Microsoft Word _File000001_ docx

Similar documents
382 25,,, 4.2 g 96% m.p.139~140 ( [21] :138~139 ), (4- )-2,2 6,2 - (L), [17], 2.5 mmol 1-(2- )-, 2.5 mmol 1-(2- )-(4- ) -1-2,2 6,2 (25.0 mmol),

2502 Vol 33 PANI S D-CSA 1R L-CSA Alfa Aesar ITO 25 ~ 35 Ω /cm 2 Millipore CHI630B ITO Pt SCE Hitachi S-4800 Philips FEI

Preparation and Characterization of Vinyl Polymers bearing Pregna Groups via ATRP

[1] Nielsen [2]. Richardson [3] Baldock [4] 0.22 mm 0.32 mm Richardson Zaki. [5-6] mm [7] 1 mm. [8] [9] 5 mm 50 mm [10] [11] [12] -- 40% 50%

32

ph ph ph Langmuir mg /g Al 2 O 3 ph 7. 0 ~ 9. 0 ph HCO - 3 CO 2-3 PO mg /L 5 p

生物化学习题(答案不太全)

Microsoft Word - Supporting Information clear

Supporting_Information_revise

PCA+LDA 14 1 PEN mL mL mL 16 DJX-AB DJ X AB DJ2 -YS % PEN

实验一 氨基酸的分离鉴定—纸层析法

729 NHS EDC 5% w /V PEI Tetramethylrhodamine-5-isothiocyanate TRITC N- 2- -N'- 2- HEPES U D Sigma-ldrich SDS 5 mmol /L 5 mmol /L HEPE

H 2 SO ml ml 1. 0 ml C 4. 0 ml - 30 min 490 nm 0 ~ 100 μg /ml Zhao = VρN 100% 1 m V ml ρ g

<4D F736F F D20312D3120B9ABBFAAD7AAC8C3CBB5C3F7CAE92E646F63>

标题

妇 科 用 药 丹 鳖 胶 囊 0.38g 广 州 潘 高 寿 药 业 股 份 有 限 公 瓶 粒 / 瓶 GMP 深 圳 市 宇 冠 医 药 有 限 妇 科 用 药 产 复 康 颗 粒 每 袋 装 5g 深 圳 三 顺 制 药

助 剂 改 善 其 止 血 效 果 1 实 验 1.1 原 料 和 试 剂 家 蚕 蛹 经 过 提 取 蛹 油 蛋 白 质 后 剩 余 的 残 渣 ( 主 要 成 分 为 蛹 皮 ), 烘 干 除 杂 粉 碎 后 待 用 ; 壳 聚 糖 ( 成 都 市 科 龙 化 工 试 剂 厂 ), 脱 乙 酰

In Hydrothermal Synthesis of Hydroxyapatite Microspheres with Polyvinylpyrrolidone as Template

科展作品說明書01.PDF

untitled

115 的 大 量 废 弃 物 被 丢 弃 或 直 接 燃 烧 [3] 此 外, 海 南 省 文 昌 鸡 年 产 量 约 8 0 只, 鸡 粪 年 产 量 超 过 100 万 t 这 些 富 含 养 分 的 固 体 有 机 废 弃 物 不 进 行 处 理, 不 仅 会 极 大 浪 费 大 量 养 分


.. Abstract

600 现 代 药 物 与 临 床 Drugs & Clinic 第 31 卷 第 5 期 2016 年 5 月 were significantly decreased, but the levels of IL-12 in two groups were significantly increa

Microsoft Word - molecules supple.docx

跨 境 犯 罪 案 例 報 告 擄 人 勒 贖 案 件 檢 座 約 晚 上 12 點 半 在 辦 公 室 可 以 嗎? 24 日 清 晨 見 過 證 據 資 料 後, 同 意 緊 急 上 線, 並 立 即 製 作 聲 請 書, 並 獲 得 法 院 准 許, 此 後 一 路 積 極 續 線 及 擴 線

涓浗鏂囧寲

标题

Supporting information Combination of N-Arylstilbazolium Organic Nonlinear Optical Chromophores with Iodoargentates: Structural Diversities and Optica

Microsoft Word _File000009_ doc

标题

: 307, [], [2],,,, [3] (Response Surface Methodology, RSA),,, [4,5] Design-Expert 6.0,,,, [6] VPJ33 ph 3,, ph, OD, Design-Expert 6.0 Box-Behnken, VPJ3

untitled

Microsoft Word tb 赵宏宇s-高校教改纵横.doc

Technical Acoustics Vol.27, No.4 Aug., 2008,,, (, ) :,,,,,, : ; ; : TB535;U : A : (2008) Noise and vibr

台 灣 花 精 溫 暖 的 家 台 灣 花 精 的 家 再 蛻 變 與 花 氣 最 初 的 相 遇 在 祈 光 總 部, 因 為 一 個 入 世 之 夢, 台 灣 花 精 的 家 落 腳 市 中 心 繁 華 巷 弄 裡, 用 花 草 出 世 的 靈 秀 之 氣 迎 接 心 靈 花 友, 始 終 如

~ 4 mm h 8 60 min 1 10 min N min 8. 7% min 2 9 Tab. 1 1 Test result of modified

Microsoft Word - 8 期中文目次.doc

H NMR 谱 的 测 定 1 H NMR 20 6 VARIAN INOVA MHz 7 [9] 相 溶 解 度 法 测 定 < mm MTX 15 3 Q mg 20 ~ 30 mm β - 1

第 二 章 校 草 出 现 圣 迪 亚 学 院, 一 所 远 近 闻 名 的 贵 族 学 院 它 的 知 名 度 就 好 像 猪 的 知 名 度 一 样, 无 人 不 知 无 人 不 晓 是 所 有 人 都 向 往 的 学 校 圣 迪 亚 学 院 是 以 欧 式 建 筑 风 格 为 主 的 大 门

< F63756D656E D2D796E2D31C6DABFAF2D31D6D0D2BDD2A9CFD6B4FABBAF2D C4EA2DB5DA34C6DA2DC4BFC2BC2D34C6DA2E6D6469>

Microsoft Word _editing

Supplemental information Exome sequencing identifies truncating mutations in the PRRT2 gene that cause paroxysmal kinesigenic dyskinesia Wan-Jin Chen

在 培 养 职 前 卓 越 化 学 教 师 的 院 校, 会 编 一 本 过 去 称 作 化 学 教 学 论 实 验, 现 在 拟 为 卓 越 化 学 教 师 教 育 实 验 教 学 研 究 的 教 材 各 院 校 对 这 门 课 程 所 给 的 学 时 不 太 一 样, 但 都 是 围 绕 实 验

mm ~

g ml 10% ph 色谱条件 kinetex C μm 100 A 4. 6 mm 150 mm 25 5 μl A B 10 mmol /L ml /min

s 15 contact s W Si 3 N μm N / m 4 AFM 95% AFM WPOJ UPOJ WPOJ UPOJ 260 ~ 280 nm WPOJ-DS UPOJ-DS 1 cm 1 cm DEAE-ce

一次辽宁暴雨过程的诊断及风场反演分析

果葡糖浆中5-HMF生成影响因素及其去除方法

UNIVERSITY OF SCIENCE & TECHNOLOGY OF CHINA MASTER S DEGREES DISSERTATION TITLE AUTHOR SPECIALITY ADVISOR Multichannel Electrogenerated Chemiluminesce

( ) [11 13 ] 2 211,,, : (1),, 1990 ( ) ( ),, ; OD, ( ) ( ) ; , ( ), (2) 50 %,, 1999 ( ) ( ) ; (3),,

6. 新 陳 代 謝 包 括 同 化 作 用 和 異 化 作 用 : (A) 受 精 卵 發 育 只 有 同 化 作 用 沒 有 異 化 作 用 (B) 呼 吸 作 用 屬 於 異 化 作 用 (C) 牛 吃 青 草 轉 化 為 牛 乳, 是 先 行 異 化 作 用 再 行 同 化 作 用 (D)

(polyimides) PI ( thermal stability ) 夲 [2] 5] 574

DOI /j.issn Food Research And Development UPLC-MS/MS 5 0.

2015 年 第 2 期 洁 净 煤 技 术 第 21 卷 此, 做 好 煤 炭 的 高 效 洁 净 利 用, 对 促 进 我 国 节 能 减 排 应 对 气 候 变 化 意 义 重 大 水 煤 浆 技 术 是 将 煤 炭 物 理 加 工 之 后 再 利 用 的 一 种 技 术, 是 适 应 我 国

2 期 王 华 等 : 猕 猴 桃 果 肉 提 取 物 抗 氧 化 活 性 研 究 DPPH 1 1-mg 70% TBA ml 70% K 2 S 2 O 8 TPTZ Sigma Folin- 70% m

WATER PURIFICATION TECHNOLOGY April 5th, 0.4 TiO TiO UV-0PC UNICO [0] TiO TiO TiO HNO 00 W TiO TiO TiO >40 nm TiO 0 ml 0 mg / L -. TiO 6 ml 40 ml 60 m

1. General Information Unless otherwise noted, all reagents, catalysts and solvents were purchased from commercial suppliers and used without further

一、考試宗旨:考選風險管理人才,提升風險管理水準。

MBR 1 1# MBR MBR MBR mm mm mm 1 MICRODYN -NADIR BC m μm PLC 2 2 Table 2 Main equipment

Microsoft Word - 1--齐继峰_new_.doc

Vol. 22 No. 4 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Aug GPS,,, : km, 2. 51, , ; ; ; ; DOI: 10.

Microsoft Word - 果汁-專題報告.rtf

Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is the Partner Organisations 2018 Supporting Information Well-

2004级研究生现代免疫学实验技术结业报告

untitled

标题

标题

第十一章 颈部疾病病人的护理

华山山前断裂中段晚第四纪活动的地貌表现及响应

<4D F736F F D20B169B74FC5EF2020A8E2A9A4B0EABB79B1D0ACECAED1A56AA8E5B8D6BA71BFEFBFFDA4A7ACE3A8732E646F63>

140 质 粉 质 特 性 和 糊 化 特 性 是 衡 量 面 粉 品 质 的 重 要 指 标 [3] 可 以 通 过 对 加 入 不 同 量 的 杂 粮 粉 的 面 团 吸 水 率 形 成 时 间 稳 定 时 间 粉 质 质 量 指 数 [4], 糊 化 过 程 中 糊 化 温 度 峰 值 粘 度

untitled

Microsoft Word _editing.doc

SWAN min TITAN Thunder Identification Tracking Analysis SWAN TITAN and Nowcasting 19 TREC Tracking Radar Echo by Correlaction T

亮麗水顏

Molecules 2017, 22, 236; doi: /molecules S1 of S21 Supplementary Materials: Bioactive Stilbenes from Cortex Mori Radicis, and Their Neur

<4D F736F F D20B8BDBCFEA3BAB9ABCABEC4DAC8DD2DB9FDB6C9BDF0CAF4D1F5BBAFCEEFC4C9C3D7BDE1B9B9D0C2D3B1B5C4CDE2B3A1D7F7D3C3CFECD3A6CCD8D0D4BCB0BBFAC0EDD1D0BEBF2E646F6378>

m m m ~ mm

<4D F736F F D20B9E3D6DDCAD0CBAECEF1CDB6D7CABCAFCDC5D3D0CFDEB9ABCBBE C4EAB6C8B5DAD2BBC6DAD6D0C6DAC6B1BEDDC4BCBCAFCBB5C3F7CAE92E646F63>

Supplementary Information LC-MS-guided isolation of anti-inflammatory 2-(2-phenylethyl)chromone dimers from Chinese agarwood (Aquilaria sinensis) Hui-

* CUSUM EWMA PCA TS79 A DOI /j. issn X Incipient Fault Detection in Papermaking Wa

中溫矽基熱電材料介紹及其應用

增 刊 谢 小 林, 等. 上 海 中 心 裙 房 深 大 基 坑 逆 作 开 挖 设 计 及 实 践 745 类 型, 水 位 埋 深 一 般 为 地 表 下.0~.7 m 场 地 地 表 以 下 27 m 处 分 布 7 层 砂 性 土, 为 第 一 承 压 含 水 层 ; 9 层 砂 性 土

864 现 代 药 物 与 临 床 Drugs & Clinic 第 31 卷 第 6 期 2016 年 6 月 of apoptosis related factors, decrease the incidence of adverse reactions, which is of great

Microsoft Word - 封面.doc

931-33FR-E 1,2,3,4- BTCA DP FR-E BTCA DP X- DP60 Ea kJ/mol kJ/mol lna

HJ HJ/T HBC The technical requirement for environmental labeling products Water based coatings

296 FINE CHEMICALS 33 Sinensis Lam extracts = system systemⅢ performed best. Key words natural surfacetant Camellia Oleifera Abel meal Sap

[1-3] (Smile) [4] 808 nm (CW) W 1 50% 1 W 1 W Fig.1 Thermal design of semiconductor laser vertical stack ; Ansys 20 bar ; bar 2 25 Fig

总 策 划 卢 晓 峰 策 划 赵 广 勇 万 卫 平 主 编 麻 霞 副 主 编 张 晓 编 辑 孔 令 华 张 楠 新 疆 生 产 建 设 兵 团 新 闻 办 公 室 编

<D2BDC1C6BDA1BFB5CDB6C8DAD7CAB8DFB7E5C2DBCCB3B2CEBBE1C3FBB5A52E786C7378>

Microsoft Word _File000001_ doc

西宁市商业网点规划纲要

<453A5CCAB3C6B7BFC6D1A73131C4EA3134C6DA5C3134C6DA5C3032B7D6CEF6>

( 4c), 5b 5a (a) (b) (c) 2 934,2 867,1 466, cm - 1 Fig11 Microphotograph of cholesterol gallstone ( a), pigment stone ( b),an

600741_nb_2002.PDF

度 理 -2-

中 文 摘 要 芦 荟 和 金 银 花 抗 菌 成 分 提 取 及 其 对 棉 织 物 的 整 理 中 文 摘 要 随 着 生 活 水 平 的 提 高 和 健 康 环 保 意 识 的 增 强, 人 们 对 棉 织 物 卫 生 保 健 功 能 的 要 求 越 来 越 高, 故 对 棉 织 物 进 行

< F63756D656E D2D796E2D31C6DABFAF2D31D6D0D2BDD2A9CFD6B4FABBAF2D C4EA2DB5DA36C6DA2DB7E2C3E6CDC6BDE9A3A D36A3A92E6D6469>

Transcription:

Supporting Information ph-regulated Optical Performances in Organic/Inorganic Hybrid: A Dual-Mode Sensor Array for Pattern Recognition-Based Biosensing Qing Yan, Xu-Yin Ding, Zi-Han Chen, Shi-Fan Xue, Xin-Yue Han, Zi-Yang Lin, Miao Yang, Guoyue Shi, Min Zhang* School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China. Phone & Tel: +86-21-54340042; Email: mzhang@chem.ecnu.edu.cn Contents Synthesis of oleic acid (OA)-capped lanthanide-doped upcoversion nanoparticles (OA-Ln-UCNPs). Preparation of water-dispersible ligand-free lanthanide-doped upcoversion nanoparticles (Ln-UCNPs). Figure S1. FTIR spectra of OA-Ln-UCNPs and Ln-UCNPs. Figure S2. TEM images of OA-Ln-UCNPs and Ln-UCNPs. Figure S3. The upconversion fluorescence spectra of OA-Ln-UCNPs and Ln-UCNPs under the excitation of 980 nm. Figure S4. Investigation of zeta potential of Ln-UCNPs and TPPS. Figure S5. The upconversion fluorescence spectra of Ln-UCNPs in the range of 420~550 nm challenged with various concentration of TPPS in the buffers with ph at 4.0, 4.5, and 5.0, respectively. Figure S6. Long-term stability of the absorption intensity and the upconversion fluorescence intensity of TPPS/Ln-UCNPs at ph=4.0, 4.5, and 5.0. Figure S7. Time-course responses of the absorption intensity of TPPS/Ln-UCNPs in the presence of 10 µm ATP regulated by buffers with ph at 4.0, 4.5, and 5.0, respectively. Figure S8. Time-course responses of the upconversion fluorescence intensity of TPPS/Ln-UCNPs in the presence of 10 µm ATP regulated by buffers with ph at 4.0, 4.5, and 5.0, respectively. Figure S9. UV-vis absorbance and upconversion fluorescence response patterns and heat maps of the ph-regulated TPPS/Ln-UCNPs sensor array toward 20 µm PCs (ATP, ADP, AMP, CTP, CDP, CMP, GTP, GDP, GMP, UTP, UDP, UMP, PPi, and Pi), and 100 µm Cu 2+. Figure S10. UV-vis absorbance and upconversion fluorescence response patterns and heat maps of the ph-regulated TPPS/Ln-UCNPs sensor array toward various concentrations of ATP. Figure S11. Identification of PPi at various concentrations via the ph-regulated TPPS/Ln-UCNPs sensor array. Figure S12. UV absorbance and upconversion fluorescence response patterns and heat maps of the ph-regulated TPPS/Ln-UCNPs sensor array toward the mixture of ATP and CTP. Figure S13. UV absorbance and upconversion fluorescence response patterns, heat maps and canonical score plots of the ph-regulated TPPS/Ln-UCNPs sensor array toward the mixture of ATP and CTP. Table S1-S15. Mulliken charges in TPPS, ATP, ADP, AMP, CTP, CDP, CMP, GTP, GDP, GMP, UTP, UDP, UMP, PPi, and Pi. Table S16-S17. Identification of unknown PCs using the ph-regulated TPPS/Ln-UCNPs sensor array in UV-vis absorbance mode and in upconversion fluorescence mode. S-1

Synthesis of oleic acid (OA)-capped lanthanide-doped upcoversion nanoparticles (OA-Ln-UCNPs). Briefly, 0.795 mmol of YCl 3 6H 2 O, 0.2 mmol of YbCl 3 6H 2 O, and 0.005 mmol of TmCl 3 6H 2 O were mixed with 15 ml ODE and 6 ml OA in a 100 ml three-neck round-bottom flask. The resulting mixture was magnetically stirred and heated to 160 C for 30 min to form the lanthanide-oleate complexes and remove residual water and oxygen. Then the mixture was cooled to room temperature under a gentle flow of N 2 gas. After that, a solution of 4 mmol NH 4 F and 2.5 mmol NaOH dissolved in 10 ml methanol was added to the flask and the resulting mixture was heated to 50 C and vigorously stirred for 30 min. Then the slurry was slowly heated and kept at 100 C for 10 min to evaporating water and methanol. Subsequently, the reaction mixture was heated to 300 C in a nitrogen atmosphere and maintained for 60 min, and then cooled to room temperature naturally. The as-prepared OA-Ln-UCNPs were precipitated by adding ethanol and centrifuged, and re-dispersed in chloroform after three-time washing with chloroform/ethanol (1:1). Preparation of water-dispersible ligand-free lanthanide-doped upcoversion nanoparticles (Ln-UCNPs). In brief, the as-prepared OA-Ln-UCNPs (200 mg) were dispersed in 20 ml aqueous solution. The solution was acidified with 0.1 M HCl solution for maintaining the ph at 4. The carboxylate group of OA ligand was protonated during this reaction. After intensely agitated for 4 h, the reaction was completed. The aqueous solution was re-extracted with diethyl ether at least three times to remove the oleic acid and the combined organic extracts were re-extracted with water. Moreover, the combined water layers were re-extracted by diethyl ether. The ligand-free Ln-UCNPs in water layers were isolated by centrifugation after precipitation with acetone. Finally, Ln-UCNPs were readily dispersed in water for further use. Figure S1. FTIR spectra of OA-Ln-UCNPs (black curve) and Ln-UCNPs (red curve). S-2

Figure S2. TEM images of (a) OA-Ln-UCNPs and (b) Ln-UCNPs. Figure S3. The upconversion fluorescence spectra of OA-Ln-UCNPs (blue curve) and Ln-UCNPs (red curve) under the excitation of 980 nm. Figure S4. Investigation of zeta potential of Ln-UCNPs and TPPS. S-3

Figure S5. The upconversion fluorescence spectra of Ln-UCNPs in the range of 420~550 nm challenged with various concentration of TPPS in the buffers with ph at 4.0 (a), 4.5 (c), and 5.0 (e), respectively; Plots of the changes in upconversion fluorescence intensity at 480 nm versus concentrations of TPPS in the buffers with ph at 4.0 (b), 4.5 (d), and 5.0 (f), respectively. Figure S6. Long-term stability of the absorption intensity (a-c) and the upconversion fluorescence intensity (d-e) of TPPS/Ln-UCNPs at ph=4.0, 4.5, and 5.0. S-4

Figure S7. Time-course responses of the absorption intensity of TPPS/Ln-UCNPs in the presence of 10 µm ATP regulated by buffers with ph at 4.0 (a), 4.5 (b), and 5.0 (c), respectively. Figure S8. Time-course responses of the upconversion fluorescence intensity of TPPS/Ln-UCNPs in the presence of 10 µm ATP regulated by buffers with ph at 4.0 (a), 4.5 (b), and 5.0 (c), respectively. S-5

Figure S9. (a) UV-vis absorbance and (d) upconversion fluorescence response patterns of ph-regulated TPPS/Ln-UCNPs sensor array toward 20 µm PCs (ATP, ADP, AMP, CTP, CDP, CMP, GTP, GDP, GMP, UTP, UDP, UMP, PPi, and Pi), and 100 µm Cu 2+. Heat maps derived from the (b) UV-vis absorbance and (e) upconversion fluorescence response patterns of ph-regulated TPPS/Ln-UCNPs sensor array toward 20 µm PCs indicated, and 100 µm Cu 2+. Canonical score plots for (c) UV-vis absorbance and (f) upconversion fluorescence response patterns obtained with ph-regulated TPPS/Ln-UCNPs sensor array toward 20 µm PCs indicated, and 100 µm Cu 2+. S-6

Figure S10. (a) UV-vis absorbance and (c) upconversion fluorescence response patterns of the ph-regulated TPPS/Ln-UCNPs sensor array toward various concentrations of ATP. Heat maps derived from (b) UV-vis absorbance and (d) upconversion fluorescence response patterns of the ph-regulated TPPS/Ln-UCNPs sensor array toward various concentrations of ATP. Figure S11. Identification of PPi at various concentrations via the ph-regulated TPPS/Ln-UCNPs sensor array. (a) UV-vis absorbance and (e) upconversion fluorescence response patterns of the ph-regulated TPPS/Ln-UCNPs sensor array toward various concentrations of PPi. Heat maps derived from (b) UV-vis absorbance and (f) upconversion fluorescence response patterns of the ph-regulated TPPS/Ln-UCNPs sensor array toward S-7

various concentrations of PPi. Canonical score plot for (c) UV-vis absorption response patterns and (g) upconversion fluorescence response patterns obtained with the ph-regulated TPPS/Ln-UCNPs sensor array toward different concentrations of PPi. Plots of PC1 vs the concentrations of PPi in (d) UV-vis absorption mode and (h) upconversion fluorescence mode. Figure S12. (a) UV absorbance and (c) upconversion fluorescence response patterns of the ph-regulated TPPS/Ln-UCNPs sensor array toward the mixture of ATP and CTP. Heat maps derived from (b) UV-vis absorbance and (d) upconversion fluorescence response patterns of the ph-regulated TPPS/Ln-UCNPs sensor array toward the mixture of ATP and CTP. S-8

Figure S13. (a) UV absorbance and (d) upconversion fluorescence response patterns of the ph-regulated TPPS/Ln-UCNPs sensor array toward the mixture of PPi and Pi. Heat maps derived from (b) UV-vis absorbance and (e) upconversion fluorescence response patterns of the ph-regulated TPPS/Ln-UCNPs sensor array toward the mixture of PPi and Pi. Canonical score plots for the ph-regulated TPPS/Ln-UCNPs sensor array toward mixtures of PPi and Pi with different molar ratios in (c) UV-vis absorption mode and (f) upconversion fluorescence mode. Table S1. Mulliken charges in TPPS (remove hydrogen). 1 C -0.020906 2 C 0.145773 3 C -0.068159 4 C 0.089485 5 C 0.110612 6 C -0.326635 7 C 0.124529 8 C 0.080323 9 C 0.020213 10 C 0.049146 11 C 0.141980 12 N -0.549967 13 C 0.005215 14 C -0.088668 15 C 0.303428 S-9

16 C 0.094260 17 C 0.107291 18 C -0.327318 19 C 0.121568 20 C 0.075220 21 C 0.034031 22 C 0.037846 23 C 0.306132 24 N -0.432843 25 C -0.001765 26 C 0.135978 27 C 0.049560 28 C 0.022450 29 C 0.147749 30 N -0.540373 31 C -0.029672 32 C 0.284128 33 C 0.284311 34 N -0.378917 35 C 0.005658 36 C 0.006609 37 C -0.081094 38 C -0.063819 39 C 0.071705 40 C 0.110218 41 C -0.325093 42 C 0.118060 43 C 0.094659 44 C 0.089485 45 C 0.121539 46 C -0.329014 47 C 0.113328 48 C 0.077834 49 S 1.300391 50 O -0.576698 51 O -0.516437 52 O -0.212042 53 S 1.298280 54 O -0.514729 55 O -0.576790 56 O -0.211334 57 S 1.304329 58 O -0.578259 59 O -0.515745 S-10

60 O -0.211284 61 S 1.296764 62 O -0.514886 63 O -0.576233 64 O -0.211403 Table S2. Mulliken charges in ATP (remove hydrogen). 1 P 1.260674 2 O -0.711105 3 P 1.349561 4 O -0.766508 5 O -0.699219 6 O -0.848567 7 O -0.756933 8 O -0.712399 9 N -0.640153 10 C 0.270966 11 N -0.600494 12 C 0.663883 13 C 0.186958 14 C 0.502523 15 N -0.768451 16 C 0.574386 17 N -0.634137 18 N -0.204634 19 C 0.153384 20 C 0.132010 21 C 0.418080 22 O -0.489526 23 C 0.098791 24 O -0.259472 25 O -0.275596 29 C 0.249053 31 O -0.652264 32 P 1.358615 33 O -0.721973 34 O -0.747685 35 O -0.729768 Table S3. Mulliken charges in ADP (remove hydrogen). S-11

1 N -0.462204 2 C 0.275025 3 N -0.399368 4 C 0.445093 5 C 0.092853 6 C 0.42239 7 N -0.653659 8 C 0.481829 9 N -0.462111 10 N -0.039015 11 C 0.212237 12 C 0.280181 13 C 0.430403 14 O -0.535584 15 C 0.261644 16 O -0.238583 17 O -0.238603 21 C 0.319548 23 O -0.731 24 P 1.30385 25 O -0.826285 26 O -0.78717 27 O -0.796083 28 P 1.167267 29 O -0.842794 30 O -0.837777 31 O -0.842086 Table S4. Mulliken charges in AMP (remove hydrogen). S-12 1 N -0.47881 2 C 0.287763 3 N -0.414536 4 C 0.45803 5 C 0.088105 6 C 0.421365 7 N -0.659309 8 C 0.493933 9 N -0.478873 10 N -0.019162 11 C 0.220937 12 C 0.28881 13 C 0.458999

14 O -0.580109 15 C 0.293646 16 O -0.272757 17 O -0.273588 21 C 0.296552 23 O -0.723786 24 P 1.24486 25 O -0.876796 26 O -0.894261 27 O -0.881011 Table S5. Mulliken charges in CTP (remove hydrogen). 1 C -0.079820 2 C 0.382940 3 C 0.794403 4 N -0.677931 5 C 0.532620 6 N -0.156908 7 O -0.611918 8 N -0.764676 9 C 0.145823 10 C 0.168056 11 C 0.398589 12 O -0.503010 13 C 0.116906 14 O -0.169103 15 O -0.308164 19 C 0.218180 21 O -0.604642 22 P 1.301633 23 O -0.751431 24 O -0.799541 25 O -0.705335 26 P 1.218197 27 O -0.767022 28 P 1.348608 29 O -0.784701 30 O -0.691221 31 O -0.770861 32 O -0.744649 33 O -0.735023 S-13

Table S6. Mulliken charges in CDP (remove hydrogen). 1 C -0.024772 2 C 0.410737 3 C 0.576064 4 N -0.510043 5 C 0.426433 6 N -0.049173 7 O -0.559577 8 N -0.599933 9 C 0.229479 10 C 0.242415 11 C 0.450227 12 O -0.548097 13 C 0.238054 14 O -0.245809 15 O -0.249284 19 C 0.351361 21 O -0.756544 22 P 1.330645 23 O -0.832724 24 O -0.776577 25 O -0.791026 26 P 1.18654 27 O -0.831998 28 O -0.837004 29 O -0.829393 Table S7. Mulliken charges in CMP (remove hydrogen). S-14 1 C 0.022369 2 C 0.377685 3 C 0.598673 4 N -0.514553 5 C 0.427849 6 N -0.007317 7 O -0.619056 8 N -0.606293 9 C 0.273027 10 C 0.252204 11 C 0.475429 12 O -0.580331

13 C 0.267982 14 O -0.261424 15 O -0.272931 19 C 0.344523 21 O -0.754483 22 P 1.247246 23 O -0.886866 24 O -0.892466 25 O -0.891266 Table S8. Mulliken charges in GTP (remove hydrogen). S-15 1 O -0.715820 2 P 1.379253 3 O -0.856436 4 P 1.428714 5 O -0.727003 6 O -0.633959 7 O -0.853786 8 O -0.865507 9 O -0.862261 10 N -0.492592 11 C 0.795706 12 N -0.624153 13 C 0.600347 14 C 0.064065 15 C 0.660423 16 C 0.456495 17 N -0.619133 18 O -0.592790 19 N -0.172198 20 N -0.757522 21 C 0.199936 22 C 0.119100 23 C 0.425818 24 O -0.472427 25 C 0.225067 26 O -0.254174 30 C 0.270890 32 O -0.247563 33 O -0.668878 34 P 1.317490 35 O -0.791650

36 O -0.735451 Table S9. Mulliken charges in GDP (remove hydrogen). 1 N -0.365168 2 C 0.705614 3 N -0.443209 4 C 0.490767 5 C 0.027322 6 C 0.499245 7 C 0.495083 8 N -0.46936 9 O -0.515091 10 N -0.015376 11 N -0.68082 12 C 0.225796 13 C 0.238867 14 C 0.463501 15 O -0.540416 16 C 0.251197 17 O -0.244895 21 C 0.311151 23 O -0.244351 24 O -0.738986 25 P 1.308198 26 O -0.825187 27 O -0.787011 28 O -0.793869 29 P 1.166895 30 O -0.841988 31 O -0.837773 32 O -0.840139 Table S10. Mulliken charges in GMP (remove hydrogen). S-16 1 N -0.336232 2 C 0.700849 3 N -0.454295 4 C 0.506089 5 C 0.020853 6 C 0.518813 7 C 0.500006

8 N -0.486503 9 O -0.588594 10 N 0.010623 11 N -0.684504 12 C 0.24879 13 C 0.247949 14 C 0.486526 15 O -0.582592 16 C 0.267716 17 O -0.295623 21 C 0.303568 23 O -0.309892 24 O -0.725425 25 P 1.269209 26 O -0.862089 27 O -0.884709 28 O -0.870534 Table S11. Mulliken charges in UTP (remove hydrogen). S-17 1 C -0.223082 2 C 0.268279 3 C 0.965158 4 N -0.514727 5 C 0.692760 6 O -0.605383 7 O -0.559219 8 N -0.767539 9 C 0.163455 10 C 0.147465 11 C 0.386509 12 O -0.503826 13 C 0.085569 14 O -0.263939 15 O -0.257176 19 C 0.279165 21 O -0.647059 22 P 1.127635 23 O -0.781851 24 O -0.785312 25 O -0.757949

26 P 1.252396 27 O -0.747310 28 O -0.728112 29 O -0.664398 30 P 1.554528 31 O -0.769599 32 O -0.722715 33 O -0.623723 Table S12. Mulliken charges in UDP (remove hydrogen). 1 C -0.018446 2 C 0.385523 3 C 0.75817 4 N -0.349529 5 C 0.529985 6 O -0.518676 7 O -0.468651 8 N -0.617562 9 C 0.226156 10 C 0.255018 11 C 0.449828 12 O -0.541636 13 C 0.276415 14 O -0.245752 15 O -0.266702 19 C 0.287298 21 O -0.68153 22 P 1.331896 23 O -0.813387 24 O -0.820519 25 O -0.780029 26 P 1.152157 27 O -0.836388 28 O -0.843827 29 O -0.849815 Table S13. Mulliken charges in UMP (remove hydrogen). S-18 1 C -0.016748 2 C 0.425182 3 C 0.775772

4 N -0.318207 5 C 0.548673 6 O -0.585242 7 O -0.549997 8 N -0.622599 9 C 0.218459 10 C 0.304793 11 C 0.477751 12 O -0.57977 13 C 0.302048 14 O -0.269195 15 O -0.284403 19 C 0.303787 21 O -0.724665 22 P 1.24586 23 O -0.876713 24 O -0.892623 25 O -0.882165 Table S14. Mulliken charges in PPi. 1 O -0.922064 2 P 1.182771 3 O -0.872166 4 P 1.182770 5 O -0.912146 6 O -0.912146 7 O -0.922064 8 O -0.912478 9 O -0.912447 Table S15. Mulliken charges in phosphate. 1 O -1.008144 2 P 1.031160 3 O -1.007443 4 O -1.007428 5 O -1.008144 S-19

Table S16. Identification of unknown PCs using the ph-regulated TPPS/Ln-UCNPs sensor array in UV-vis absorbance mode. Sample (A 0 -A)/A 0 ph=4.0 ph=4.5 ph=5.0 Identification Verification 1 0.6965 0.8230 0.7126 ATP ATP 2 0.4401 0.5660 0.6204 ADP ADP 3 0.0054 0.0979 0.1558 AMP AMP 4 0.5201 0.6445 0.6955 CTP CTP 5 0.1694 0.3202 0.4717 CDP CDP 6 0.0169-0.0277 0.0438 CMP CMP 7 0.7162 0.8051 0.7471 GTP GTP 8 0.4942 0.5910 0.6311 GDP GDP 9 0.0147 0.0949 0.1538 GMP GMP 10 0.6335 0.7479 0.7454 UTP UTP 11 0.4186 0.5004 0.5649 UDP UDP 12-0.0034 0.0277 0.0793 UMP UMP 13 0.7658 0.8197 0.6934 PPi PPi 14 0.0398 0.1779 0.2131 Pi Pi Table S17. Identification of unknown PCs using the ph-regulated TPPS/Ln-UCNPs sensor array in upconversion fluorescence mode. Sample (F 0 -F)/F 0 ph=4.0 ph=4.5 ph=5.0 Identification Verification 1 1.960 2.121 2.197 ATP ATP 2 0.536 1.062 1.268 ADP ADP 3 0.004 0.0726 0.0882 AMP AMP 4 0.4029 0.9366 1.435 CTP CTP S-20

S-21 5 6 0.2300 0.0008 0.5572 0.0118 1.0865 0.0516 CDP CMP CDP CMP 7 8 9 10 11 12 13 14 3.093 0.5364 0.0280 3.093 0.4489 0.0440 2.215-0.0328 2.524 1.020 0.0678 2.524 0.7423-0.0016 2.779-0.0448 1.810 1.350 0.0894 1.810 1.255-0.0893 1.788-0.0211 GTP GDP GMP UTP UDP UMP PPi Pi GTP GDP GMP UTP UDP UMP PPi Pi