi 6.00E+0 5.00E+0 4.00E+0 3.00E+0.00E+0.00E+0 Flux density Bm(mT) 4.00E+0 3.50E+0 3.00E+0.50E+0 0.00E+00-0 0 0 40 60 80 00 0 40 60 80 00 0 Temperature( ).00E+0 0 40 60 80 00 Temperature( )! 所列材料的特性为该材料的典型值, 实际材料可能稍有不同, 测定样环 :T.7 7.9 6.5(mm) The value of material s characteristics is typical value.sample core:t.7 7.9 6.5(mm) 7
材质及特性 Material and Characteristics 材质 初始磁导率 μ i 饱和磁感应强度 Bs 相对损耗因子 tanδ/μ i 比温度系数 αμir 居里温度 Tc 密度 d 电阻率 p Material Initial permeability Flux density mt KA/m Relative loss factor 0-6 MHz Relative temperature factor of μ i 0-6 / (0-60 ) Curie temperature Density g/cm 3 Electric resistivity Ω. m TN30H 300±0% 45 4.0 30 0. 0 >60 5.0 0 6.00E+03 TN30H Complex permeability vs.frequency TN30H Relative loss factor vs.frequency.00e+04 Complex permeability μ'/μ''.00e+0.00e+0 μ' μ'' Relative loss factor tanδ/μi( 0-6 ).00E+03.00E+0.00E+0.00E+00 0. 0 00 000 Frequency(MHz).00E+00 0. 0 Frequency(MHz) 8.00E+0 TN30H Initial permeability vs.temperature 5.00E+0 TN30H Flux density vs.temperature 7.00E+0 Initial permeability μi 6.00E+0 5.00E+0 4.00E+0 3.00E+0 Flux density Bm(mT) 4.50E+0 4.00E+0.00E+0 3.50E+0.00E+0 0.00E+00-0 0 60 00 40 80 0 60 3.00E+0 0 40 60 80 00 Temperature( ) Temperature( )! 所列材料的特性为该材料的典型值, 实际材料可能稍有不同, 测定样环 :T.7 7.9 6.5(mm) The value of material s characteristics is typical value.sample core:t.7 7.9 6.5(mm) 8
材质及特性 Material and Characteristics 材质 初始磁导率 μ i 饱和磁感应强度 Bs 相对损耗因子 tanδ/μ i 比温度系数 αμir 居里温度 Tc 密度 d 电阻率 p Material Initial permeability mt Flux density KA/m Relative loss factor 0-6 MHz Relative temperature factor of μ i 0-6 / (0-60 ) Curie temperature Density g/cm 3 Electric resistivity Ω. m TN3N 30±0% 340 4.0 30 0. 0 >50 5.0 0 6.00E+03 TN3N Complex permeability vs.frequency.00e+04 TN3N Relative loss factor vs.frequency Complex permeability μ'/μ''.00e+0.00e+0 μ' μ'' Relative loss factor tanδ/μi( 0-6 ).00E+03.00E+0.00E+0.00E+00 0. 0 00 000 Frequency(MHz).00E+00 0. 0 Frequency(MHz) TN3N Initial permeability vs.temperature.0e+03 4.50E+0 TN3N Flux density vs.temperature Initial permeability μi.00e+03 8.00E+0 6.00E+0 4.00E+0 Flux density Bm(mT) 4.00E+0 3.50E+0 3.00E+0.00E+0.50E+0 0.00E+00-0 0 0 40 60 80 00 0 40 60 80 Temperature( ).00E+0 0 40 60 80 00 Temperature( )! 所列材料的特性为该材料的典型值, 实际材料可能稍有不同, 测定样环 :T.7 7.9 6.5(mm) The value of material s characteristics is typical value.sample core:t.7 7.9 6.5(mm) 9
材质及特性 Material and Characteristics 材质 初始磁导率 μ i 饱和磁感应强度 Bs 相对损耗因子 tanδ/μ i 比温度系数 αμir 居里温度 Tc 密度 d 电阻率 p Material Initial permeability Flux density mt KA/m Relative loss factor 0-6 MHz Relative temperature factor of μi 0-6 / (0-60 ) Curie Density temperature g/cm 3 Electric resistivity Ω. m TN40H 400±0% 40 4.0 5 0. 5 >50 5.0 0 6.00E+03 TN40H Complex permeability vs.frequency.00e+04 TN40H Relative loss factor vs.frequency Complex permeability μ'/μ''.00e+0.00e+0 μ' μ'' Relative loss factor tanδ/μi( 0-6 ).00E+03.00E+0.00E+00 0. 0 00 000 Frequency(MHz).00E+0 0. 0 Frequency(MHz) 9.00E+0 TN40H Initial permeability vs.temperature 5.00E+0 TN40H Flux density vs.temperature Initial permeability μi 8.00E+0 7.00E+0 6.00E+0 5.00E+0 4.00E+0 Flux density Bm(mT) 4.50E+0 4.00E+0 3.50E+0 3.00E+0 3.00E+0.00E+0.00E+0-0 0 60 00 40 80 0 60 Temperature( ).50E+0.00E+0 0 40 60 80 00 Temperature( )! 所列材料的特性为该材料的典型值, 实际材料可能稍有不同, 测定样环 :T.7 7.9 6.5(mm) The value of material s characteristics is typical value.sample core:t.7 7.9 6.5(mm) 0
材质及特性 Material and Characteristics 材质 初始磁导率 μ i 饱和磁感应强度 Bs 相对损耗因子 tanδ/μ i 比温度系数 αμir 居里温度 Tc 密度 d 电阻率 p Material Initial permeability mt Flux density KA/m Relative loss factor 0-6 MHz Relative temperature factor of μ i 0-6 / (0-60 ) Curie temperature Density g/cm 3 Electric resistivity Ω. m TN40L 400±0% 440 4.0 0 0. 7 >30 5.0 0 6 Complex Permeability μ'/μ" Initial permeability μi TN40L Complex Permeability vs.frequency.00e+03.00e+0.00e+0 0. 0 00 000 Frequency(MHz) TN40L Initial permeability vs.temperature.90e+03.70e+03.50e+03.30e+03.0e+03 9.00E+0 7.00E+0 5.00E+0 3.00E+0.00E+0-0 0 60 00 40 80 0 60 Temperature( ) μ' μ'' Relative loss factor tanδ/μi( 0-6 ) Flux density Bm(mT) TN40L Relative loss factor vs.frequency.00e+04.00e+03.00e+0.00e+0 5.00E+0 4.50E+0 4.00E+0 3.50E+0 3.00E+0.50E+0.00E+0 0. 0 Frequency(MHz) TN40L Flux density vs.temperature 0 40 60 80 00 Temperature( ) 6.00E+0 TN40L Core loss vs.temperature Core loss Pcv(mw/cm 3 ) 5.00E+0 4.00E+0 3.00E+0 0 40 60 80 00 0 40 Temperature( )! 所列材料的特性为该材料的典型值, 实际材料可能稍有不同, 测定样环 :T.7 7.9 6.5(mm) The value of material s characteristics is typical value.sample core:t.7 7.9 6.5(mm)
材质及特性 Material and Characteristics 材质 初始磁导率 μ i 饱和磁感应强度 Bs 相对损耗因子 tanδ/μ i 比温度系数 αμir 居里温度 Tc 密度 d 电阻率 p Material Initial permeability Flux density mt KA/m Relative loss factor 0-6 MHz Relative temperature factor of μ i 0-6 / (0-60 ) Curie Density temperature g/cm 3 Electric resistivity Ω. m TN45B 450±0% 440 4.0 5 0. 5 >60 5.0 0 6 TN45B Complex Permeability vs.frequency.00e+03.00e+04 TN45B Relative loss factor vs.frequency Complex Permeability μ'/μ''.00e+0.00e+0 μ' μ'' Relative loss factor tanδ/μi( 0-6 ).00E+03.00E+0.00E+0.00E+00 0. 0 00 000 Frequency(MHz).00E+00 0. 0 Frequency(MHz) TN45B Initial permeability vs.temperature TN45B Flux density vs.temperature.40e+03 5.00E+0 Initial permeability μi.0e+03.00e+03 8.00E+0 6.00E+0 4.00E+0 Flux density Bm(mT) 4.50E+0 4.00E+0 3.50E+0 3.00E+0.00E+0.50E+0 0.00E+00-0 0 60 00 40 80 0 60 Tempreature( ).00E+0 0 40 60 80 00 Temperature( )! 所列材料的特性为该材料的典型值, 实际材料可能稍有不同, 测定样环 :T.7 7.9 6.5(mm) The value of material s characteristics is typical value.sample core:t.7 7.9 6.5(mm)
材质及特性 Material and Characteristics 材质 初始磁导率 μi 饱和磁感应强度 Bs 相对损耗因子 tanδ/μ i 比温度系数 αμir 居里温度 Tc 密度 d 电阻率 p Material Initial permeability Flux density Relative loss factor Relative temperature factor of μ i Curie temperature Density Electric resistivity mt KA/m 0-6 MHz 0-6 / (0-60 ) g/cm 3 Ω. m TN65B 650±0% 400 4.0 7 0. 8 >90 5.0 0 6 TN65B Complex permeability vs.frequency TN65B Relative loss factor vs.frequency.00e+03.00e+04 Complex permeability μ'/μ''.00e+0.00e+0 μ' μ'' Relative loss factor tanδ/μi( 0-6 ).00E+03.00E+0.00E+00 0. 0 00 000 Frequency(MHz).00E+0 0. 0 Frequency(MHz) TN65B Initial permeability vs.temperature TN65B Flux density vs.temperature.60e+03 5.00E+0.40E+03 4.50E+0 Initial permeability μi.0e+03.00e+03 8.00E+0 Flux density Bm(mT) 4.00E+0 3.50E+0 3.00E+0 6.00E+0.50E+0 4.00E+0-0 0 60 00 40 80 0 Temperature( ).00E+0 0 40 60 80 00 Temperature( )! 所列材料的特性为该材料的典型值, 实际材料可能稍有不同, 测定样环 :T.7 7.9 6.5(mm) The value of material s characteristics is typical value.sample core:t.7 7.9 6.5(mm) 3
材质及特性 Material and Characteristics 材质 初始磁导率 μ i 饱和磁感应强度 Bs 相对损耗因子 tanδ/μ i 比温度系数 αμir 居里温度 Tc 密度 d 电阻率 p Material Initial permeability Flux density mt KA/m Relative loss factor 0-6 MHz Relative temperature factor of μ i 0-6 / (0-60 ) Curie Density temperature g/cm 3 Electric resistivity Ω. m TN65H 650±0% 400 4.0 5 0. 8 >85 5.0 0 6 Complex permeability μ'/μ'' TN65H Complex permeability vs.frequency.00e+04.00e+03.00e+0.00e+0.00e+00 0. 0 00 000 Frequency(MHz) μ' μ'' Relative loss factor tanδ/μi( 0-6 ) TN65H Relative loss factor vs.frequency.00e+04.00e+03.00e+0.00e+0 0. 0 Frequency(MHz).60E+03 TN65H Initial permeability vs.temperature 5.00E+0 TN65H Flux density vs.temperature Initial permeability μi.40e+03.0e+03.00e+03 8.00E+0 6.00E+0 4.00E+0.00E+0-0 0 60 00 40 80 0 Temperature( ) Flux density Bm(mT) 4.50E+0 4.00E+0 3.50E+0 3.00E+0.50E+0.00E+0 0 40 60 80 00 Temperature( )! 所列材料的特性为该材料的典型值, 实际材料可能稍有不同, 测定样环 :T.7 7.9 6.5(mm) The value of material s characteristics is typical value.sample core:t.7 7.9 6.5(mm) 4
材质及特性 Material and Characteristics 材质 初始磁导率 μ i 饱和磁感应强度 Bs 相对损耗因子 tanδ/μ i 比温度系数 αμir 居里温度 Tc 密度 d 电阻率 p Material Initial permeability mt Flux density KA/m Relative loss factor 0-6 MHz Relative temperature factor of μ i 0-6 / (0-60 ) Curie temperature Density g/cm 3 Electric resistivity Ω. m TN80L 800±0% 40 4.0 3 0. 9 >90 5.0 0 6 Complex permeability μ'/μ'' TN80L Complex permeability vs.frequency.00e+04.00e+03.00e+0.00e+0 μ' μ'' 0. 0 00 000 Frequency(MHz) Relative loss factor tanδ/μi( 0-6 ).00E+04.00E+03.00E+0.00E+0.00E+00 TN80L Relative loss factor vs.frequency 0. 0 Frequency(MHz) Initial permeability μi TN80L Initial permeability vs.temperature.80e+03.50e+03.0e+03.90e+03.60e+03.30e+03.00e+03 7.00E+0 4.00E+0.00E+0-0 0 0 40 60 80 00 0 40 60 80 00 Temperature( ) Flux density Bm(mT) TN80L Flux density vs.temperature 5.00E+0 4.50E+0 4.00E+0 3.50E+0 3.00E+0.50E+0.00E+0 0 40 60 80 00 Temperature( ) TN80L Core loss vs.temperature Core loss Pcv(mw/cm 3 ) 5.00E+0 4.00E+0 3.00E+0.00E+0 0 40 60 80 00 0 40 Temperature( )! 所列材料的特性为该材料的典型值, 实际材料可能稍有不同, 测定样环 :T.7 7.9 6.5(mm) The value of material s characteristics is typical value.sample core:t.7 7.9 6.5(mm) 5
材质及特性 Material and Characteristics 材质 初始磁导率 μ i 饱和磁感应强度 Bs 相对损耗因子 tanδ/μ i 比温度系数 αμir 居里温度 Tc 密度 d 电阻率 p Material Initial permeability Flux density mt KA/m Relative loss factor 0-6 MHz Relative temperature Curie Density factor of μ i temperature 0-6 / (0-60 ) g/cm 3 Electric resistivity Ω. m TN80G 800±0% 70 4.0 30 0. 5 >0 4.9 0 5 Complex permeability μ'/μ" TN80G Complex permeability vs.frequency.00e+03.00e+0.00e+0 μ' μ'' Relative loss factor tanδ/μi( 0-6 ).00E+03.00E+0.00E+0 TN80G Relative loss factor vs.frequency.00e+00 0. 0 00 000 Frequency(MHz) TN80G Initial permeability vs.temperature 9.00E+0.00E+00 0.0 0. Frequency(MHz) 3.00E+0 TN80G Flux density vs.temperature 8.00E+0 Intial permeability μi 7.00E+0 6.00E+0 5.00E+0 4.00E+0 3.00E+0 Flux density Bm(mT).50E+0.00E+0.00E+0.50E+0.00E+0 0.00E+00.00E+0-0 0 60 00 40 Temperature( ) 0 40 60 80 00 Temperature( )! 所列材料的特性为该材料的典型值, 实际材料可能稍有不同, 测定样环 :T.7 7.9 6.5(mm) The value of material s characteristics is typical value.sample core:t.7 7.9 6.5(mm) 6
材质及特性 Material and Characteristics 材质 初始磁导率 μ i 饱和磁感应强度 Bs 相对损耗因子 tanδ/μ i 比温度系数 αμir 居里温度 Tc 密度 d 电阻率 p Material Initial permeability Flux density mt KA/m Relative loss factor 0-6 MHz Relative temperature factor of μi 0-6 / (0-60 ) Curie temperature Density g/cm 3 Electric resistivity Ω m TN90H 900±5% 340 4.0 0 0. 5 >40 5.0 0 6 TN90H Complex permeability vs.frequency TN90H Relative loss factor vs.frequency Complex permeability μ'/μ''.00e+04.00e+03.00e+0.00e+0 μ' μ'' Relative loss factor tanδ/μi( 0-6 ).00E+04.00E+03.00E+0.00E+00 0. 0 00 000 Frequency(MHz).00E+0 0. 0 Frequency(MHz) TN90H Initial permeability vs.temperature TN90H Flux density vs.temperature.90e+03 4.00E+0.70E+03 3.50E+0 Initial permeability μi.50e+03.30e+03.0e+03 9.00E+0 7.00E+0 5.00E+0 Flux density Bm(mT) 3.00E+0.50E+0.00E+0.50E+0 3.00E+0.00E+0-0 0 0 40 60 80 00 0 40 60 80 0 40 60 80 00 Temperature( ) Temperature( )! 所列材料的特性为该材料的典型值, 实际材料可能稍有不同, 测定样环 :T.7 7.9 6.5(mm) The value of material s characteristics is typical value.sample core:t.7 7.9 6.5(mm) 7
材质及特性 Material and Characteristics 材质 初始磁导率 μ i 饱和磁感应强度 Bs 相对损耗因子 tanδ/μ i 比温度系数 αμir 居里温度 Tc 密度 d 电阻率 p Material Initial permeability Flux density mt KA/m Relative loss factor 0-6 MHz Relative temperature factor of μ i 0-6 / (0-60 ) Curie Density temperature g/cm 3 Electric resistivity Ω. m TN00B 000±0% 30 4.0 0 0.05 5 >30 5.0 0 6 TN00B Complex permeability vs.frequency.00e+04.00e+04 TN00B Relative loss factor vs.frequency Complex permeability μ'/μ''.00e+03.00e+0.00e+0 μ' μ'' Relative loss factor tanδ/μi( 0-6 ).00E+03.00E+0.00E+0.00E+00 0. 0 00 000 Frequency(MHz).00E+00 0.0 0. 0 Frequency(MHz).80E+03 TN00B Initial permeability vs.temperature 4.00E+0 TN00B Flux density vs.temperature Initial permeability μi.60e+03.40e+03.0e+03.00e+03 8.00E+0 6.00E+0 4.00E+0.00E+0-0 0 0 40 60 80 00 0 40 60 Temperature( ) Flux density Bm(mT) 3.50E+0 3.00E+0.50E+0.00E+0.50E+0.00E+0 0 40 60 80 00 Temperature( )! 所列材料的特性为该材料的典型值, 实际材料可能稍有不同, 测定样环 :T.7 7.9 6.5(mm) The value of material s characteristics is typical value.sample core:t.7 7.9 6.5(mm) 8
材质及特性 Material and Characteristics 材质 初始磁导率 μ i 饱和磁感应强度 Bs 相对损耗因子 tanδ/μi 比温度系数 αμir 居里温度 Tc 密度 d 电阻率 p Material Initial Permeability Flux density mt KA/m Relative loss factor 0-6 MHz Relative temperature Curie Density factor of μi Temperature 0-6 / (0-60 ) g/cm 3 Electric resistivity Ω. m TN50P 500±0% 80 0.8 0 0. 3 >05 5.0 0 6 TN50P Complex permeability vs.frequency.00e+04.00e+04 TN50P Relative loss factor vs.frequency Complex permeability μ'/μ''.00e+03.00e+0 μ' μ'' Relative loss factor tanδ/μi( 0-6 ).00E+03.00E+0.00E+0.00E+0 0. 0 Frequency(MHz).00E+00 0. 0 Frequency(MHz) TN50P Initial permeability vs.temperature.00e+03 3.00E+0 TN50P Flux density vs.temperature Initial permeability μi.60e+03.0e+03 8.00E+0 4.00E+0 Flux density Bm(mT).50E+0.00E+0.50E+0 0.00E+00-0 0 0 40 60 80 00 0 Temperature( ).00E+0 0 40 60 80 00 Temperature( )! 所列材料的特性为该材料的典型值, 实际材料可能稍有不同, 测定样环 :T.7 7.9 6.5(mm) The value of material s characteristics is typical value.sample core:t.7 7.9 6.5(mm) 9
材质及特性 Material and Characteristics 材质 初始磁导率 μ i 饱和磁感应强度 Bs 相对损耗因子 tanδ/μ i 比温度系数 αμir 居里温度 Tc 密度 d 电阻率 p Material Initial permeability Flux density mt KA/m Relative loss factor 0-6 MHz Relative temperature Curie factor of μi temperature 0-6 / (0-60 ) Density g/cm 3 Electric resistivity Ω. m TN00B 000±0% 90 4.0 0 0.0 >00 5.0 0 6 TN00B Complex permeability vs.frequency.00e+04.00e+03 TN00B Relative loss factor vs.frequency Complex permeability μ'/μ''.00e+03.00e+0.00e+0 μ' μ'' Relative loss factor tanδ/μi( 0-6 ).00E+0.00E+0.00E+00 0. 0 00 000 Frequency(MHz).00E+00 0.0 0. 0 Frequency(MHz) TN00B Initial permeability vs.temperature 3.00E+03 3.50E+0 TN00B Flux density vs.temperature.50e+03 3.00E+0 Initial permeability μi.00e+03.50e+03.00e+03 Flux density Bm(mT).50E+0.00E+0.50E+0.00E+0 5.00E+0 5.00E+0 0.00E+00 0.00E+00-0 0 0 40 60 80 00 0 Temperature( ) 0 40 60 80 00 Temperature( )! 所列材料的特性为该材料的典型值, 实际材料可能稍有不同, 测定样环 :T.7 7.9 6.5(mm) The value of material s characteristics is typical value.sample core:t.7 7.9 6.5(mm) 0
SMD Type Core SMD TYPE CORE DRR TYPE CORE 命名表示 : Ordering Core System: TN5H DRR-AxB-nCnHnT-XPAI 芯径大小 ( 例 :.5PAI-- 表示芯径为.5mm) ( SIZE) 凸台凸台数空穴 孔空穴 孔数槽槽数高度外径形状材质 (TONGUE) (TONGUE QTY) (HOLE) (HOLE QTY) (CHAMFER) (CHAMFER QTY) (HEIGHT) (OUTER DIAMETER) (TYPE) (MATERIAL)
SMD Type Core RI TYPE CORE 命名表示 : Ordering Core System: TN40H RI - A - B - C S W E-EL DRB TYPE CORE 命名表示 : Ordering Core System: TN5H DRB-A-A B-nCnT 电极 边 菱形 窗口 (EDGE) (WINDOW) 特殊 (SPECIAL) 有内高 段差 凸台或标记等 内径 高度 外径 形状 材质 (ELECTRODE) (INNER DIAMETER) (HEIGHT) (OUTER DIAMETER) (TYPE) (MATERIAL) 凸台凸台数量槽槽数高度小头外径大头外径形状材质 (TONGUE) (TONGUE QTY) (CHAMFER) (CHAMFER QTY) (HEIGHT) (OUTER DIAMETER) (OUTER DIAMETER) (TYPE) (MATERIAL)
SMD Type Core FIG FIG FIG B A C C FIG FIG FIG Dimensions Part NO. RI-3.-0.6-.4W Dimensions(mm) A(A) A B C(C) D E FIG 3.±0. 0.6±0..4±0. A- RI-3.5-.5-.7W 3.5±0..5±0.07.7±0. A- RI-3.8-0.7-3.W 3.8±0. 0.7±0.07 3.±0. A- RI-3.8-.-3.W 3.8±0..±0.07 3.±0. A- RI-4.-.5-3.05W 4.±0.07.5+0. 3.05±0.07 A- RI-5.9-.8-4.9W 5.9 +0.05-0.5.8±0. 4.9 +0. -0.5 A- RI-5.9-.-4.9W 5.9 +0.05-0.5.±0. 4.9 +0. -0.5 A- RI-6.8-.95-5.7W 6.8-0.05 +0.5.95±0.5 5.7 +0.05-0. A- RI-6.8-.5-5.7W 6.8-0.05 +0.5.5±0.5 5.7 +0.05-0. A- RI-6.8-.35-5.7W 6.8-0.05 +0.5.35±0.5 5.7 +0.05-0. A- RI-6.8-3.7-5.8W 6.8±0. 3.7±0.5 5.8±0. A- RI-7.0-.-6.0W 7.0 +0.0-0..±0. 6.0 +0.0-0.4 A- RI-9.8-3.0-8.0W 9.8 +0.06-0. 3.0±0. 8.0±0. A- RI-9.8-3.8-8.0W 9.8 +0.06-0. 3.8±0. 8.0±0. A- RI-.-4.-0.W.±0.5 4.±0.5 0.±0.5 A-6 RI-.-5.3-0.W.±0. 5.3±0.5 0.±0.5 A-6 RI-.-6.3-0.W.±0. 6.3±0.5 0.±0.5 A-6 RI-.5-4.-9.8.5±0. 4.±0.5 9.8 +0. -0.5 A-4 3
SMD Type Core FIG FIG( DRB-A-A B-S FIG FIG( DRR-A B FIG FIG FIG Dimensions Part NO. Dimensions(mm) A(A) A B C D E F FIG DRB-.6-.0 0.9-0.9PAI.6±0.05.0±0.05 0.9±0.05 0.9±0.05 (0.5) 0.4±0.05 (0.5) B- DRB-3.5-.6.55-.5PAI 3.5±0..6±0..55±0.07.5±0.07 (0.3) 0.95±0.07 (0.3) B- DRB-3.5-.6.0-.PAI 3.5±0.07.6±0.07.0±0.07.±0.07 0.8±0.07 0.44±0.07 0.8±0.07 B- DRB-3.5-.6.5-.PAI 3.5±0..6±0..5±0..±0. 0.4±0. 0.7±0. 0.4±0. B- DRB-4.-.9.8-S 4.±0.07.9±0.07.8±0..3±0.07 0.3±0.07.±0.07 0.3±0.07 B- DRR-4.5.0-.8PAI 4.5±0.07.0±0..8±0. 0.45±0..±0. 0.45±0. B-4 DRR-4.5.4-.0PAI 4.5±0..4+0-0..0±0.5 (0.4).5±0.5 (0.4) B-4 DRR-5.4.5-4C-.6PAI 5.4±0.5.5±0.5.6±0.5 (0.53).±0.5 (0.5) B-5 DRR-5.4.45-4C-.6PAI 5.4±0.5.45±0.5.6±0.5 (0.5).45±0.5 (0.5) B-5 DRR-5.4.65-4C-.4PAI 5.4±0..65±0.5.4±0.5 (0.65).35±0.5 (0.65) B-5 DRR-5.4 4-4C-.5PAI 5.4±0. 4.0±0.5.5±0.5 0.75±0..5±0.5 0.75±0. B-5 DRR-5.5.4-.4PAI 5.5±0..4±0.05.4±0. (0.4) 0.6±0. (0.4) B-4 DRR-7.4 3.-4.6PAI 7.4±0. 3.±0. 4.6±0. 0.7±0..8±0. 0.7±0. B-4 DRR-7.4 4-4.5PAI 7.4±0. 4.0±0. 4.5±0. 0.8±0..4±0. 0.8±0. B-4 DRR-9.6 4.3-4.0PAI 9.6±0.5 4.3±0.5 4.0±0.5 0.85±0..6±0.5 0.85±0. B-4 DRR-9.6 5.5-5.3PAI 9.6±0. 5.5±0.5 5.3±0.5 0.95±0. 3.6±0.5 0.95±0. B-4 DRR-9.6 6.5-5.5PAI 9.6±0.5 6.5±0.5 5.5±0.5.05±0. 4.4±0.5.05±0. B-4 DRR-8.5-5.5PAI 8.0±0..5±0. 5.5±0..75±0.5 9.0±0..75±0.5 B-4 4
SMD Type Core Dimensions Part NO. RI-.7-5.6-.W RI-5-7-.4 RI-6-4-3.6W RI-8-8.7-4 RI-6.-.-4.5SWE Dimensions(mm) A(A) A B C(C) D E FIG.7±0. 5.0±0.3 6.0±0.5 8.0±0.3 6.±0.5 5.8±0.5 5.6±0. 7.0±0.3 4.0±0.5 8.7±0.3.±0.5.±0..4 +0.3-0. 3.6±0.5 4.0±0. 4.5±0.5 A- A- A- A- A-5 RI-7.8-3.-6.5SWE 7.8±0. 7.0±0. 3.±0.5 6.5±0. A-5 RI-0-3.-8.3SWE 0.0±0. 9.0±0. 3.±0.5 8.3±0. A-3 5
SMD Type Core Dimensions Part NO. DRR-9.85 5.8-6.PAI Dimensions(mm) A(A) A B C D E F FIG 9.85±0.5 5.8±0. 6.±0.5.±0.5 3.6±0..±0.5 B-4 DRR-0. 7-CT-7.5PAI 0.±0. 7.0±0.3 7.5±0. (.0).5±0..5±0.5 B-6 DRR- 3-4CH-7.6PAI.0±0. 3.0±0.5 7.6±0..0±0. 9.0±0..0±0. B-7 DRR-.5 8.5-CT-8.5PAI.5±0. 8.5±0.4 8.5±0.5 (.0) 4.0±0..5±0.5 B-6 DRC-5.8-4.0 3.-EL 5.8±0.5 4.0±0.5 3.±0.5.8±0.5 0.5±0.5.7±0.5.0±0.5 B-3 DRC-7.8-5.7 4.5-EL 7.8±0.5 5.7±0.5 4.5±0.5 3.5±0.45 0.9±0.5.3±0.5.3±0.5 B-3 DRC-0-7.0 5.-EL 0.0±0.5 7.0±0.5 5.±0.5 3.8±0.5.±0.5.4±0.5.7±0.5 B-3 6
SMD Type Core FIG FIG FIG FIG FIG Dimensions Dimensions(mm) Part NO. A(A) A A3 B C(C) FIG RI-3.0-0.95-.4SWE 3.0±0. 3.0±0. 0.95±0..4±0. A- RI-3.0-.5-.4SWE 3.0±0. 3.0±0..5±0..4±0.07 A- RI-3.0-.65-.4SWE 3.0±0. 3.0±0..65±0..4±0.07 A- RI-3.8-.35-3.SWE 3.8±0. 3.8±0. 4.0±0..35±0. 3.±0. A- RI-3.8-.5-.9SWE-EL 3.8±0. 3.8±0. 4.0±0..5±0..9±0. A-4 RI-4.7-.45-3.9SWE 4.7±0. 4.7±0. 4.9±0..45±0. 3.9±0. A- RI-4.7-.45-3.9SWE 4.7±0. 4.7±0. 4.9±0..45±0. 3.9±0. A- RI-4.8-.-4.SWE 4.8±0. 4.8±0..±0. 4.±0. A-3 RI-5.0-.7-4.WE 5.0±0. 5.0±0..7±0. 4.±0. A-3 RI-5.6-.-4.9SWE 5.6±0. 5.6±0..±0. 4.9±0. A-3 RI-5.7-.45-4.8SWE 5.7±0.5 5.7±0.5 6.0±0.5.45±0.5 4.8±0.5 A- RI-5.7-.45-4.8SWE 5.7±0. 5.7±0. 6.0±0.5.45±0.5 4.8±0.5 A- RI-6.7-.5-5.5SWE 6.7±0. 6.7±0. 7.0±0..5 +0. -0.05 5.5±0. A- RI-6.7-.5-5.6SWE 6.7±0. 6.7±0. 7.0±0..5±0.5 5.6±0.5 A- RI-6.7-3.4-5.6SWE 6.7±0. 6.7±0. 7.0±0. 3.4±0. 5.6±0. A- RI-8.0-3.4-6.3SWE 8.0±0. 8.0±0. 3.4±0.5 6.3±0. A-5 RI-0-.9-8.SWE 0.0±0. 0.0±0. 0.5±0..9±0.5 8.±0. A- RI-0-3.35-8.SWE 0.0±0. 0.0±0. 0.5±0. 3.35±0.5 8.±0. A- RI-0-4.5-8.SWE 0.0±0. 0.0±0. 0.5±0. 4.5±0.5 8.±0. A- 7
SMD Type Core FIG FIG FIG DRR-A B Dimensions Part NO. Dimensions(mm) A(A) A B C D E F FIG DRB-.8-.0.05-0.85PAI.8±0..0±0..05±0. 0.85±0. (0.8 ) 0.5±0.07 (0.7) B- DRB-.8-.0-.35-.PAI.8±0..0±0..35±0..±0.07 0.3±0.07 (0.75) 0.3±0.07 B- DRB-.8-.0.75-.PAI.8±0..0±0..75±0..±0. 0.3±0..5 0.3±0. B- DRB-3.5-.5.5-.PAI 3.±0..5±0..5±0..±0.07 0.4±0.07 0.7±0.07 0.4±0.07 B- DRB-3.45-.5.6-.45PAI 3.45±0..5 +0.03-0..6±0..45±0. 0.35±0. 0.9±0. 0.35±0. B- DRB-4.7-3.3.7-.6PAI 4.7 +0-0. 3.3±0..7±0..6±0. 0.4±0. 0.9±0. 0.4±0. B- DRB-4.7-3.3.7-.0PAI 4.7 +0-0. 3.3±0..7±0..0±0. 0.45±0..8±0. 0.45±0. B- DRR-3.8.7 3.8±0.05.7±0. 0.8±0.05 0.4±0. (0.9) 0.4±0. B-3 DRB-4.8-3.7.65-.7PAI 4.8±0. 3.7±0..65±0..7±0. 0.5±0..65±0. 0.5±0. B- DRB-5.6-4.5.65-.0PAI 5.6±0. 4.5 +0..65 +0.5-0.5-0..0±0. 0.5±0..65±0. 0.5±0. B- DRB-5.6-4..7-.0PAI 5.6±0.5 4.±0.5.7±0..0±0.5 0.45±0. 0.8±0. 0.45±0. B- DRB-5.6-4..7-.05PA 5.6±0.5 4.±0.5.7±0.5.05±0.5 0.45±0..8±0. 0.45±0. B- DRB-6.6-4.8.7-.3PAI 6.6±0.5 4.8±0.5.7±0..3±0. 0.45±0. (0.75) 0.45±0. B- DRB-6.6-4.8.7-.3PAI 6.6±0.5 4.8±0.5.7±0.5.3±0.5 0.5±0.5.7 +0-0. 0.5±0.5 B- DRB-6.6-4.8 3.7-.6PAI 6.6±0. 4.8±0. 3.7±0..6±0. (0.5).7±0. (0.5) B- DRB-8.0-5.8 4.-4.0PAI 8.0±0.5 5.8±0.5 4.±0.5 4.0±0.5 0.8±0..6±0.5 0.8±0. B- DRB-9.8-7.55 3.3T 9.8±0.5 7.55±0.5 3.3±0.5 5.0±0.5 0.75±0..8±0. 0.75±0. B- DRB-9.8-7.55 3.65T 9.8±0.5 7.55±0.5 3.65±0.5 5.0±0.5 0.85±0..95±0. 0.85±0. B- DRB-9.8-7.55 4.65T 9.8±0.5 7.55±0.5 4.65±0.5 4.8±0.5 0.85±0. 3.0±0. 0.85±0. B- 8
SMD 3 Type Core FIG EL FIG FIG FIG FIG FIG FIG FIG Dimensions Part NO. Dimensions(mm) A(A) A A3 B C FIG RI-4.4-.5-3.55SWE 4.4 +0.05 4.4 +0.05.5 +0.0-0.5-0.5-0.08 3.55±0.05 A- RI-5.05-.7-3.85SWE-EL 5.05±0. 5.05±0..7 +0.05-0.5 3.85±0. A- RI-5.-.6-4.WE 5.±0.5 5.±0.5.6±0. 4.±0. A-3 RI-5.-.6-4.WE 5.±0.5 5.±0.5.6±0. 4.±0. A-3 RI-6.0-.55-4.85SWE 6.0±0.5 5.7±0.5.55±0.5 4.8±0.5 A-3 RI-6.0-3.05-4.85SWE 6.0±0.5 5.7±0.5 3.05±0.5 4.8±0.5 A-3 RI-6.-.3-4.4SWE 6.±0.5 5.9±0.5.3±0.5 4.4±0. A-4 RI-6.-4.3-4.4SWE 6.±0.5 5.9±0.5 4.3±0.5 4.4±0. A-4 RI-6.7-.8-4.7SWE 6.7±0.5 6.7±0.5.8±0.5 4.7±0.5 A-5 RI-6.7-.75-4.7SWE 6.7±0.5 6.7±0.5.75±0.5 4.7±0.5 A-5 RI-6.7-4.5-4.7SWE 6.7±0.5 6.7±0.5 4.5±0.5 4.7±0.5 A-5 RI-7.3-.7-5.7SWE 7.3±0.5 7.3±0.5.7±0.5 5.7±0.5 A-6 RI-7.3-3.5-5.7SWE 7.3±0.5 7.3±0.5 3.5±0.5 5.7±0.5 A-6 RI-0.-.8-8.35SWE 0.±0.5 0.±0.5.8±0.5 8.35±0.5 A-7 RI-0.-3.9-8.35SWE 0.±0.5 0.±0.5 3.9±0.5 8.35±0.5 A-7 9
SMD 3 Type Core FIG FIG( DRR-A B FIG FIG FIG Dimensions Part NO. DRB-4.-3..4-.8PAI Dimensions(mm) A(A) A B C D E F FIG 4.±0.08 3.±0.05.4 +0.0-0.5.8±0.05 0.3 +0.0-0.08 (0.8) 0.3 +0.0-0.08 B- DRR-3.65.7-.8PAI 3.65±0..7 +0.05-0.5.8±0. (0.45) 0.8±0. (0.45) B- DRR-3.85.7-4C 3.85±0..7±0..7±0. (0.45) 0.8±0. (0.45) B-3 DRR-3.85.7-4C 3.85±0.5.7±0..0±0. 0.4±0..8±0. 0.4±0. B-3 DRR-4.5.7-4C 4.5±0.5.7±0.5.0±0.5 0.5±0..7±0.5 0.5±0. B-3 DRR-4.5 3.-4C 4.5±0.5 3.±0.5.±0.5 0.55±0..±0.5 0.55±0. B-3 DRR-4.4 4.0±0..4±0.5.0±0. (0.55).3±0.5 (0.55) B- DRR-4 4.4 4.0±0. 4.4±0.5.4±0. (0.55) 3.3±0.5 (0.55) B- DRR-4.5.-.5PAI 4.5±0..±0..4±0. (0.5).±0. (0.5) B- DRR-4.5 3.0-.65PAI 4.5±0. 3.0±0..65±0. (0.6).8±0. (0.6) B- DRR-4.5 4.4-.8PAI 4.5±0.5 4.4±0.5.8±0.5 (0.7) 3.0±0.5 (0.7) B- DRR-5.3.8 5.3±0.5.8±0.5.5±0.5 0.65±0..5±0.5 0.65±0. B- DRR-5.3 3.7 5.3±0.5 3.7±0.5.8±0.5 0.6±0.5.5±0.5 0.6±0.5 B- DRR-7.9 3.0 7.9±0.5 3.0±0.5 4.6±0.5 0.5±0.5.0±0.5 0.5±0.5 B- DRR-7.9 4.0 7.9±0.5 4.0±0.5 4.5±0.5.0±0.5.0±0.5.0±0.5 B- 30
SMD 3 Type Core Dimensions Part NO. Dimensions(mm) A(A) A A3 B C FIG RI-0.-4.9-8.35SWE 0.±0.5 0.±0.5 4.9±0.5 8.35±0.5 A-7 RI-0.-5.9-8.35SWE 0.±0.5 0.±0.5 5.9±0.5 8.35±0.5 A-7 RI--3.0-0.4SWE.0±0..0±0. 3.0±0.5 0.4 +0.3-0.0 A-7 RI--3.65-0.4SWE.0±0..0±0. 3.65±0.5 0.4 +0.3-0.0 A-7 RI--5.-0.4SWE.0±0..0±0. 5.±0.5 0.4 +0.3-0.0 A-7 RI--6.6-0.4SWE.0±0..0±0. 6.6±0.5 0.4 +0.3-0.0 A-7 RI-.-3.65-0.7SWE.±0..±0. 3.65±0. 0.7 +0. -0. A-7 RI-.-5.-0.7SWE.±0..±0. 5.±0. 0.7 +0. -0. A-7 RI-.-6.6-0.7SWE.±0..±0. 6.6±0. 0.7 +0. -0. A-7 RI-.-3.05-0.6SE.±0..±0. 3.05±0. 0.6 +0. -0. A-8 RI-.-4.38-0.6SE.±0..±0. 4.38±0. 0.6 +0. -0. A-8 RI-.-6.4-0.6SE.±0..±0. 6.4±0. 0.6 +0. -0.5 A-8 RI-.-4.6-0.6SE.±0..±0. 4.6±0.5 0.6-0. +0. A-8 RI-9.-3.6-7.4SWE 9.±0.5 8.5±0.5 3.6±0. 7.4±0. A-9 RI-.5-3.5-9.6SWE.5±0.5.5±0.5 3.5±0. 9.6±0. A-9 RI-.05-6.6-0.6SWE.05±0..05±0. 6.6±0. 0.6±0. A-7 3
SMD 3 Type Core Dimensions Part NO. Dimensions(mm) A(A) A B C D E F FIG DRR-7.9 5.0 7.9±0.5 5.0±0.5 4.5±0.5.0±0.5 3.0±0.5.0±0.5 B- DRR-7.9 6.0 7.9±0.5 6.0±0.5 5.4±0.5.0±0.5 4.0±0.5.0±0.5 B- DRR-9.85 3.3-5.0PAI 9.85±0. 3.3±0.5 5.0±0.5 0.75±0..8±0.5 0.75±0. B- DRR-0 3.85-5.0PAI 0.0±0. 3.85±0. 5.0±0. 0.95±0..95±0. 0.95±0. B- DRR-0 5.3 0.0±0. 5.3 +0.0-0. 5.±0..5±0..9±0..5±0. B- DRR-0 7. 0.0±0. 7.±0. 6.3±0..±0. 4.9±0..±0. B- DRR-0 3.85 0.0 +0.07-0. 3.85±0. 4.8±0.5 0.975.9±0.5 0.975 B- DRR-0 5. 0.0 +0.07-0. 5.±0. 5.±0.5.±0. 3±0.5.±0. B- DRR-0 7.0-6.PAI 0.0 +0.07-0. 7.0±0. 6.±0.5.0±0. 5±0.5 ±0. B- DRR-9.9 3.65-5.0PAI 9.9 +0.06-0. 3.65±0. 5.0±0. 0.95±0..8±0. 0.95±0. B- DRR-9.9 5.05-5.0PAI 9.9 +0.06-0. 5.05±0. 5.±0..±0..85±0..±0. B- DRR-9.9 7.0-6.4PAI 9.9 +0.06-0. 7.0±0. 6.4±0..±0. 4.8±0.5.±0. B- DRB-9.9-9. 4.8 9.9±0.5 9.±0.5 4.8±0.5 4.8±0.5 0.9±0. 3.0±0.5 0.9±0. B- DRR-6.7 3.5-4CT-3.3PAI 6.7±0. 3.±0. 3.3±0. (0.55).±0. (0.55) B-4 DRR-9 3.4T-4CT-4.7PAI 9.0±0. 3.±0. 4.7±0. (0.5).±0. (0.5) B-4 DRR-0 7.-T-5.8PAI 0.0±0. 7.±0. 5.8±0. (.0) 5.±0. (.0) B-5 3
SMD 4 Type Core 命名表示 : Ordering Core System: P TYPE CORE TN40H P - A - B - C - T H E 边 棱形顶部有孔中间有柱 - 凸出部内径高度外径形状材质 (EDGE) (HOLE) (TONGUE) (INNER DIAMETER) (HEIGHT) (OUTER DIAMETER) (TYPE) (MATERIAL) TP Type Core TN40H -TP- A - B - C 中径 (MIDST DIAMETER) 高度 (HEIGHT) 外径 (OUTER DIAMETER) 形状 (TYPE) 材质 (MATERIAL) 适用材质 :TN5H TN40H TN65H TN00B 等 Available Material:TN5H TN40H TN65H TN00B etc 使用范围 : 用于中周变压器 射频圈 震荡线圈等 Application:IFT EMI/RFI Suppression Choke Coil etc 33
SMD 4 Type Core 以内 FIG FIG DDR-AXB-4CHT FIG3 FIG4 ` FIG5 FIG6 FIG7 Dimensions Part NO. P-7.0-6.3-5.7T P-.4-0-9.5 DRR-8 7.5-4CHT-08-4.8PAI P-0.5-.5-8.4 DRR-7 7.8-H-060-4.8PAI Dimensions(mm) A(A) B(B)(A) B C D E F G FIG 7.0 ±0.5.4 ±0. 8.0 ±0. 0.5 ±0.5 7.0 ±0. (6.3) 0.0 ±0. 6.0 ±0.5 5. +0.3-0 9.4 ±0. 4.5 ±0.5 8.9 ±0..0 ±0. 3 7.5 ±0..5 ±0. 7.8 ±0. 4.8 ±0.5 8.4 +0. -0. 4.8 ±0.. ±0.5.5 ±0..65 ±0.5 3.6 ±0.5 4.5 ±0.5.8 ±0.5.65 ±0.5 5.0 ±0.5 4 P-5.05-.47-4.04 5.05 ±0. 5.05 ±0..47 ±0. 4.04 ±0. 5 TP-4.7-.0-.47 4.7 ±0..47 ±0..0 ±0. 0.4 ±0. 6 P-.7-3.6-0.0 TP-8.3-0-6.7.7 +0. -0.3 8.3 ±0.5 4. ±0. 0.0 ±0.5 0.0 ±0. 6.7 ±0..0 ±0. 8.0 ±0..0 ±0. 7 34
DRR Type Core DRR TYPE CORE 命名表示 : Ordering Core System: TN5H DRRn-AxB-nCnHnT-ΦL-XPAI 芯径大小 ( 例 :.5PAI-- 表示芯径为.5mm) ( SIZE) 穿线长度 ( 取最长边 ) (LEAD WIRE LENGTH) 线径 (LEAD WIRE SIZE) 凸台 (TONGUE) 凸台数 (TONGUE QTY) 空穴 孔 (HOLE) 空穴 孔数 (HOLE QTY) 槽 (CHAMFER) 槽数 (CHAMFER QTY) 长度 (LENGTH) 外径 (OUTER DIAMETER) 工形数量, 工形为 个时不写 ( 工 QTY) 形状 (TYPE) 材质 (MATERIAL) 适用材质 :TNB TN5H TN40H TN65H 等 Available Material:THB TN5H TN40H TN65H etc 用途 : 产品主要适用于中周变压器 振荡线圈 固定电感 线性线圈等 Application:IFT Oscillating Coil Choke Coil Linearity Coil Fix Inductor etc 35
DRR Type Core B D E F FIG DRR-AXB FIG FIG3 DRR-AXB-H Dimensions Part NO. Dimensions(mm) A B C D E F FIG DRR-.6.8-H-0.9PAI.6±0..8±0.5 0.9±0. 0.3±0.05.±0. 0.3±0.05 3 DRR-.3 4-H-.45PAI.3±0.5 4±0.5.45±0. (0.9).±0.5 (0.9) 3 DRR-.5.5-H-.PAI.5±0.5.5±0..±0. (0.45).6±0. (0.45) 3 DRR-3 6-H-.7PAI 3±0.5 6±0.5.7±0.5 (.5) 3±0.5 (.5) 3 DRR-4. 3-4CH-.0PAI 4.±0.5 3.0±0..0±0.5 (0.75).5±0.5 (0.75) 6 DRR-4.5 6.5-CH-.0PAI 4.5±0. 6.5±0..0-0. +0. -0. (.38) 3.75±0.5 (.38) 8 DRR-5 8-H-.7PAI 5.0±0.5 8.0±0.3.7±0.5.9±0. 4.±0.5.9±0. 3 DRR-5 0-4CH-.5PAI 5.0±0.5 0.0±0..5±0.5 (.75) 6.5±0. (.75) 6 DRR-5 3-4CH-.5PAI 5.0±0.5 3.0±0..5±0.5 (3.0) 7.0±0. (3.0) 6 DRR-5 3-H-.5PAI 5.0±0.5 3.0±0..5±0.5 (3.0) 7.0±0. (3.0) 3 DRR-5 4-.5PAI 5.0±0.5 DRR-6 8-4C-.7PAI 6.0±0.0 DRR-7.8 6.4-4C 7.8±0. DRR-7.8 7-3.5PAI 7.8±0. DRR-7.9 7-5.5PAI 7.9±0.5 DRR-8 8-3.5PAI 8.0 +0-0.3 DRR-8 0-4C-4.0PAI 8.0±0.5 DRR-8-3.5PAI 8.0 +0-0.3 DRR-8-3.4PAI 8.0 +0-0.4 DRR-8-4.0PAI 8.0±0.5 DRR-8.4 4.3-3.6PAI 8.4±0. DRR-8.4 4.6-4C-4.0PAI 8.4±0.5 DRR-8.4 0-4.8PAI 8.4±0. DRR-9.6 6.5-4.7PAI 9.6±0. DRR-9.6 8.0-5.0PAI 9.6 +0.0 6-0.5 4.0±0.5.5±0.5 8.0±0..7±0.5 6.4±0.5 7.0±0.5 7.0±0.5 8.0±0. 0.0±0.30.0 +0. -0.3.0±0..0±0. 4.3±0. 4.6±0. 0.0±0. 6.5±0.5 8.0±0.5 3. +0.5-0. 3.5±0.5 5.5±0.5 3.5±0.5 4.0±0.5 3.5±0.5 3.4±0.5 4.0±0.5 3.6±0.5 4.0±0.0 4.8±0. 4.7±0.5 5.0±0. 0.75±0.5.0±0.5.35±0.0.7±0.5.0±0.0.75±0.5 (.0).0±0..5±0.5 (.5) (0.95) 0.9±0.0.05±0..05±0..5±0..5±0.5 4.0±0.5 3.7 +0.5-0. 3.6±0. 5.0±0. 4.5±0.5 6±0.5 6.9±0. 7.5±0.5 7.5±0..4±0.5.4±0.0 7.9±0. 4.4±0.5 5.0±0.5 0.75±0.5.0±0.5.35±0.0.7±0.5.0±0.0.75±0.5 (.0).0±0..5±0.5 (.5) (0.95).3±0.0.05±0..05±0..5±0. 36
37 Part NO. Dimensions(mm) A B C D E F FIG DRR-0 5-4.0PAI DRR-0 6-4.0PAI DRR- -4.0PAI DRR- 3-4.5PAI DRR- 5-4.5PAI DRR- 5-4.8PAI DRR- 5-6.0PAI DRR- 0-6.0PAI DRR-3 5-6.4PAI DRR-4 4-4C-4.3PAI DRR-4 5-5.PAI DRR-4 5-5.5PAI DRR-4 6.5-4C-6.85PAI DRR-4 6.5-4C-7.PAI DRR-4 7.5-6.0PAI DRR-4 0-6.0PAI DRR-5 3-7.0PAI 0.0±0. 0.0±0.0.0±0.5.0±0.5.0±0..0±0..0±0..0±0. 3.0±0. 4.0±0.3 4.0±0. 4.0±0.5 4.0±0.3 4.0±0.3 4.0±0.3 4.0±0.3 5.0±0.3 5.0±0.30 6.0±0.30.0±0.5 3.0±0.30 5.0±0. 5.0±0.30 5.0±0.30 0.0±0.30 5.0±0.5 4.0±0.5 5.0±0.30 5.0±0.30 6.5±0.5 6.5±0.5 7.5±0.4 0.0±0.4 3.0±0.30.5±0.5 3.0±0.5.5±0..5±0. (.5).5±0..5±0. 3.0±0.5 3.0±0..5±0. (.5) (3.0) 3.0±0. 3.0±0..75±0. 4.0±0..5±0. 0.0±0. 0±0.0 6.0±0. 8.0±0. 0.0±0. 0.0±0. 0.0±0. 4.0±0.3 (9.0) 9.0±0. 0±0. 9±0. 0.5±0.3 0.5±0.3.0±0.3.0±0.5 8.0±0..5±0.5 3.0±0.5.5±0..5±0. (.5).5±0..5±0. 3.0±0.5 3.0±0..5±0. (.5) (3.0) 3.0±0. 3.0±0..75±0. 4.0±0.5.5±0. A Dimensions 4.0±0.5 6.0±0.5 4.0±0.5 4.5±0.5 4.5 +0. 4.8±0.5 6.0±0. 6.0±0. 6.4±0. 4.3±0. 5.±0.5 5.5±0.5 6.85±0.5 7.±0.5 6.0±0.5 6.0±0. 7.0±0.5-0. DRR-0 8-4.0PAI DRR-0 0-3.PAI DRR-0 0-4.5PAI DRR-0 0-4C-6.0PAI DRR-0-3.5PAI DRR-0-4.35PAI DRR-0-3.4PAI DRR-0-4.PAI 0.0±0. 0.0±0. 0.0±0. 0.0±0. 0.0±0.3 0.0±0.0 0.0±0. 0.0±0. 8.0±0.30 0.0±0.30 0.0±0. 0.0±0..0±0.30.0±0.30.0±0..0±0.30-0. 4.0±0.5 3.±0.5 4.5±0.5 6.0±0. 3.5±0.5 4.35 +0. 3.4±0.5 4.±0.0.5±0.5.5±0.5 (.5).0±0.5.0±0.5 (.0).5±0.5.0±0. 5.0±0. 7.0±0. 5.0±0. 6.0±0. 7.0±0.5 7.0±0. 7.0±0. 8.0±0..5±0.5.5±0.5 (.5).0±0.5.0±0.5 (.0).5±0.5.0±0. DRR Type Core FIG4 FIG5
38 DRR-6 6-CH-.5PAI DRR-8 0-CH-3.9PAI DRR-9.85 4.0-C-H-3.8PAI DRR-9.85 6.8-C-H-4.0PAI DRR-4 7-CH-7.PAI DRR-4. -CH-7.0PAI DRR-8 7-4CH-3.PAI DRR-0.9 3-4CH-6.0PAI DRR-. 0-4CH-5.85PAI 6.0±0. 0.0±0.5 4.0±0.5 6.8±0. 7±0.30 ±0.30 7.0±0.30 3±0.30 0±0.0 (.45) (.) 0.85±0.5.5±0.5 (3.5) (.4) (.6) (.5) (.8) (.45) (.) 0.85±0.5.5±0.5 (3.5) (.4) (.6) (.5) (.8) 7 7 5 5 7 7 6 6 6 Part NO. A B C D E F FIG Dimensions(mm) Dimensions 6.0±0. 8.0±0. 9.85±0.5 9.85±0.5 4±0.30 4.±0.3 8.0 +0.0 0.9±0..±0. -0.3 0-0 3.±0. 5.8±0..3±0.5 4.5±0. 9.9 +0. 7.0 +0.4 3.8±0. 8.5±0..65±0.5-0.0-0.0.5±0.3 3.9±0. 3.9±0.5 4.0±0.5 7. +0. 7.0±0. 3.±0. 6.0±0. 5.85±0.5-0. DRR-5 5-5.0PAI DRR-5 8-7.7PAI DRR-5 8-8.3PAI DRR-5 8-8.5PAI DRR-5 -C-7.5PAI DRR-6 8-8.0PAI DRR-8 8-8.5PAI DRR-8 0-0.0PAI 5.0±0.5 5.0±0. 5.0±0.3 5.0±0.3 5.0±0. 6.0±0.3 8.0±0.4 8.0±0.4 5.0±0.4 8±0. 8.0±0.4 8.0±0.4.0±0.5 8.0±0.4 8.0±0.4 0.0±0.4 5.0±0.5 7.7±0. 8.3±0.5 8.5±0.3 7.5±0.5 8.0±0. 8.5±0.4 0.0±0.4.5±0.5 3.0±0..5±0.3.5±0.3 3.0±0..5±0.3.5±0.3 3.0±0.3 0.0±0.5.0±0. 3.0±0.3 3.0±0.3 6.0±0.5 3.0±.5 3.0±0.4 4.0±0.3.5±0.5 3.0±0..5±0.3.5±0.3 3.0±0..5±0.3.5±0.3 3.0±0.3 4 DRR Type Core FIG6 FIG7
DRR Type Core FIG DRR-AXB FIG FIG3 Dimensions Part NO. DRR-.5 0.8-.PAI Dimensions(mm) A B C D E F FIG.5±0.07 0.8±0.07.±0.07 0.5±0.07 0.3±0.07 0.5±0.07 DRR-.5 0.8-.PAI.5±0.07 0.8±0.07.±0.07 0.5±0.07 0.3±0.07 0.5±0.07 DRR-.6 0.8-.PAI.6±0.07 0.8±0.07.±0.07 0.5±0.07 0.3±0.07 0.5±0.07 DRR-.65.0-4C-.PAI.65±0.07.0±0.07.±0.07 0.5±0.07 0.5±0.07 0.5±0.07 DRR-.8 0.84-.PAI.8±0. 0.84±0..±0. 0.7±0.07 0.3±0.07 0.7±0.07 DRR-.8.5-.3PAI.8±0.5.5±0.5.3±0. (0.375) 0.5±0. (0.375) DRR-.8.75-.PAI.8±0.5.75±0.5.±0. (0.375).0±0. (0.375) DRR-.9 0.88-.PAI.9±0.07 0.88±0.05.±0.05 0.75±0.05 0.33±0.05 0.75±0.05 DRR-.9.-.3PAI.90±0.07.±0.05.3±0.05 0.3±0.05 0.56±0.07 0.3±0.05 DRR-4 0.9-.8PAI 4.0±0.07 0.9±0.05.8±0.05 (0.3) 0.3±0.05 (0.3) DRR-5.4.0-.6PAI 5.4±0.07.0±0.07.6±0.07 0.35±0.07 0.3±0.07 0.35±0.07 DRR-5.5.0-.6PAI 5.5±0.07.0±0.07.6±0.07 0.35±0.07 0.3±0.07 0.35±0.07 DRR-6.5.9-C-.5PAI 6.5±0..9±0..5±0.07 0.5±0.07 0.9±0. 0.5±0.07 3 39
DRR PIN Type Core FIG FIG Dimensions Part NO. Dimensions(mm) A B C D E F G FIG DRR-4 6-H-050-.0PAI 4.0±0. 6.0±0..0±0.5 (.5) 3.5±0. (.5).0±0.5 DRR-5 6-H-060-.0PAI 5.0±0.5 6.0±0..0±0.5 (.5) 3.5±0.3 (.5).5±0.5 DRR-5 7-H-0635-.5PAI-P.5 5.0±0.5 7.0±0..5±0.5 (.0) 3.0±0. (.0).5±0.5 DRR-6 8-H-060-.5PAI-P4 6.0±0.5 8.0±0..5±0.5 (.0) 4.0±0. (.0) 4.0±0.3 DRR-6 8-H-0655-3.0PAI-P3 6.0±0. 8.0±0. 3.0±0.5 (.9) 4.±0. (.9) 3.0±0.5 DRR-6 8-H-0655-.5PAI-P3 6.0±0.5 8.0±0.5.5±0.5 (.0) 4.0±0. (.0) 3.0±0.5 DRR-6 8-H-0655-.5PAI-P.5 6.0±0.5 8.0±0.5.5±0.5 (.0) 4.0±0. (.0).5±0.5 DRR-6 8.3-H-0655-3.0PAI-P3 6.0±0.5 8.3±0.5 3.0±0.5 (.05) 4.±0. (.05) 3.0±0.5 DRR-6 0-H-060-3.0PAI 6.0±0. 0.0±0. 3.0±0.5.0±0.5 6.0±0.5.0±0.5 3.0±0.5 DRR-7 0.-H-0655-3.45PAI 7.0±0.5 0.±0. 3.45±0..05±0.5 6.0±0..05±0.5 3.0±0.5 DRR-8 0-H-060-3.5PAI 8.0±0. 0.0±0.3 3.5±0.5 (.0) 6.0±0. (.0) 5.0±0.5 DRR-8 0-H-0655-4.0PAI 8.0±0. 0.0±0. 4.0±0. (.0) 6.0±0. (.0) 5.0±0.5 DRR-8 0-H-0655-4.5PAI 8.0±0. 0.0±0. 4.5±0. (.0) 6.0±0. (.0) 5.0±0.5 DRR-9 -H-086-4.0PAI-P5.0 9.0±0..0±0.3 4.0±0.5 (.5) 7.0±0. (.5) 5.0±0.5 DRR-9 -H-086-4.0PAI-P5.5 9.0±0..0±0.3 4.0±0.5 (.5) 7.0±0. (.5) 5.5±0.5 DRR-9 -H-086-4.0PAI-P6.0 9.0±0..0±0.3 4.0±0.5 (.5) 7.0±0. (.5) 6.0±0.5 DRR-9 -H-086-5.0PAI-P5.0 9.0±0..0±0.3 5.0±0..5±0. 7.0±0..5±0. 5.0±0.5 DRR-9 -H-086-5.0PAI-P6.0 9.0±0..0±0. 5.0±0..5±0. 7.0±0..5±0. 6.0±0.5 DRR-0 8-H-086-4.0PAI-P5.0 0.0±0. 8.0±0.3 4.0±0..0±0. 4.0±0..0±0. 5.0±0.5 DRR-0 8-H-086-4.5PAI-P6.0 0.0±0. 8.0±0.3 4.5±0..0±0. 4.0±0.3.0±0. 6.0±0.5 DRR-0 8-H-086-5.0PAI-P6.0 0.0±0. 8.0±0. 5.0±0.5.0±0. 4.0±0.3.0±0. 6.0±0.5 DRR-0 8-H-086-5.0PAI-P6.0E4.6 0.0±0. 8.0±0. 5.0±0.5 (.7) 4.6±0. (.7) 6.0±0.5 DRR-0 0-H-086-5.0PAI-P7.0 0.0±0.5 0.0±0.3 5.0±0.5.0±0.5 6.0±0..0±0.5 7.0±0.5 DRR-0 -H-086-4.0PAI-P5.0 0.0±0..0±0. 4.0±0. (.5) 7.0±0.3 (.5) 5.0±0.3 DRR-0 -H-086-4.0PAI-P6.0 0.0±0..0±0.3 4.0±0.5 (.5) 7.0±0. (.5) 6.0±0.5 40
4 Part NO. Dimensions(mm) A B C D E F G FIG 0.0±0. 0.0±0. 0.0±0. 0.0±0. 0.0±0. 0.0±0. 0.0±0. 0.0±0. 0.0±0. 4.0±0. 4.0±0.3 4.0±0..0±0.3.0±0.3.0±0.3.0±0. 5.0±0. 6.0±0.3 6.0±0.3 6.0±0.3 6.0±0.3 5.0±0.3 9.0±0.3 9.0±0.3 Dimensions DRR-0 -H-086-4.0PAI-P7.0 DRR-0 -H-086-5.0PAI-P5.0 DRR-0 -H-086-5.0PAI-P6.0 DRR-0 -H-086-5.0PAI-P7.0 DRR-0 -H-085-5.5PAI-P5.0 DRR-0 -H-086-5.5PAI-P6.0 DRR-0 -H-086-6.0PAI-P7.0 DRR-0 5-H-086-5.0PAI-P6.0 DRR-0 5-H-086-5.0PAI-P6.5 DRR-0 5-H-086-5.5PAI-P6.0 DRR-0 6-H-086-5.0PAI-P5.0 DRR-0 6-H-080-5.0PAI-P6.0 DRR-0 6-H-086-5.0PAI-P7.0 DRR-0 6-H-086-5.5PAI-P6.0 DRR-0 6-H-086-6.0PAI-P5.0 DRR-0 6-H-086-6.0PAI-P6.0 DRR-0 6-H-086-6.0PAI-P7.0 DRR- 6-H-086-6.5PAI DRR-4 5-H-05-6.0PAI DRR-4 5-H-086-7.5PAI DRR-4 9-H-086-8.0PAI DRR-4 9-H-086-8.5PAI DRR-4 9-H-06-9.0PAI DRR-6 8-H-0-0.0PAI 4.0±0.5 5.0±0.5 5.0±0.5 5.0±0.5 5.5±0.5 5.5±0.5 6.0±0. 5.0±0.5 5.0±0.5 5.5±0.5 5.0±0. 5.0±0. 5.0±0. 5.5±0.5 6.0±0.5 6.0±0.5 6.0±0. 6.5±0. 6.0±0.5 7.5±0.5 8.0±0.5 8.5±0. 9.0±0.5 0.0±0. (.5) (.5) (.5) (.5) (.5) (.5).5±0.5.5±0.5 (.) (.5) (3.0) (3.0) (3.0) (.5) (.5).75±0.5 (3.0) (3.0) (.5).5±0.5 (.5) (.5) (.5) (.5) 7.0±0. 7.0±0. 7.0±0. 7.0±0. 7.0±0. 7.0±0. 7.0±0. 0.0±0. 0.6±0. 0.0±0. 0.0±0. 0.0±0. 0.0±0..0±0..0±0. 0.5±0. 0.0±0. 0.0±0. 0.0±0.5 0.0±0. 4.0±0.5 4.0±0. 4.0±0.5 3.0±0. (.5) (.5) (.5) (.5) (.5) (.5).5±0.5.5±0.5 (.) (.5) (3.0) (3.0) (3.0) (.5) (.5).75±0.5 (3.0) (3.0) (.5).5±0. (.5) (.5) (.5) (.5) 7.0±0.5 5.0±0.5 6.0±0.5 7.0±0.5 5.0±0.5 6.0±0.5 7.0±0.5 6.0±0.5 6.5±0.5 6.0±0.5 5.0±0.5 6.0±0.5 7.0±0.5 6.0±0.5 5.0±0.5 6.0±0.5 7.0±0.5 7.5±0.5 7.5±0.5 0.0±0.5 7.5±0.5 7.5±0.5 7.5±0.5 0.0±0.5 DRR PIN Type Core FIG3 DRR-AXB-4CHT FIG4
DRR PIN Type Core φ FIG5 DRR-AXB-C3H FIG6 Dimensions Part NO. DRR-4.5 5.0-4CH-060-.0PAI DRR-6 8-4CH-060-.5PAI-P3 DRR-6 7.5-4CH-066-.7PAI DRR-7.5 6.8-4CH-066-3.PAI DRR-7.8 6.3-4CH-0655-3.PAI DRR-8 8-CH-066-3.0PAI DRR-8 0-4CH-0656-3.5PAI DRR-9-4CH-0655-4.0PAI DRR-9-4CH-086-6.5PAI DRR-0-4CH-086-4.7PAI DRR-0.5-CH-086-5.5PAI DRR-0 6-CH-086-5.0PAI-P6.0 DRR-0 6-4CH-086-5.5PAI-P5.0 DRR-0 6-4CH-086-6.0PAI-P6.3 DRR- 3-4CH-086-6.0PAI DRR-4 5-4CH-0-7.0PAI-P8.0 DRR-8 -C3H-00-.0PAI DRR-4.5 5.5-6C3H-050-.8PAI DRR-4.5 6.-4CHT-054-.0PAI DRR-4.5 7.0-4CHT-054-.0PAI DRR-4.5 7.0-4CHT-0575-.3PAI DRR-5.8 6.3-4CHT-067-.4PAI DRR-6 5-4CHT-066-3.0PAI DRR-6.7 7.0-4CHT-067-.7PAI Dimensions(mm) A B C D E F G FIG 4.5±0.5 6.0±0. 6.5±0. 7.5±0.8 7.8±0. 8.0±0.5 5.0±0.5 8.0±0. 7.5±0. 6.8±0. 6.3±0. 8.0±0.5.0±0.5.5±0..7±0. 3.±0.5 3.±0.5 3.5±0.5.4±0..0±0. (.5).6±0.5.±0.5.0±0.5.±0.5 4.0±0. 3.±0.5 3.6±0.5 3.7±0.5 4.0±0.5.4±0.5.0±0. (.5).6±0.5.4±0.5.0±0.5.0±0.5 3.0±0.5 3.0±0.5 5.0±0.5 5.0±0.5 5.0±0.5 4 3 4 8.0 +0.0-0.5 0.0 +0.0-0.3 3.5±0..95±0.5 6.0±0.5.95±0.5 5.0±0.5 9.0±0. 9.0±0.5 0.0±0. 0.0±0. 0.0±0. 0.0±0. 0.0±0..0±0..0±0..0±0.5.5±0.3 6.0±0.3 6.0±0.3 6.0-0.0 +0.5 4.0±0. 6.5±0. 4.7±0. 5.5±0. 5.0±0.5 5.5±0.5 6.0±0..5±0..8±0.5 3.0±0..±0.5 3.0±0.0 3.0±0. (.5) 7.0±0. 8.4±0. 6.0±0. 8.±0. 0.0±0. 0.0±0..3-0.3 +0..5±0..8±0.5 3.0±0..±0.5 3.0±0.0 3.0±0. (.5) 5.0±0.5 5.0±0.5 5.0±0.5 6.3±0.4 6.0±0.5 5.0±0.5 6.3±0.5.0 +0. -0. 3.0 +0-0.3 6.0±0..0±0. 9.0±0..0±0. 7.5±0.5 4.0±0. 8.0±0.3 4.5±0.5 4.5±0.08 4.5±0.08 4.5±0.08 5.8±0.5 5.0±0..0±0.4 5.5±0.5 6.±0.5 7.0±0.5 7.0±0.5 6.3±0. 7.0±0.5.0±0..8±0.5.0±0..0±0..3±0..4±0.5.5±0.5 (4.0).±0.5 0.8±0.07.0±0.07.0±0.07 0.8±0.5 0.0±0. 4.0±0..±0.5 3.3±0.5 3.9±0.5 3.9±0.5 3.3±0.5.5±0.5 (4.0).±0.5 (.4) (.4) (.4).4±0.5 8.0±0.5 0.0±0.5.5±0.3.5±0.3.5±0.3.5±0.3 4.0±0.5 5 6 3 3 3 3 6.0±0.5 5.0 +0. -0.3 3.0±0.5 0.8±0..0±0.5.±0.5 4.0±0.3 3 6.7±0. 7.0±0..7±0.5.3±0.5 3.±0.5.5±0.5 5.0±0.5 3 4
DRR PIN Type Core FIG FIG Dimensions Part NO. Dimensions(mm) A B C D E F G FIG DRR-7.8 7.0-4CHT-066-3.4PAI 7.8±0. 7.0±0.5 3.4±0. 0.9±0.07 3.±0.5.7±0.07 5.0±0.5 3 DRR-7.8 7.-4CHT-065-3.0PAI 7.8±0.5 7.±0. 3.3±0.5.±0.5 3.3±0.5.8±0.5 5.0±0.5 3 DRR-7.8 9.-4CHT-0655-3.0PAI 7.8±0.5 9.±0. 3.0±0..±0. 5.±0.5.8±0.5 5.0±0.5 3 DRR-8 7.5-4CHT-063-3.PAI 8.0±0. 7.5±0. 3.±0.5.±0.5 3.6±0.5.8±0.5 5.0±0.5 3 DRR-8 0.-4CHT-063-3.7PAI 8.0 +0. -0. 0.±0. 3.7±0.5.3±0.5 6.0±0..8±0.5 5.0±0.5 3 DRR-8 0.-4CHT-063-4.45PAI 8.0 +0. -0. 0.±0. 4.5±0.5.3±0.5 6.0±0..8±0.5 5.0±0.5 3 DRR-9-4CHT-060-4.5PAI 9.0 +0. -0.5.0±0.3 5.5±0.5.5±0.5 7.5 +0. -0.5.0±0.5 5.0±0.3 3 DRR-0 0.-4CHT-0655-4.3PAI 0.0±0. 0.±0. 4.3±0..5±0.5 5.5±0..0±0.5 5.0±0.3 3 DRR-0 4-4CHT-085-5.0PAI 0.0±0.3 4.0±0.3 5.0±0.5.5±0.5 9.0±0..0±0.5 5.0±0.5 3 DRR- 4-4CHT-0655-6.6PAI.0±0. 4.0±0. 6.6±0.5.5±0. 8.5±0..0±0. 5.0±0.5 3 DRR- 4.5-4CHT-0805-6.0PAI.0±0. 4.5±0.3 6.0±0.5.0±0.5 8.5±0..0±0.5 7.5±0.5 3 DRR-6.7 4.6-8C4HT-054-.4PAI 6.7±0.5 4.6±0.5.4±0.5 (0.7).±0.5 (.0) DRR-0 8.-4C4HT-086-4.PAI 0.0±0. 8.±0. 4.3±0..35±0.5 3.9±0..75±0.5 8 DRR-0 0.-4C4HT-0655-4.3PAI 0.0±0. 0.±0. 4.3±0..5±0. 5.5±0..0±0.5 8 DRR-9-4CHT-4.5PAI 9.0±0..0±0. 4.5±0.5.3±0.5 7.4±0.5.8±0.5 5.0±0.5 7 DRR- 3-4CHT-6.0PAI.0±0.5 3.0±0.5 6.0±0.5.7±0.5 8.6±0.. +0.5-0. 7.5±0.5 7 43
DRS Type Core DRS TYPE CORE 命名表示 : Ordering Core System: TN5H DRS-A-A B-EL 电极 (ELECTRODE) 高度 (HEIGHT) 小外径 (OUTER DIAMETER) 大外径 (OUTER DIAMETER) 形状 (TYPE) 材质 (MATERIAL) 适用材质 :TN5H TN40H TN65H 等 Available Material:TN5H TN40H TN65H etc FIG FIG FIG3 Dimensions Part NO. FIG FIG FIG Dimensions(mm) A(A) A A3 B C (C) C D E F FIG DRS-.5-3.-.5-EL.5±0.5.5±0.5 3.±0.5.5±0..5±0..±0. 0.4±0. 0.6±0. 0.5±0. DRS-.3-3..8-EL.3±0.5.6±0.5 3.±0.5.8±0.5.±0..0±0. 0.45±0. 0.85±0. 0.5±0. DRS-.5-3..0-EL.5±0..5±0. 3.±0.3.0±0..±0..±0. (0.55) 0.9±0. (0.55) DRS-.5-3..0-EL-A.5±0.05.5±0.08 3.±0.08.0±0..±0.08.±0.08 0.45±0.05 0.95±0.08 0.6±0.08 DRS-3.7-4.5.65-EL 3.7±0.5 3.±0.5 4.5±0.5.65±0.5.7-0.5 +0.05.5±0. 0.6±0..35±0. 0.7±0. DRS-.3-0.85-.0-EL.3±0. 0.85±0..0±0. 0.9±0. 0.5±0. 0.5±0.07.0±0. 0.5±0.07 F-.0-.3-0.3.0±0..3±0. 0.3±0.07 DRS-.9-.9.0-EL.9±0..6±0..0±0. 0.8±0. 0.6±0. (0.5) 0.5±0. (0.5) DRS-7.5-3.0 6-EL 7.5±0. 3.0±0. 5.3±0. 6.0±0. 6.5 +0. -0. 4.±0.3 4 DRS-4.65-.7-5.5-0.6HS-EL 4.65±0..7±0. 5.75±0. 0.6±0..5±0.3 6 DRS-0-0 6 0.0±0.5 0.0±0.5 6.0±0.5 Φ4.0±0.5.0±0. 4.0±0.5.0±0. 3 44
DRC Type Core DRC TYPE CORE 命名表示 : Ordering Core System: TN5H DRC-A-A B-EL 电极高度小外径大外径形状材质 (ELECTRODE) (HEIGHT) (OUTER DIAMETER) (OUTER DIAMETER) (TYPE) (MATERIAL) 适用材质 :TN5H TN40H TN65H 等 Available Material:TN5H TN40H TN65H etc 45
46 Part NO. Dimensions(mm) A A B C D E F FIG Dimensions DRC-3.5-3.0.-EL DRC-3.5-3.0.6-.3PAI-EL DRC-3.5-3.0.-EL DRC-4.5-4.0.0-EL DRC-4.5-4.0.-.5PAI-EL DRC-4.5-4.0 3.-.8PAI-EL DRC-4.5-4.0 3.-EL DRC-5.8-5..0-EL DRC-5.8-5..5-EL DRC-5.8-5. 3.0-EL DRC-5.8-5. 4.5-EL DRC-5.8-5. 4.5-.4PAI-EL DRC-5.8-5. 4.5-.8PAI-EL DRC-5.8-5. 4.5-3.0PAI-EL DRC-7.8-7.0 3.5-EL DRC-7.8-7.0 5.0-EL DRC-7.8-7.0 5.0-4.0PAI-EL DRC-0-9.0 4.0-EL DRC-0-9.0 4.0-3.6PAI-EL DRC-0-9.0 5.4-EL DRC-0-9.0 5.4-4.6PAI-EL DRC-0-9.0 8.-EL DRC-0-9.0.5-5.0PAI-EL.±0.5.6±0.5.±0.5.0±0.5.±0.5 3.±0.0 3.±0.5.0±0.5.5±0.5 3.0±0.5 4.5±0.0 4.5±0.5 4.5±0.0 4.5±0.0 3.5±0.5 5.0±0.5 5.0±0.5 4.0±0.5 4.0±0.5 5.4±0.5 5.4±0.0 8.±0.0.5±0.0.4±0..3±0..5±0..3±0..5±0.5.8±0.5.0±0..4±0.5.5±0.5.5±0.0.±0.0.4±0.0.8±0.0 3.0±0.0 3.0±0.5 3.0±0.5 4.0±0. 4.0±0. 3.6±0. 4.0±0. 4.6±0.5 4.5±0.5 5.0±0.5 0.35±0. 0.45±0. 0.4±0. 0.4±0. 0.45±0. 0.6±0. 0.6±0. (0.5) 0.6±0. (0.5) (0.8) (0.8) (0.8) (0.8) 0.8±0..0±0..0±0..0±0. (.0).±0..±0.5.35±0.5 (.0) 0.4±0. 0.6±0..±0..0±0..0±0..6±0..45±0. 0.65±0.5 0.9±0.5.6±0.5.4+0.-0..4±0.5.4+0.-0..4±0.0.5±0..6±0..6±0..7±0..7±0..6±0..5±0.5 5.5±0.5 7.0±0. 0.35±0. 0.55±0. 0.6±0. 0.6±0. 0.65±0..0±0..5±0. (0.85).0±0. (0.9) (.3) (.3) (.3) (.3).±0..4±0..4±0..3±0. (.3).6±0..8±0.5.35±0. (.5) L 3.5±0.5 3.5±0.5 3.5±0.5 4.5±0.5 4.5±0.5 4.5±0.5 4.5±0.5 5.8±0.5 5.8±0.5 5.8±0.0 5.8±0.0 5.8±0.5 5.8±0.0 5.8±0.5 7.8±0.5 7.8±0.5 7.8±0.5 0.0±0.5 0.0±0.5 0.0±0.5 0.0±0.5 0.0±0.5 0.0±0.5 3.0±0.5 3.0±0.5 3.0±0.5 4.0±0.5 4.0±0.5 4.0±0.5 4.0±0.5 5.±0.5 5.±0.5 5.±0.5 5.±0.0 5.±0.5 5.±0.0 5.±0.0 7.0±0.5 7.0±0.5 7.0±0.5 9.0±0.5 9.0±0.5 9.0±0.5 9.0±0.0 9.0±0.0 9.0±0.0 DRC Type Core FIG
DRH Type Core DRH TYPE CORE 命名表示 : Ordering Core System: TN5H DRH-A B-H 内径高度外径形状材质 (INNER DIAMETER) (HEIGHT) (OUTER DIAMETER) (TYPE) (MATERIAL) 适用材质 :TN5H TN40H TN65H TN65B Available Material:TN5H TN40H TN65H TN65B FIG FIG FIG Dimensions Part NO. Dimensions(mm) A B C D E F H R FIG DRH-0.5 9.0-7.0-9.5PAI 0.5±0. 9.0±0. 9.5±0..3 +0.03-0.0.±0. 6.3±0.5 7.0±0.5 DRH-0.5 9.0-7.0-9.5PAI-B 0.5±0. 9.0±0. 9.5±0.5.3 +0.03-0.0.±0. 6.5±0.5 7.0±0.5 DRH-8 0-4.-4C 8.0±0.5 0.0±0.7 7.0±0.5 3.75±0.3.5±0.6 3.75±0.3 4.±0.5 DRH-6 0.6-4.5-9.3PAI 6.0±0.7 0.6±0.5 9.3±0. 3.8±0. 3.0±0.3 3.8±0. 4.5±0. 3 DRH-6 0.6-4.5-9.8PAI 6.0±0.7 0.6±0.5 9.8±0. 3.8±0. 3.0±0.3 3.8±0. 4.5±0. 3 DRH-6 0.6-4.5-0.0PAI 6.0±0.7 0.6±0.5 0.0±0. 3.8±0. 3.0±0.3 3.8±0. 4.5±0. 3 DRH-33.3 5-4.6 33.3±0.5 5.0±0.5 9.5±0.3 5.0±0.4 5.0±0.6 5.0±0.4 4.6±0.3 3 47
SH Type Core SH TYPE CORE 命名表示 : Ordering Core System: TN00B SH - A - B - C - E 内径高度厚度外径形状材质 (INNER DIAMETER) (HEIGHT) (THICKNESS) (OUTER DIAMETER) (TYPE) (MATERIAL) 适用材质 :TN65H,TN65B,TN80G,TN00B 等 Available Material:TN65H,TN65B,TN80G,TN00B etc 使用范围 : 平面电缆滤波器等 Application:Internal Cable Between Pc Boards And Data Connectors etc FIG FIG Dimensions Part NO. Dimensions(mm) A B C D E FIG SH-3-3- 3.0 +0.7-0.4 3.0±0.4.0±0.4 7.4±0.5.0 +0.3-0.5 SH-3-5- 3.0 +0.7-0.4 5.0±0.4.0±0.4 7.4±0.5.0 +0.3-0.5 SH-3.8-6.3-7 3.8±0.5 6.3±0.4 7.0±0.5 8.8±0.4.±0.3 SH-33.5-6.5-.3 33.5±0.8 6.5±0.4.3±0.5 8.3±0.5.3±0.3 SH-39.8-6.5-.3 39.8±0.9 6.5±0.4.3±0.5 34.6±0.9.3±0.3 SH-3-7.75-9.7 3.0±0.64 7.75±0.5 9.7±0.4 7.4±0.5.0 +0.3-0.5 SH-3-7.75-35 3.0 ±0.64 7.75 ±0.4 35.5 ±.05 5. +0.5 0.9 +0.5-0.4-0.3 SH-.35-7.75-9.05.35±0.5 7.75±0.38 9.05±0.64 4.0±0.5.5±0.5 SH-40-7.6-8.6-.3 40.0±.0 7.6±0.5 8.6±0.6 33.7±.0.3 +0.4-0.3 SH-40-6.5-.0-.5 40.0±.0 6.5±0.5.0±0.5 34.0±.0.5±0. 48
RID Type Core RID TYPE CORE 命名表示 : Ordering Core System: TN5H RID-A-B-C-D HnD D- 鼓形 (DRUM),S- 方形 (SQUARE) 孔数 (HOLE QTY) 孔 (HOLE) 孔径 (HOLE SIZE) 高度 (HEIGHT) 外径 (OUTER DIAMETER) 外径 (OUTER DIAMETER) 形状 (TYPE) 材质 (MATERIAL) 适用材质 :TNB TN5H TN40H TN65H TN00B TN00B 等 Available Material:TNB TN5H TN40H TN65H TN00B TN00B etc 使用范围 : 产品主要适用于宽频滤波器 平衡切换 匹配变压器等 Application: Wide Band Balance/Unbalance And Balun Transformer etc FIG FIG FIG FIG Dimensions Part NO. Dimensions(mm) A(A ) A B C(C) C D FIG RID-3.4-.3-.0-0.6HS 3.4±0..3±0..0±0. 0.6±0. 5 RID-3.4-.9-.0-0.9H 3.4±0.3.9±0..0±0.5 0.9±0. RID-3.5-.0-.0-0.8H 3.5±0..0±0..0±0. 0.8±0. RID-3.5-.0-.36-0.8H 3.5±0..0±0..36±0. 0.8±0. RID-3.5-.0-3.0-0.8H 3.5±0..0±0. 3.0±0. 0.8±0. RID-4.8-.35-3.0-0.9H 4.8±0..35±0. 3.0±0. 0.9±0. RID-4.9-.-3.0-0.95-HS 4.9±0..±0. 3.0±0.5 0.95±0. 5 RID-5.0-3.0-.0-.5H 5.0±0. 3.00±0..0±0..5±0.5 RID-5.0-3.0-3.0-.5H 5.0±0. 3.00±0.4 3.0±0.4.5±0.3 RID-5.0-.4-.6-0.9HS 5.0±0.3 4.0±0..40±0..6±0..0 +0.03-0. 0.9±0.5 3 49
RID Type Core FIG Dimensions Part NO. Dimensions(mm) A(A ) A B C(C) C D FIG RID-5.0-.4-.6-0.9HS 5.0±0.3 4.0±0..40±0..6±0..0±0. 0.9±0.5 4 RID-5.-.6-4.0-.4H 5.±0.3.6±0.3 4.0±0.3.4±0. RID--6.5-4-4H.0±0.3 6.5±0.5 4.0±0. 4.0±0. RID-6-0-0.9H6 6.0±0.5 0.0±0.3 0.9±0. 50
UU Type Core UU TYPE CORE 命名表示 : Ordering Core System: TN00B UU - A-EL 电极外径形状材质 (ELECTRODE) (OUTER DIAMETER) (TYPE) (MATERIAL) 适用材质 :TNB TN5H TN65B TN00B TN00B 等 Available Material:TNB TN5H TN65B TN00B TN00B etc 使用范围 : 主要适用于滤波器等 Application:Line Filters etc FIG FIG EL Dimensions Part NO. UU-9.8 Dimensions(mm) A B C D E F FIG 9.8 ±0. 3. ±0.5.35 ±0. 7.±0..3 ±0.5.±0.5 UU-0.5 0.5±0. 7.9±0. 5.0±0.5 5.3±0. 5.3±0. UU-.0-EL.03±0.06.4±0.06.7±0.06.03±0.06 0.5±0.06 0.7±0.06 UU-.4-EL.4±0..85±0..03±0..4±0. 0.5±0..4±0. 5
RH Type Core RH TYPE CORE 命名表示 : Ordering Core System: TN0H RH - A - B - C 内径长度外径形状材质 (INNER DIAMETER) (LENGTH) (OUTER DIAMETER) (TYPE) (MATERIAL) 适用材质 :TNB TN65B TN80G TN00B TN00B 等 Available Material:TNB TN65B TN80G TN00B TN00B etc 使用范围 : 产品主要适用于磁珠滤波器等抗干扰 Application:EMI Coil 5
RH Type Core FIG Dimensions Part NO. RH-3.0--.0 RH-3.5-5.7-0.8 RH-3.5-4-.0 RH-3.5-4.5-.0 RH-3.5-6.0-.0 RH-3.5-4-. RH-3.5-5-. RH-3.5-6-. RH-3.5-3-.3 RH-3.5-5-.3 RH-3.5-.3-.5 RH-3.5-4.5-.5 RH-3.5-5-.5 RH-4-0- RH-5-3-. RH-5-3-3.0 RH-6-8-3 RH-6-0-3 RH-6--3 RH--3-5. RH-.7-0-7.9 RH-.7-.7-7.9 RH-6-0-9.0 RH-6-6-9.0 RH-7.5-8.5-9.5 Dimensions(mm) A B C FIG 3.0±0.5 3.5±0.5 3.5±0.5 3.5±0.5 3.5±0.5 3.5±0.5 3.5±0.5 3.5±0.5 3.5±0.5 3.5±0.5 3.5±0.5 3.5±0.5 3.5±0.5 4.0±0..0±0.4 5.7±0.4 4.0±0.3 4.5±0.4 6.0±0.4 4.0±0.3 5.0±0.4 6.0±0.4 3.0±0.5 5.0±0.4.3±0.5 4.5±0.4 5.0±0.4 0.0±0.4.0 ±0. 0.8 ±0..0 ±0..0 ±0..0 ±0.. ±0.5. ±0.5. ±0.5.3 ±0.5.3 ±0.5.5 ±0.5.5 ±0.5.5 ±0.5.0 ±0. 5.0-0.5 +0.5 3.0 +0.6-0. 5.0 +0.4-0. 3.0 +0.5-0. 6.0±0. 8.0±0.3 6.0±0.5 0.0±0.5 6.0±0..0±0.3.0±0.3 3.0±0.5.7±0.3 0.0±0.3.7±0.3.7±0.3 6.0±0.3 0.0±0.3 6.0±0.3 6.0±0.3 7.5±0.4 8.5±0.75. ±0.5 3.0 +0.5-0. 3.0 ±0. 3.0 ±0.5 3.0 ±0.5 5. ±0.3 7.9 ±0.3 7.9 ±0.3 9.0 ±0.3 9.0 ±0.3 9.5 ±0.3 53
RC Type Core RC TYPE CORE 命名表示 : Ordering Core System: TN65H RC-A-B-C 内径长度外径形状材质 (INNER DIAMETER) (LENGTH) (OUTER DIAMETER) (TYPE) (MATERIAL) 适用材质 :TN65B TN65H TH80G TN00B TN50B 等 Available Material:TN65B TN65H TH80G TN00B TN50B etc 使用范围 : 主要适用于通讯 计算机等用内外主电流源线滤波 Application:Internal And External Power Cable etc FIG FIG FIG Dimensions Part NO. RC-0-0-4.9 Dimensions(mm) A A B C D E FIG 0.0±0.4 0.0±0.5 4.9±0.4 4.4±0.4 RC-3-3-7 3.0±0.5 3.0±0.5 7.0±0.4 6.0±0. RC-4-8-7 4.0±0.4 3.0±0.4 8.0±0.5 7.0±0. 7.0±0.5 6.0±0.5 RC-5.6-8.8-8.6 5.6±0.3 9.0±0.4 8.6±0.3 7.8±0.5 3 RC-6-8-9 6.0±0.5 5.0±0.5 8.0±0.5 9.0±0.4 8.0±0. RC-6-9.8-9 6.0±0.3 9.8±0.3 (9.0) 8.±0. RC--8-.0±0.5.0±0.5 8.0±0.5.0±0.4.0±0. RC-6-9.6-3 6.0±0.5 9.6±0.4 3.0+0.-0.5 3.4±0. RC-6-9-3 6.0±0.5 9.0±0.5 3.0±0.4 3.0±0. 54
R Type Core R TYPE CORE 命名表示 : Ordering Core System: TN5H R - A - B - Hn - φl 穿线长度 (LEAD WIRE LENGTH) 线径 (CHAMFER) 孔数 (CHAMFER QTY) 孔 (LENGTH) 长度 (OUTER DIAMETER) 外径 (OUTER DIAMETER) 形状 (TYPE) 材质 (MATERIAL) 适用材质 :TNB TN5H TN40H TN00B 等 Available Material:TNB TN5H TN40H TN00B etc 使用范围 : 产品主要适用于中频变压器 抗流电感 滤波线圈 高性能直流信号传输 滤波信号等 Application:Intermediate Frequency Transformer Inductors Choke Coil High Performance Medium Dc Power And Signal Filtering 55
R Type Core φ 磨加工 FIG FIG φ FIG Dimensions Part NO. Dimensions(mm) A B C FIG R-.-6.8. +0.0-0. 6.8±0. R-.7-6.0.7±0. 6.0±0. R-.9-4..9±0.07 4.±0. R--4.9.0 +0.03-0.05 4.9±0. R--5.5.0±0.5 5.5±0. R--6.5.0±0.5 6.5±0. R-3-5 3.0±0.5 5.0±0.5 R-3-0 3.0±0.5 0.0±0.3 R-3-5 3.0±0.5 5.0±0.3 R-3.85-0 3.85±0.5 0.0±0.5 R-4-6 4.0±0.5 6.0±0. R-4-7 4.0±0.5 7.0±0. R-4-3 4.0±0. 3.0±0.4 R-4-5 4.0±0.5 5.0±0.5 R-4-0 4.0±0.5 0.0±0.5 R-4-5 4.0±0.5 5.0±0.4 R-5-5 5.0±0.5 5.0±0.3 R-5-8 5.0±0.5 8.0±0.3 R-5-0 5.0±0. 0.0±0.5 R-5-5 5.0±0. 5.0±0.5 R-5-30 5.0±0. 30.0±0.5 56
R Type Core FIG FIG FIG Dimensions Part NO. R-6-5 Dimensions(mm) A B C D FIG 6.0±0. 5.0±0.5 R-6-8 6.0±0. 8.0±0.3 R-6-0 6.0±0. 0.0±0.5 R-6-6.0±0..0±0.4 R-6-5 6.0±0. 5.0±0.5 R-6-30 6.0±0. 30.0±0.5 R-6-40 6.0±0.6 40.0±0.6 R-7.5-5 7.5±0. 5.0±0.3 R-8-0 8.0±0. 0.0±0.5 R-8-5 8.0±0. 5.0±0.5 R-8-30 8.0±0. 30.0±0.5 R-8-39 8.0±0. 39.0±0.5 R-8-40 8.0±0. 40.0±0.5 R-0-9 0.0±0. 9.0±0.6 R-0-30 0.0±0. 30.0 +0.4 -. R-0-39 0.0±0. 39.0 +0.5 -. R--0-H-0635.0±0. 0.0±0. R--8-36.0 +0.0-0. 8.0 +0.0-0. 36±0.5 5 R-3--50 3.0±0..0±0. 50 +0. -0.8 5 R-4-45 4.0±0. 45.0±.0 3.8±0. 6 R-0-50 0.0±.0 50±.0 9.0±.0 6 R--7.7-0.9.0 +0. -0.5 7.7 +0. -0.5 0.9±0. 3 57
T Type Core T TYPE CORE 命名表示 : Ordering Core System: TN40H T-A-B-C-CPR R- 树脂 (ROSIN),P- 塑料 (PLASTIC),N- 尼龙 (NYLON) 喷涂 (COAT PLATING) 内径 (INNER DIAMETER) 高度 (HEIGHT) 外径 (OUTER DIAMETER) 形状 (TYPE) 材质 (MATERIAL) 适用材质 :TN40H TN65B TN00B TN00B 等 Available Material:TN40H TN65B TN00B TN00B etc 用途 : 滤波线圈 / 射频线圈 增益调和线圈 抗流线圈 滤波器等 Filter etc Application:EMI/RFI Suppression Plus And Matching Transformer Choke Coil Input 58
59 Part NO. A B C FIG Dimensions(mm) T-.54-0.79-.7-CPN T-.54-.7-.7-CPN T-3.05-.7-.7-CPN T-3.43-.5-.78-CPN T-3.94-.65-.-CPN T-4-- T-4-3--CPN T-4-3.5--CPN T-4.4-.-.8 T-4.4-.5-.8 T-4.4-4.6-.5-CPN T-4.8-.5-.8 T-5--. T-5-.5-. T-6--3 T-6--4-CPY T-6-3-3-CPY T-8-3-4-CPY T-8-4-4 T-8-4-4-CPY T-8-5-4 T-9-3-5 T-0-3-5 T-0-4-6-CPY 0.79±0.3.7±0.3.7±0.3.5±0..6±0..0±0.5 3.0±0. 3.5±0..±0..5±0.5 4.6±0.5.5±0.5.0±0..5±0..0±0..0±0. 3.5MAX 3.5MAX 4.0 +0.0 4.5MAX 5.0±0. 3.0±0. 3.0±0. 4.6MAX.7±0.3.7±0.3.7±0.3.78±0..±0..0±0.5.0±0.5.0±0..8±0..8±0.5.5±0.5.8±0.5.±0..±0. 3.0±0. 4.0±0..6MIN 3.5MIN 4.0±0. 3.5MIN 4.0±0. 5.0±0. 5.0±0. 5.5MIN Dimensions.54±0.3.54±0.3 3.05±0.3 3.43±0. 3.94±0. 4.0±0. 4.0±0. 4.0±0. 4.4 +0.3 4.4 +0.3 4.4 +0.3 4.8±0. 5.0±0. 5.0±0. 6.0±0. 6.0±0. 6.4MAX 8.6MAX 8.0±0. 8.6MAX 8.0±0. 9.0±0. 0.0±0. 0.5MAX -0. -0. -0. T Type Core -0.3 FIG
Part NO. A B C FIG Dimensions(mm) Dimensions T-0-5-5 T-0-5-5-CPY T--6-6 T-.7-6.5-7.9 T-3-3-7 T-3-3-7-CPY T-3-5-7 T-4-7-9-CPY T-5.88-5.58-7.6 T-6-4-9 T-7.5-3.5-9.5 T-8.5-0.5-9.75 T-0-5-0 T-0-7-0 T-0-0-0 T-5-8-5 T-5-0-5 T-5--5 T-9-5-9 0.0±0. 0.5MAX ±0..7±0. 3.0±0. 4.0MAX 3±0.3 4.5MAX 5.88±0. 6.0±0.5 7.5±0.5 8.5±0.5 0±0.5 0±0.5 0±0.5 5.0±0.5 5±0.5 5±0.5 9.0±0.5 5.0±0. 5.6MAX 6±0. 6.5±0. 3.0±0.5 3.7MAX 5±0.3 7.5MAX 5.58±0. 4.0±0.3 3.5±0.5 0.5±0.5 5±0.3 7±0.5 0±0.5 8.0±0.5 0±0.5 ±0.5 5.0±0.5 5.0±0. 4.5MIN 6±0. 7.9±0. 7.0±0.5 6.3MIN 7±0.3 8.5MIN 7.6±0. 9.0±0.5 9.5±0.5 9.75±0.5 0±0. 0±0.5 0±0.5 5.0±0.5 5±0.5 5±0.5 9.0±0.5 60 T Type Core
参考资料 主要概念与定义 磁场 电流产生磁场, 在螺线管中, 或在磁路中电流的产生的磁场为 : 在这一个表式中, 采用国际单位制,H 单位为安培 / 米 (A/m),N 为匝数,I 为电流, 单位安培 (A),l 为螺 线管或磁路长度, 单位为米 (m) H= NI l 在磁芯中, 加正弦波电流, 可用有效磁路长度 le 来计算磁场强度 : H= IN (A/m) le 0 3 loe= 79.58A/m 4π 磁通密度 磁极化强度 磁化强度在磁性材料中, 加强磁场 H 时, 引起磁通密度变化, 其表现为 : B=µ 0 H + J 或 B=µ 0 (H +M) B 为磁通密度, 亦称磁感应强度,J 称磁极化强度,M 称磁化强度,µ 0 为真空磁导率, 其值为 4π 0-7 亨利 / 米 (H/m) B J 单位特斯拉,H M 单位为 A/m,lT= 4 Gs 在磁芯中可用有效面积 Ae 来计算磁通密度 : 正弦波为 : B= 0.5V fnae 电压单位伏特 (V), 频率单位 Hz,N 为匝数,B 单位 (T),Ae 单位为 m 3 饱和磁通密度 剩余磁化强度 矫顽力 B 和 H 的关系除在真空中和在磁性材料中小磁化场下具有线性关系外, 一般具有非线性关系, 即具有所谓磁滞回线性质 : 6
B s 为饱和磁化强度,Br 为剩余磁化强度,Hc 为矫顽力 H s 为饱和磁化场, 不同磁性材料产, 磁滞回线表现形式不一样,B s B r H c H s 都不一样 4 磁导率 B ) 称绝对磁导率, 是有量纲的 H = M µ 0 (+ ) =µ absolute H B ),µ r 称相对磁导率, 是无量纲的, 是一个数值 H = µ 0 µ r 我们平常用的大都是相对磁导率, 且把脚标 r 省去 B 3) =µ i 称初始磁导率, 它与温度 频率有关 测量时在一定温度 一定 µ 0 H ( H 0) 频率 很低的磁通密度 ( 或很小的磁场 ) 闭合磁路中进行 在实际测量中, 规定 : 磁化场 H 所产生的磁通密度应小于 mt, 一般 B 为 0.mT, 但亦有许多特殊情况中, 应加以注意 4) 在磁路中存在气隙, 即非闭合磁路条件下, 测得的磁导率为有效磁导率 : µ i +gµ i / le = µ e g 是气隙长度,le 是有效磁路长度 这一表示, 仅是小气隙 g 下的一种近似 在大气隙下, 磁通要穿过气隙的外部, 其有效磁导率将大于按上式计算所得之值 5) 在没有偏置磁场的情况下, 磁场 H 较大时, 该磁场 H 产生磁通密度 B, 则这时, Β = µ α, 称振幅磁导率 µ 0 Η B 6) 在具有直流偏置磁场时, 再加上一个交流磁场, 这时测得的磁导率 =µ µ 0 H H DC 称为增量磁导率 在直流迭加状态下测得的电感, 计算出的磁导率近似于增量磁导率 7) 上述 )~6) 的磁导率都是频率较低, 或接近直流状态下测得的磁导率, 在频率较高时, 其磁导率表现为复数磁导率 6
在串联电路中为 µ =µ s-jµ s 在并联电路中为 = - µ µ p jµ p µ s,µ s,µ p,µ p, 都是频率的函数 5 阻抗 电感产生感抗 X L =jωl, 电容产生容抗 Xc=, 二者总称为电抗, 纯电阻 R jωc 三者总称阻抗, 在磁性器件讨论中, 相对低的频率下, 我们忽略容抗,, 只讨论电阻和感抗, 且有串联电路和并联电路之分 串联电路 并联电路 串联电路中阻抗 Zs=Rs+jωLs 并联电路中阻抗 Zp= /(jωlp)+/rp Zs Zp 都与频率有关, 其特性称为阻抗频率特性, 它与磁性材料频率特性有关 另外, 它们与绕组参数有 关 在复数磁导率中, 其频率特性表现为 µ,µ 的频率特性 阻抗频率特性, 实际上是磁性器件的特性, 并非 是材料的特性 6 损耗因子表示小信号下材料的损耗特性 由于磁芯损耗, 引起信号相移, 其表示为 : Rs tgδm= = ωls µ s µ s 或 ωlp tgδm= = Rp µ p µ p tgδm 称为损耗因子, 表示的是损耗功率与无功率的比值 因磁芯损耗包括磁滞损耗, 涡流损耗 剩余损 耗, 所以损耗因子可表示为 : tgδm= tgδh + tgδe + tgδr, 分别称为磁滞 涡流 剩余损耗因子 7 比损耗因子 tgδm 或 tgδ 称比损耗因子, 与材料几何尺寸无关, 表示小信号下材料的损耗特性 µ i 8 气隙的影响当磁路中有气隙时, 其损耗因子为带气隙损耗因子,(tgδ)gap 它与无气隙时损耗因子的 关系为 : µ i 63
(tgδ)gap µ e- = tgδ µ i- 因 µ e µ i>>, 所以有 : (tgδ)gap = tgδ, 即有 (tgδ)gap= tgδ µ e µ e µ i 由于 µ e<µ i, 所以开气隙后, 损耗因子减小,Q 值增加 磁芯开制气隙后, 磁芯内部磁场强度 H i 大大减小, 由 Hi=He-Hd=He-NM 可以看出, 退磁因 NI 子 N 越大,Hi 越小 这里 He 是绕组通以电流后产生的磁场 (He= ),M 是磁化强度 退磁因子为 le 0~4π, 对闭路磁芯 N=0, 气隙越大,N 越大, 反之亦然 开制气隙可增加磁场和温度的稳定性 µ i 9 品质因素 Q 磁性器件作滤波器的电感时, 通常用品质因素 (Q) 来表示它的质量, ωl 品质因素 Q= =,R tot 表示总电阻, 它是线圈和磁芯的呈现电阻 tgδ R tot R tot 表示损耗, 包括磁芯损耗 铜线损耗 Q 与频率和绕组参数有关 0 大信号场下的功率损耗大信号场下, 磁芯损耗用下式表示 : P m =P h +P e +P r,p h P e P r, 分别表示磁滞损耗 涡流损耗 剩余损耗, 在功率铁氧体中常用 P m =P h +P e +P r 将总损耗分离, 然后再分析损耗原因 温度系数与比温度系数 µ i-µ i 温度系数为 αµi= µ i T -T µ i,µ i 分别表示温度 T,T 时的初始磁导率 比温度系数 : αµi,αµir 均表示磁导率的温度稳定性 减落因子与比减落因子 减落因子为 µ i,µ i 表示同一温度下,t, t 时刻的初始磁导率 比减落因子 DA DF= = µ i-µ i µ (µ i ) i lg( t /t ) 落因子 αµi αµir= = µ i-µ i µ i (µ i ) T -T DA= µ i-µ i µ i lg( t /t ) D A,D F 都表示 µ i 经磁扰动或机械冲击后的经时变化 比减落因子, 一般用 D F 表示, 有时简称减 64
3 电感系数 AL nh 一个电感器或变压器, 绕有 N 匝线圈, 其电感值为 L, 则定义 AL= 当 AL 单位为时 L N, N AL= 0 9 这里 L 的单位为亨利, 一般 N 取 00, 当 N 取得很大磁芯又是闭路时, 不宜采用 AL 来 N 表达, 因可能进入 µm 区或接近饱和区 在设计中, 知道 AL 值和设定要求的电感 (nh), 则导线圈数 : / 设定 L(nH) Ts= AL(nH/N ) 在无隙情况下,µ i = AL, 这里 C 为磁芯常数, 单位为 mm -,AL 为 nh 0.4π N AL 值与气隙大小有关 磨削面精度有关 事先设定了 AL 值及磁芯尺寸, 就可求得所用材料的磁导率 µ i 4 静磁场影响 -- 直流迭加 当交流磁场与直流磁场同时作用于磁芯时, 称为静磁场的影响, 有时, 简单地称为直流迭 加 H 当磁芯有一个恒定的直流磁场 H DC, 并在其上迭加一个幅度为的正弦磁场时, 则表示为 : H=H DC + H sinωt 当正弦磁场作用时, 磁通密度形成小磁滞回线时, 其峰值用 B/ 表示, 此时小磁滞回线在大 磁滞回线内变化, 小磁滞回线的平均斜率叫增量磁导率 ( 前已述过 ) µ = B H µ 0 C 这里, 正弦场叫工作场, 直流场叫偏磁化场或偏置场 增量磁导随偏置场而改变 测直流迭 加特性, 就是在一定偏置场下加工作场, 测其增量磁导率, 并与无直流场时的磁导率作比较 由于交流磁场值大小不同, 小回线有二种代表性的状态, 如 : 从中可推知迭加特性与材料特性的关系 由于许多电路中, 往往存在直流电成份, 这相当于加了一个直流偏置场, 而它会影响增量磁 导率的大小, 所以迭加特性很重要 65
5 居里温度 居里温度是磁性材料从铁磁性 ( 亚铁磁性 ) 到顺磁性的转变温度, 或称磁性消失温度, 表示方式有多种 天通材料标准中规定的确定居里温度的方法如下图 : 随温度升高, 磁导率下降到最大值的 80%,0% 时, 这二点联线, 延长到与 温度轴的交点, 即为居里温度 66
Consult Data Main concepts and definitions. Magnetic field as: Current induces magnetic field. In spiral coils, the magnetic field (H) induced by current can be expressed H= NI l Where all parameters are in SI unit system and N is turn number, I (A) is current, l (m) is the length of the spiral coils. In magnetic core, the field strength H induced by alternate current can be calculated in term of the effective length le of the spiral coils: IN H= (A/m) le loe= 0 3 4π 79.58A/m. Magnetic flux density, magnetic polarizability, magnetization. In magnetic material, the magnetic flux density varies as applied field H. It behaviors as: B=µ 0 H+J or B=µ 0 (H+M) Where B is magnetic flux density also called magnetic induction, J magnetic polarization,m magnetization, and µ 0vacuum permeability with the value of 4π 0 7 H/m. The units of B and J are Tesla (T) and those of H and M are A/m. Tesla = 0 4 Gauss In magnetic cores, the magnetic flux density can be calculated using effective area A e : B = 0.5V fnae For sine wave Where V is electric potential in Volt, f frequency in Hz, N turn number, B in mt and A e in m. 3. Saturation magnetization, remanent magnetization, and coercivity. Besides the linear relation between B and H in vacuum, B behaviors a nonlinear relation as H in magnetic materials displaying the hysteresis shown in the figure. 67
In the figure, B S is saturation induction, B r residual induction, H C coercivity, and H S saturation field. Different magnetic materials display various hysteresis, leading to different B S, B r, H C, and H S. 4. Permeability B ) called absolute permeability with dimension. H = M µ 0 (+ ) =µ absolute H B ) µ rwherew µ r is called relative permeability, which is a pure number without dimension. H = µ 0 µ r, Usually we use the relative permeability, neglecting the footnote r. B 3) =µ i is called initial permeability. It depends on temperature and frequency. The measurement µ 0 H ( H 0) of µ i should be made in a closed magnetic circuit at certain temperature and frequency in a very weak applied field. In measurement, it requires that the change of magnetic flux density ( B) induced by H should be less than mt, generally B=0.mT. 4) For unclosed magnetic circuit with a gap, measured permeability is called effective permeability expressed as: µ i +gµ i/le = µ e where g is the length of the gap, and l e the effective length of the magnetic circuit. It notes that this equation only an approximation of µe for the small gap. For large gap, the effective permeability will larger than that calculated using above equation. 5)When an applied field H is larger without a DC bias field, it induces the magnetic flux density B, in which Β = µ α,is called amplitude permeability. µ 0 Η 6)In an alternate field with a DC bias field, the permeability. µ = µ 0 B H H DC is called incremental permeability. For the electric inductance measured in the AC field superposed with a bias DC field, the permeability is probably also the incremental permeability. 7) The permeability in above ) 6) are all obtained in the low frequency or near to DC situation. When the frequency is high, the permeability is complex. 68
In serial circuit, µ =µ s-jµ s In parallel circuit, = - µ µ p jµ p µ s,µ s,µ p,µ p,are all the functions of frequency. 5. Impedance Inductive impedance in an electric inductance is X L = jωl,and condenser impedance in a condenser isx C=, These two are generally called electrical impedance. Adding pure resistance R, they are in all called jωc impedance. In magnetic devices, we only consider inductive impedance and pure resistance for the issue of relative low frequency, neglecting condenser impedance. There is the difference between serial and parallel circuit. Series representation Zs=Rs+jωLs Parallel representation Zp= /(jωlp)+/rp Zs and Zp depend on frequency, and their characteristics are called impedance frequency characteristics and related to the frequency characteristics of magnetic materials, and they are connected with winding parameters. In complex permeability, its frequency characteristics is determined by the frequency characteristics of both µ and µ. Actually, the impedance frequency characteristic is the characteristic of the magnetic device but the characteristic of material. 6. Loss factor Series representation. Loss factor indicates the loss property of material in small signal. It induces phase shift of signal due to magnetic core loss, which can be expressed as: Rs tgδm= = ωls where tgδm is called loss factor indicating the ratio of loss power and input power. Because magnetic core loss induces hysteresis loss, eddy loss, and residual loss, the loss factor can be expressed as: tgδm= tgδh + tgδe + tgδr, Where tgδh, tgδe, and tgδr is called hysteresis loss factor, eddy loss factor, and residual loss factor respectively (see the following Figure). µ s µ s Parallel representation. ωlp or tgδm= = Rp µ p µ p 7. Specific Loss factor tgδm or tgδ is called specific loss factor, which is independent of geometrical size of µ i µ i material, indicating small signal loss characteristic of the material. 8. The influence of gap When the magnetic circuit is unclosed with a gap, the loss factor is called gap loss factor(tgδ)gap, The relation between gap loss factor and loss gactor without the gap is: 69
(tgδ)gap µ e- = tgδ µ i- Becauseµ e µ i>>, the above equation becomes Where µ e<µ i, It is clear that (tgδ)gap>tgδ, Q value increasing After the gap is made, the internal magnetic intensity of core decreases in large scale, form the formula Hi=He-Hd=He-NM, we could see when demagnetising factor N increases, Hi will decrease on the contrary. Here NI He is the magnetic field produced by the winding with current(he= le ),m is intensity of magnetization, demagnetising factor is 0~4π, if magnetic circuit is closed,n=0, when the gap is bigger, demagnetising factor is bigger,and it is the same on the contrary. Gap-making will increase the stability of magnetic field and temperature. (tgδ)gap tgδ µ e =, i.e(tgδ)gap= tgδ µ e µ i 9. Quality factor Q When magnetic device is used as electric inductance in wave filter, its property is usually characteriaed using quality factor Q. µ i When R tot t is total resistance including coil and core resistance. R tot indicates loss including magnetic core loss and copper wire loss. Q value is cloesly related to frequency and coil parameters. 0. Power loss in large signal field In large singnal field, magnetic core loss can be expressed as: P m =P h +P e +P r, When P h, P e, and P r indicate hysteresis loss, eddy loss and residual loss respectively. In power ferrite, r P m is often used to analyze power loss, interpreted as dividing the total power loss and then analysing the cause and cores of power loss. Q = = tgδ ωl R tot. Temperature coefficient and specific temperature coefficient. µ i-µ i Temperatuer factor is: αµi= µ i T -T Where µ i, µ i indicate initial permeability at T, T respectively. αµi µ i-µ i Sepcific temperature factor is: αµir= µ = i (µ i ) T -T αµi and αµir all indicate temperature stability of permeability.. Dropping coefficient and Specific dropping coefficient. µ i-µ i Dropping coefficient is: D A = µ i lg( t /t ) Where µ i, µ i indicate initial permeability at the same temperature at different time t, t respectively. D Sepcific dropping coefficient is: D F = A µ i-µ i = µ (µ i ) i lg( t /t ) Both D A and D F indicates the change under the influence of magnetic interference and mechanical lash. 70
3. Electric inductance factor AL The inductance value of an electric inductance or a transformer with N turn coils is L. It defines that nh AL=, When the unit AL is, taking N=00 commonly, but sometimes the parameter of AL is not N used, because when the turns of winding are too many and in circumstance of closed magnetic circuit the magaetic flied is likely to enter µm area or approach saturation area. Ts= C When without the gap, µ i= AL, where C of core parameters is mm -, AL is. 0.4π nh N AL value is related to the size and surface roughness of the gap. If known AL value and magnetic core size, one can easily obtain permeability µ i used material. 3. Static field effect -DC superposition When an alternate field and a DC field act on a magnetic core simultaneously, it is called static magnetic influence. Sometimes it is call DC superposition. When there is a sine field with the amplify of H/ acting on a DC field in the magnetic core, the applied fields is Due to sine field, the change of magnetic flux density shows a small hysteresis loop in the large one and its peak value is B/ (See the following figures). The average slope of the small hysteresis loop is incremental permeability (as mentioned above): Where the sine field is called applied and field DC field called displacing field or bias field. The incremental permeability changes as displacing field. The measurement of DC superposition characteristic is to measure the incremental permeability in DC displacing field and to compare it to that measured without DC displacing field. Set L(nH) AL(nH/N ) H=H DC + µ = µ 0 H B H / sinωt N There are two typical small hysteresis loops for different alternate fields (shown in the following figures). Big working magnetic field intensity H Small working magnetic field intensity H Where is the hysteresis loop, After folding between DC magnetic field and AC field with H/ From them one can know the relationship between the superposing characteristic and material property. The superposing characteristic is very important due to the existence of DC in many electric circuits. 7
5. Curie temperature Curie temperature is the transition temperature of magnetic materials from ferromagnetism to paramagnetism. There are several methods to determine Curie temperature. The method used by Tiantong Elec.Co., Ltd. is shown as the following figure. As temperature increases, one can find the two points with thepermeability falling down to 80% µimax and 0% µimax respectively.connecting the two points and extrapolating the line to T axis, the point of intersection is Curie temperature. 7
磁业公司镍锌开发部地址 : 中国浙江省海宁市天通科技园电话 :+86-573-768066 传真 : +86-573-76896 E-mail: nzjsb@tdgcore.com 嘉兴科技产业园地址 : 浙江省嘉兴市南湖区亚太路 号 ( 中环南路亚太路口 ) 磁业销售总机 : +86-573-585333 传真 : +86-573-5853 上海贸易部地址 : 上海市徐家汇区古美路 88 号 6C 一层电话 :+86--5445086 传真 : +86--54655 邮编 :00 深圳贸易部地址 : 深圳高新技术产业园区高新南一道孵化大楼 863 室电话 :+86-755-699566 传真 :+86-755-69955 NIZN R&D DEPARTMENT OF MAGNETIC COMPANY ADD: Tiantong Technology Zone, Haining, Zhejiang, China. TEL: +86-573-768066 FAX: +86-573-76896 E-mail: nzjsb@tdgcore.com JIAXING TECHNOLOGY INDUSTRY ZONE ADD: NO. Yatai Road, Nanhu District, Jiaxing, Zhejiang, China. (Crossing Zhonghuan South Road and Yatai Road) SALE TEL: +86-573-585333 FAX: +86-573-5853 SHANGHAI COMMERCE DEPARTMENT ADD: /F, 6C, NO.88 Gumei Road, Xujiahui District, Shanghai. TEL: +86--5445086 FAX: +86--54655 P.C: 00 SHENZHEN COMMERCE DEPARTMENT ADD: Room 863, Fuhua Building, Street South High-tech Road, High-tech Industry Park, Shenzhen, China. TEL: +86-755-699566 FAX: +86-755-69955