熊本大学学術リポジトリ Kumamoto University Repositor Title CT 検査における被ばく線量最適化のための低線量 CT 画像 シミュレーション技術の開発 Author(s) 竹永, 智美 Citation Issue date Type URL

Similar documents
Microsoft PowerPoint - Sens-Tech WCNDT [兼容模式]

物理学报 Acta Phys. Sin. Vol. 62, No. 14 (2013) 叠 [4]. PET 设备最重要的部件就是探测器环, 探测 备重建图像具有减少数据插值的优势. 器环的性能直接影响 PET 的成像能力. 探头与探头 之间得到的符合直线叫做投影线. 所有的投影线在

报 告 1: 郑 斌 教 授, 美 国 俄 克 拉 荷 马 大 学 医 学 图 像 特 征 分 析 与 癌 症 风 险 评 估 方 法 摘 要 : 准 确 的 评 估 癌 症 近 期 发 病 风 险 和 预 后 或 者 治 疗 效 果 是 发 展 和 建 立 精 准 医 学 的 一 个 重 要 前

(Pattern Recognition) 1 1. CCD

國家圖書館典藏電子全文

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip

Vol. 22 No. 4 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Aug GPS,,, : km, 2. 51, , ; ; ; ; DOI: 10.

(baking powder) 1 ( ) ( ) 1 10g g (two level design, D-optimal) 32 1/2 fraction Two Level Fractional Factorial Design D-Optimal D

Microsoft Word 李海波_new_.doc

[29] a N d N b 2 d sin θ N b ФФ a b Ф Ф θ θ a b Fig.1 Working principle demonstration of a phased-array antenna θ

一 课 程 负 责 人 情 况 姓 名 吴 翊 性 别 男 出 生 年 月 基 本 信 息 学 位 硕 士 职 称 教 授 职 务 所 在 院 系 理 学 院 数 学 与 系 统 科 学 系 电 话 研 究 方 向 数 据 处 理 近 三 年 来

Microsoft PowerPoint - ATF2015.ppt [相容模式]

~ 10 2 P Y i t = my i t W Y i t 1000 PY i t Y t i W Y i t t i m Y i t t i 15 ~ 49 1 Y Y Y 15 ~ j j t j t = j P i t i = 15 P n i t n Y

Microsoft Word - KSAE06-S0262.doc

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 5 Oct /35 TU3521 P315.

km km mm km m /s hpa 500 hpa E N 41 N 37 N 121

97 CT試題補充(教師版).pdf

/MPa / kg m - 3 /MPa /MPa 2. 1E ~ 56 ANSYS 6 Hz (a) 一阶垂向弯曲 (b) 一阶侧向弯曲 (c) 一阶扭转 (d) 二阶侧向弯曲 (e) 二阶垂向弯曲 (f) 弯扭组合 2 6 Hz


标题

Mechanical Science and Technology for Aerospace Engineering October Vol No. 10 Web SaaS B /S Web2. 0 Web2. 0 TP315 A

Microsoft Word - 刘 慧 板.doc

从语用的角度看口语水平测试

Microsoft Word 張嘉玲-_76-83_

2 ( 自 然 科 学 版 ) 第 20 卷 波 ). 这 种 压 缩 波 空 气 必 然 有 一 部 分 要 绕 流 到 车 身 两 端 的 环 状 空 间 中, 形 成 与 列 车 运 行 方 向 相 反 的 空 气 流 动. 在 列 车 尾 部, 会 产 生 低 于 大 气 压 的 空 气 流

Time Estimation of Occurrence of Diabetes-Related Cardiovascular Complications by Ching-Yuan Hu A thesis submitted in partial fulfillment of the requi

Outline Speech Signals Processing Dual-Tone Multifrequency Signal Detection 云南大学滇池学院课程 : 数字信号处理 Applications of Digital Signal Processing 2

2008年1月11日に岩手県釜石沖で発生した地震(M4.7)について

Microsoft Word - 01李惠玲ok.doc

<4D F736F F D20A D32A16ABC76B9B3A6A1A5FABEC7B37AC3E8B0BEA4DFB671B4FAA874B2CE5FBDD7A4E5A5FEA4E52E646F6378>

by industrial structure evolution from 1952 to 2007 and its influence effect was first acceleration and then deceleration second the effects of indust

[9] R Ã : (1) x 0 R A(x 0 ) = 1; (2) α [0 1] Ã α = {x A(x) α} = [A α A α ]. A(x) Ã. R R. Ã 1 m x m α x m α > 0; α A(x) = 1 x m m x m +

H 2 SO ml ml 1. 0 ml C 4. 0 ml - 30 min 490 nm 0 ~ 100 μg /ml Zhao = VρN 100% 1 m V ml ρ g

T K mm mm Q345B 600 mm 200 mm 50 mm 600 mm 300 mm 50 mm 2 K ~ 0. 3 mm 13 ~ 15 mm Q345B 25

13-15 Lagrange 3. 1 h t + hu + hv = 0 1 x y hu + t x hu gh 2 ( ) + y huv = - gh z 0 ( + x u u 2 2 槡 + v + W C ) 2 x + fhv + z h x 2hv u ( t x )

2 3. 1,,,.,., CAD,,,. : 1) :, 1,,. ; 2) :,, ; 3) :,; 4) : Fig. 1 Flowchart of generation and application of 3D2digital2building 2 :.. 3 : 1) :,

彩色地图中道路的识别和提取

Microsoft Word - 专论综述1.doc

资源 环境 生态 土壤 气象

[1-3] (Smile) [4] 808 nm (CW) W 1 50% 1 W 1 W Fig.1 Thermal design of semiconductor laser vertical stack ; Ansys 20 bar ; bar 2 25 Fig

3_FLQAsurvey_item_Princile

Chapter 24 DC Battery Sizing

IP TCP/IP PC OS µclinux MPEG4 Blackfin DSP MPEG4 IP UDP Winsock I/O DirectShow Filter DirectShow MPEG4 µclinux TCP/IP IP COM, DirectShow I

卡尔费休库仑滴定仪和水蒸发器测量卡氏炉标准物质

第一章 前言

<4D F736F F D20B3C2B9FAD5D7C2DBCEC4C5C5B0E62E646F63>

電腦斷層之輻射劑量、輻射安全與品質保證

MOTC-IOT-103-H1DB001a 臺 灣 港 務 公 司 之 監 督 與 公 司 治 理 績 效 評 估 研 究 (2/2) 著 者 : 謝 幼 屏 吳 榮 貴 朱 金 元 吳 朝 升 孫 儷 芳 王 克 尹 林 玲 煥 張 淑 滿 陳 銓 楊 世 豪 陳 秋 玲

Artis one 小 机 器 人 血 管 造 影 系 统 血 管 造 影 导 管 室 中 的 仪 器 已 面 临 更 新 换 代 的 阶 段 一 方 面, 导 管 室 需 要 应 对 大 量 高 难 度 的 专 科 手 术, 如 长 时 程 的 复 杂 神 经 介 入 术 和 心 脏 系 统 疾

θ 1 = φ n -n 2 2 n AR n φ i = 0 1 = a t - θ θ m a t-m 3 3 m MA m 1. 2 ρ k = R k /R 0 5 Akaike ρ k 1 AIC = n ln δ 2

Microsoft PowerPoint - Aqua-Sim.pptx

/3 CAD JPG GIS CAD GIS GIS 1 a CAD CAD CAD GIS GIS ArcGIS 9. x 10 1 b 1112 CAD GIS 1 c R2VArcscan CAD MapGIS CAD 1 d CAD U

國立中山大學學位論文典藏.PDF

To Construct a Forecasting Model of Unscheduled Emergency Department Revist within72 Hours Student: Fei-Chen LAI Advisor: Prof. Chin-Yin Huang Departm

為 減 少 腫 瘤 治 療 時 間, 提 高 治 療 過 程 的 舒 適 度, 降 低 因 身 體 蠕 動 而 造 成 劑 量 給 予 的 不 確 定 性, 提 升 治 療 的 精 確 度, 增 加 腫 瘤 局 部 控 制 率, 避 免 正 常 組 織 接 受 到 不 必 要 的 劑 量, 降 低

K301Q-D VRT中英文说明书141009

31 17 www. watergasheat. com km 2 17 km 15 km hm % mm Fig. 1 Technical route of p

THE APPLICATION OF ISOTOPE RATIO ANALYSIS BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETER A Dissertation Presented By Chaoyong YANG Supervisor: Prof.D

[1] [4] Chetverikov Lerch[8,12] LeaVis CAD Limas-Serafim[6,7] (multi-resolution pyramids) 2 n 2 n 2 2 (texture) (calf leather) (veins)

: 307, [], [2],,,, [3] (Response Surface Methodology, RSA),,, [4,5] Design-Expert 6.0,,,, [6] VPJ33 ph 3,, ph, OD, Design-Expert 6.0 Box-Behnken, VPJ3

g 100mv /g 0. 5 ~ 5kHz 1 YSV8116 DASP 1 N 2. 2 [ M] { x } + [ C] { x } + [ K]{ x } = { f t } 1 M C K 3 M C K f t x t 1 [ H( ω )] = - ω 2

临床医生CT读片

07. 若 設 定 加 馬 攝 影 機 的 能 窗 (energy window) 之 尖 峰 能 量 (photopeak energy) 為 140 kev, 取 20% 對 稱 型 能 窗 (symmetrical window), 則 其 收 集 的 能 量 範 圍 為 多 少 kev? (

标题

Technical Acoustics Vol.27, No.4 Aug., 2008,,, (, ) :,,,,,, : ; ; : TB535;U : A : (2008) Noise and vibr

Dan Buettner / /

國家圖書館典藏電子全文

Journal of Northwestern Polytechnical University Apr. Vol No. 2 ICM ICM ICM ICM ICM ICM TP A

: ( ),,

Microsoft PowerPoint _代工實例-1

44(1) (1) (4) (4) 63-88TSSCI Liu, W. Y., & Teele S. (2009). A study on the intelligence profile

Microsoft Word - A doc

doc

[1] Liu Hongwei,2013, Study on Comprehensive Evaluation of Iron and Steel Enterprises Production System s Basic Capacities, International Asia Confere

12-2 プレート境界深部すべりに係る諸現象の全体像

声 明 没 有 利 益 冲 突 秘 书 处 负 责 联 络 ICMJE, 但 不 制 定 政 策 或 者 决 议 ICMJE 对 于 会 议 及 其 内 容 不 提 供 担 保 支 持 或 者 证 明

92南師學術研討會

: (2012) Control Theory & Applications Vol. 29 No. 1 Jan Dezert-Smarandache 1,2, 2,3, 2 (1., ; 2., ;

定稿

34 22 f t = f 0 w t + f r t f w θ t = F cos p - ω 0 t - φ 1 2 f r θ t = F cos p - ω 0 t - φ 2 3 p ω 0 F F φ 1 φ 2 t A B s Fig. 1

第 8 期 张 桂 荣 等 : 基 于 WEBGIS 和 实 时 降 雨 信 息 的 区 域 地 质 灾 害 预 警 预 报 系 统 1313 常 见 地 质 灾 害 具 有 发 生 频 率 高 分 布 地 域 广 的 特 点 随 着 我 国 经 济 的 发 展 和 工 程 建 设 规 模 的 扩

1.0 % 0.25 % 85μm % U416 Sulfate expansion deformation law and mechanism of cement stabilized macadam base of saline areas in Xinjiang Song

Thesis for the Master degree in Engineering Research on Negative Pressure Wave Simulation and Signal Processing of Fluid-Conveying Pipeline Leak Candi

m m m ~ mm

PCA+LDA 14 1 PEN mL mL mL 16 DJX-AB DJ X AB DJ2 -YS % PEN

P. C Evelyn. M. Duvall 2 quality of life cabana

Microsoft PowerPoint - Performance Analysis of Video Streaming over LTE using.pptx

Microsoft Word - PZ series.doc

标题

34 www. cjig. cn wavelet transform 1 2 JPEG LIVE E s o = 1 T Σ log 2 C s o + 1 E T C s o Lu Wen contourlet C 0 7 N

SWAN min TITAN Thunder Identification Tracking Analysis SWAN TITAN and Nowcasting 19 TREC Tracking Radar Echo by Correlaction T

标题

Information for patients having a CT Scan - Vancouver Coastal Health

SDS 1.3

一次辽宁暴雨过程的诊断及风场反演分析

Journal of Curriculum Studies September, 2013, Vol. 8, No. 2, pp A Study of the Relationship between Senior High School Curriculum and the Mult

soturon.dvi

Settlement Equation " H = CrH 1+ e o log p' o + ( p' p' c o! p' o ) CcH + 1+ e o log p' c + p' f! ( p' p' c c! p' o ) where ΔH = consolidation settlem

Vol. 22 No. 2 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Apr ,,,,, Apriori,,,,,,,,

Microsoft Word 任 辉_new_.doc

Transcription:

熊本大学学術リポジトリ Kumamoto University Repositor Title CT 検査における被ばく線量最適化のための低線量 CT 画像 シミュレーション技術の開発 Author(s) 竹永, 智美 Citation Issue date 2016-03-25 Type URL Thesis or Dissertation http://hdl.handle.net/2298/34662 Right

[ ] computed tomography (CT) CT CT CT ( CT ) CT CT CT [ ] CT CT filtered backprojection (FBP) CT CT CT FBP CT modulation transfer function (MTF) MTF American college of radiology disk edge-spread function (ESF) logistic curve-fitting i

ESF ESF disk MTF [ / ] MTF CT MTF MTF CT MTF noise power spectrum standard deviation [ ] CT CT CT ii

... i... iii... v... vi 1... 1.1... 1.2... 2 CT... 2.1... 2.2 NPS... 2.3 MTF... 3 CT MTF... 3.1... 3.2... 3.2.1... 3.2.2 MTF... 3.2.2.1 Disk... 3.2.2.2 logistic curve-fitting ESF... 3.2.2.3 Double logistic curve-fitting ESF... 3.2.3 MTF... 3.2.4... 3.3... 3.4... 3.5... 4 CT... 4.1... 4.2... 4.2.1 CT... iii

4.2.2... 4.2.3... 4.2.4... 5 CT... 5.1... 5.2... 5.2.1... 5.2.2... 5.3... 5.4... 5.5... 6 CT... 6.1... 6.2... 6.2.1... 6.2.2... 6.3... 6.4... 6.5... 7......... iv

CT CT v

ACR American college of radiology CT computed tomography DFOV display field of view ESF edge spread function FBP filtered back projection FFT fast Fourier transform HU Hounsfield unit LSF line spread function MTF modulation transfer function NEQ noise equivalent quanta NPS noise power spectrum QA ROI SD quality assurance region of interest standard deviation vi

1 1 1.1 2007 The New England Journal of Medicine Brenner Computed Tomography - An Increasing Source of Radiation Exposure [1] computed tomography (CT) Brenner 1980 300 CT 2006 6200 CT 1.5-2.0% CT Pearce CT 10 [2] Mathews CT CT 24 CT [3] 2011 3 11 CT 20 ( ) 20 9 1 200 2015 4 20 2013 CT 10 CT CT CT

1 X CT CT CT CT CAD [4] [5] [6] CT CT CT CT

1 [7-12] [7-9] CT CT CT CT CT CT CT CT standard deviation (SD) noise power spectrum (NPS) modulation transfer function (MTF) MTF 2 quality assurance (QA) MTF MTF American college of radiology (ACR) [13] MTF edge spread function (ESF) [14] ESF MTF [15]

1 CT ESF MTF

1 1.2 7 1 2 CT NPS MTF 3 MTF logistic curve fitting MTF 4 5 6 7

2 CT 2 CT 2.1 CT CT NPS 2 2.2 3 MTF MTF 2 2.3

2 CT 2.2 NPS CT CT CT X [16] Computed radiography flat panel detector X NPS CT NPS Radial Frequency [17, 18] [19, 20] 2 [21] 3 2 X NPS Radial Frequency 2 NPS X Y NPS NPS 3 [22] 3 Radial Frequency Radial Frequency Fig. 2.1 NPS region of interest (ROI) (Fig. 2.1a) ROI cupping CT 2 ROI (Fig. 2.1c) Fig. 2.1b Fig. 2.1c CT 2 fast Fourier transform (FFT) (Fig. 2.1d) NPS NPS NPS, ROI ROI 2 ACR 3 NPS

2 CT ROI 128 128 16 ROI ROI X +64 pixel +128 pixel NPS Fig. 2.2 NPS NPS ROI Fig. 2.1 Summary of the radial frequency method for measurement NPS. (a) ROI for NPS measurement, (b) 3D surface plot of ROI, (c) 3D surface plot of ROI after subtraction of 2D fitting image, (d) the power spectrum of (c).

2 CT 1000 +0 +64 +128 100 NPS [mm 2 ] 10 1 0.0 0.2 0.4 0.6 0.8 1.0 Spatial frequency [cycles/mm] Fig. 2.2 Comparison of NPSs obtained from different distance from the isocenter.

2 CT 2.3 MTF CT MTF MTF CT MTF MTF MTF MTF 2 FFT 2 FFT Fig. 2.3 Z CT MTF Fig. 2.3a-c ROI 0 ( ) (Fig. 2.3d) 2 FFT (Fig. 2.3e)0 MTF MTF MTF MTF MTF MTF MTF, ROI ROI 2 0 MTF MTF MTF CT MTF

2 CT, 1 (2.3) 0.15-0.2 mm [23] MTF CT MTF MTF Fig. 2.3 Summary of the wire method for measurement MTF. (a) ROI for MTF measurement, (b) 3D surface plot of ROI, (c) 3D surface plot of ROI after subtraction of 2D fitting image, (d) 3D surface plot of ROI after zeroing, (e) the power spectrum of (d).

3 CT MTF 3 CT MTF 3.1 MTF CT [24-27]QA [13] MTF CT [28] MTF MTF [29, 30] ACR MTF [15, 29, 30] MTF ACR ESF line spread function (LSF) ESF [27 31] Richard ACR disk MTF [29] ESF CT ESF ESF MTF Wilson 4 disk MTF [30] ESF Savitzky Golay smoothing filter [32] ESF [33] MTF Friedman ACR 3 disk MTF [15] axial z MTF MTF MTF MTF

3 CT MTF CT MTF ACR disk MTF logistic curve-fitting disk disk disk

3 CT MTF 3.2 3.2.1 ACR [13] (model 464 Gammex-RMI Middleton WI) 64 CT (Brilliance Philips Healthcare Cleveland OH) Table 3.1 Axial (type C) filtered back projection (FBP) MTF display field of view (DFOV) 120 kv 250mm 3 3.2.3 MTF Fig 3.1 ACR 1 3 1 Fig 3.1a 3 3 MTF 25 mm 3 (bone) CT 955 120-95 Hounsfield unit (HU) solid water CT 0 HU 3 Fig 3.1b CT 0 HU solid water 200 mm disk MTF 1 disk MTF Table 3.1 Acquisition parameters used for the MTF measurement Parameter Value scan type axial tube voltage [kv] 120 tube current [ma] 100, 200, 300 slice thickness [mm] 0.625, 1.25, 2.5, 5.0 pixel size [mm 2 ] 0.488 0.488 time per rotation [sec] 1.0

3 CT MTF (a) (b) Fig. 3.1 Axial slice images of the ACR phantom; (a) the first module containing three different solid inserts with a diameter of 25 mm and one air cavity (lower right), and (b) the third module containing uniform solid water with a diameter of 200 mm. 3.2.2 MTF disk MTF 3.2.2.1 Disk ACR 1 3 disk ROI disk [34] ROI disk Disk CT disk ROI CT disk CT 3.2.2.2 logistic curve-fitting ESF oversampled ESF ROI disk

3 CT MTF (Fig. 3.2) Fig. 3.3 1 10 (rebinning) ESF logistic ESF Logistic 4 [35] disk Fig. 3.3 fitted ESF rebinned ESF Logistic curve-fitting rebinned ESF fitted ESF LSF fitted ESF LSF LSF FFT MTF MTF MTF z cm

3 CT MTF 1.2 1.0 normalized CT value 0.8 0.6 0.4 0.2 0.0-0.2 0 5 10 15 20 25 Distance from the center of the disk [mm] Fig. 3.2 The oversampled ESF with normalized pixel values. 1.2 normalized CT value 1.0 0.8 0.6 0.4 0.2 rebinned ESF fitted ESF 0.0-0.2 0 5 10 15 20 25 Distance from the center of the disk [mm] Fig. 3.3 The logistic curve-fitting for the rebinned ESF with one-tenth pixel size.

3 CT MTF 3.2.2.3 Double logistic curve-fitting ESF FBP ESF ESF (3.2) logistic 3 3.2.2.2 logistic double logistic curve-fitting 3.2.3 MTF CT disk MTF ACR 1 bone disk 1 3 disk MTF CT X disk MTF disk CT MTF Disk 2 disk disk

3 CT MTF [36] Disk disk bone disk MTF 1 25 mm bone disk 200 mm solid-water MTF disk 3.2.4 MTF - (3.5) disk - MTF ACR disk bone disk ESF double logistic curve-fitting [37 38]

3 CT MTF 3.3 logistic curve-fitting MTF curve-fitting MTF Fig. 3.4 disk 100 ma 0.625 mm ACR 1 bone Logistic curvefitting ESF 16 ESF Fig. 3.4 logistic curve-fitting MTF logistic curve-fitting MTF MTF Fig. 3.5a b Fig. 3.5a 0.625 mm 100 200 300 ma CT MTF 100 200 300 ma SD 29.0 20.6 16.9 HU Fig. 3.5b 100 ma 0.625 1.25 2.5 5.0 mm MTF 0.625 1.25 2.5 5.0 mm SD 29.0 21.7 15.7 11.3 HU Fig. 3.5a b MTF CT 955 120-95 HU bone disk MTF Fig. 3.6 100 ma 0.625 mm MTF 50% ( ) bone 0.385 0.004 0.366 0.030 0.372 0.044 cycles/mm ( SD) bone 4.9% Disk bone disk disk MTF 100 ma 0.625 mm CT ACR Fig. 3.7 disk MTF CT [39] 1 25 mm bone 3 200 mm solidwater disk MTF Fig. 3.8 100 ma 0.625 mm disk disk MTF disk

3 CT MTF MTF disk MTF Fig. 3.9 bone disk 100 ma 0.625 mm - disk - 30 mm double logistic curve-fitting ( (3.3) ) MTF 1.2 1.0 0.8 with curve-fitting without curve-fitting MTF 0.6 0.4 0.2 0.0 0.0 0.5 1.0 1.5 spatial frequency [cycles/mm] Fig. 3.4 Comparison of MTFs obtained from the circular edge method with and without the logistic curve-fitting technique.

3 CT MTF 1.2 1.0 (a) MTF 0.8 0.6 100mA 200mA 300mA 0.4 0.2 0.0 0.0 0.5 1.0 1.5 spatial frequency [cycles/mm] 1.2 1.0 (b) 0.625 mm MTF 0.8 0.6 1.25 mm 2.5 mm 5.0 mm 0.4 0.2 0.0 0.0 0.5 1.0 1.5 spatial frequency [cycles/mm] Fig. 3.5 Comparison of MTFs measured by changing acquisition parameters; (a) tube currents, and (b) slice thickness.

3 CT MTF 1.2 1.0 Bone Acrylic 0.8 Polyethylene MTF 0.6 0.4 0.2 0.0 0.0 0.5 1.0 1.5 spatial frequency [cycles/mm] Fig. 3.6 Comparison of MTFs measured from different disk images of bone, acrylic, and polyethylene inserts. 1.2 1.0 0.8 0 mm 31 mm MTF 0.6 62 mm 100 mm 0.4 0.2 0.0 0.0 0.5 1.0 1.5 spatial frequency [cycles/mm] Fig. 3.7 Comparison of MTFs measured for various distances from the isocenter to the disk center.

3 CT MTF 1.2 1.0 0.8 diameter of 25 mm diameter of 200 mm MTF 0.6 0.4 0.2 0.0 0.0 0.5 1.0 1.5 spatial frequency [cycles/mm] Fig. 3.8 Comparison of MTFs obtained from disk images with two different diameters, 25 and 200 mm. 1.2 1.0 0.8 Wire method Circular edge method with Eq. (3.3) MTF 0.6 0.4 0.2 0.0 0.0 0.5 1.0 1.5 spatial frequency [cycles/mm] Fig. 3.9 Comparison of MTFs obtained by the wire method and circular edge method with Eq. (3.3).

3 CT MTF 3.4 CT MTF MTF LSF ESF logistic curve-fitting MTF Fig. 3.4 logistic curve-fitting MTF (3.2) (3.3) ROI ESF ESF logistic curve-fitting CT Fig. 3.5 MTF LSF ESF logistic curve-fitting CT MTF Fig. 3.6 MTF disk MTF MTF disk disk ESF MTF MTF CT disk MTF Disk -disk disk disk (3.5) CT [39] MTF Fig. 3.7 disk disk MTF disk MTF (Fig. 3.8) disk disk disk MTF

3 CT MTF disk disk MTF disk MTF (3.3) MTF double logistic curve-fitting double logistic curve-fitting MTF (3.2) (3.3) logistic FBP ESF CT MTF logistic curve-fitting

3 CT MTF 3.5 CT MTF logistic curve-fitting MTF CT CT MTF disk MTF MTF CT MTF

4 CT 4 CT 4.1 CT CT X 250-350 [40 41]CT CT [7-12] CT CT CT CT FBP CT FBP CT CT [7-9] CT [10-12] 2 CT CT [7-9] CT CT CT CT 2 CT CT

4 CT CT Britten CT [10] CT Li CT (GE Noise Addition Tool, GE Healthcare, Waukesha, WI, USA) [11] CT GE CT Kim CT [12]CT CT noise equivalent quanta (NEQ) CT NEQ Kim CT Kim CT CT

4 CT 4.2 4.2.1 CT Fig. 4.1 CT ( 4 4.2.3) ( 4 4.2.4) CT CT CT CT CT Fig. 4.1 Summary of the simulation scheme 4.2.2 [39]

4 CT ( ) X X ( ) (4.1) (4.2) CT X X 4.2.3 (4.3) CT CT (4.3) Ram-Lak FBP Ram-Lak Ram-Lak FBP SD CT

4 CT CT ROI SD (4.3) SD CT (4.4) SD (4.3) CT X X 4.2.4 FBP NPS CT NPS CT NPS Ram-Lak NPS NPS CT 128 128 ROI 2 FFT [17]

5 CT 5 CT 5.1 CT CT 5.2 5.2.1 CT ACR (model 464, Gammex-RMI, Middleton, WI, USA) Catphan (CTP486, The Phantom Laboratory, Salem, NY, USA) TOS (Toshiba Medical Systems Corporation, Otawara, Japan) 64 CT (Brilliance; Philips Healthcare, Cleveland, OH, USA) Table 5.1 (type C) FBP axial DFOV 120 kv 350 mm Fig. 5.1 3 Table 5.1 Acquisition parameters used for low-dose CT image simulation Parameter Value scan type axial tube voltage [kv] 120 tube current [ma] 100, 200, 300 slice thickness [mm] 0.625, 1.250, 2.500, 5.000 pixel size [mm 2 ] 0.684 0.684 time per rotation [sec] 1.0

5 CT (a) (b) (c) Fig. 5.1 CT images of the phantoms used in this study: (a) The third module of the ACR phantom, (b) CTP 486 image uniformity module of the Catphan phantom, and (c) TOS phantom. The background material is water-equivalent. 5.2.2 CT 200 300 ma 100 200 ma ACR Catphan TOS CT MTF NPS MTF CT MTF ACR 25 mm TOS 40 mm Catphan

5 CT 200 mm disk NPS 128 128 ROI 2 FFT 0.625 mm

5 CT 5.3 (4.3) 300 mas 100 mas ACR CT 0.00032 mas CT Ram-Lak NPS Fig. 5.2 0.6 Enhancement Factor 0.4 0.2 estimated reconstruction filter Ram-Lak Filter 0.0 0.0 0.2 0.4 0.6 Spatial Frequency [cycles/mm] Fig. 5.2 The estimated reconstruction filter used for the low-dose simulation in this study. ACR Catphan TOS 100 mas CT 300 mas Fig. 5.3 128 128 ROI CT SD Table 5.2 CT SD

5 CT (a) Fig. 4.4 (b) (c) (d) (e) (f) Fig. 5.3 Demonstration of low-dose simulation for Catphan and TOS phantoms: (a), (b) real high-dose CT images (300 mas), (c), (d) real low-dose CT images (100 mas), (e), (f) simulated low-dose images (100 mas).

5 CT Table 5.2 Comparison of noise in terms of standard deviation for Catphan and TOS phantoms. High-dose and low-dose correspond to 300 mas and 100 mas, respectively. The noise model and the reconstruction filter were determined from an ACR phantom. Phantom High-dose image (HU) Low-dose image (HU) Simulated low-dose image (HU) Catphan 15.1 ± 0.2 26.7 ± 0.3 27.5 ± 0.2 TOS 50.7 ± 0.5 89.5 ± 0.7 89.8 ± 0.6 Fig. 5.4 CT CT MTF Fig. 5.4a 5.4b Catphan TOS MTF CT 300 mas 100 mas 200 mas 200 mas 100 mas 3 MTF TOS MTF MTF MTF Catphan TOS CT CT Fig. 5.5a 5.5b Catphan TOS NPS MTF CT 200 mas 300 mas CT 100 mas NPS 100 mas NPS Catphan TOS CT Fig. 5.6a, 5.6b 300 mas 100mAs

5 CT 1.0 real 100 mas CT image real 200 mas CT image (a) real 300 mas CT image simulated 100 mas from 200 mas simulated 100 mas from 300 mas simulated 200 mas from 300 mas MTF 0.5 0.0 0.0 0.5 1.0 1.5 Spatial frequency [cycles/mm] 1.0 real 100 mas CT image real 200 mas CT image (b) real 300 mas CT image simulated 100 mas from 200 mas simulated 100 mas from 300 mas simulated 200 mas from 300 mas MTF 0.5 0.0 0.0 0.5 1.0 1.5 Spatial frequency [cycles/mm] Fig. 5.4 Comparison of MTFs measured from real CT images and simulated images. (a) Catphan phantom, and (b) TOS phantom.

5 CT 1000 (a) 100 NPS [mm 2 ] real 100 mas CT image 10 real 200 mas CT image real 300 mas CT image simulated 100 mas from 200 mas simulated 100 mas from 300 mas simulated 200 mas from 300 mas 1 0.0 0.2 0.4 0.6 Spatial frequency [cycles/mm] 10000 (b) 1000 NPS [mm 2 ] 100 real 100 mas CT image real 200 mas CT image 10 real 300 mas CT image simulated 100 mas from 200 mas simulated 100 mas from 300 mas simulated 200 mas from 300 mas 1 0.0 0.2 0.4 0.6 Spatial frequency [cycles/mm] Fig. 5.5 Comparison of NPSs measured from real CT images and simulated images. (a) Catphan phantom, and (b) TOS phantom.

5 CT 3.5E-04 parameter c [mas] 3.0E-04 2.5E-04 2.0E-04 1.5E-04 1.0E-04 (a) ACR Catphan TOS 5.0E-05 0.0E+00 0.00 1.25 2.50 3.75 5.00 Slice Thickness [mm] 3.5E-04 parameter c [mas] 3.0E-04 2.5E-04 2.0E-04 1.5E-04 1.0E-04 (b) simulated 100 mas from 200 mas simulated 100 mas from 300 mas simulated 200 mas from 300 mas 5.0E-05 0.0E+00 0.00 1.25 2.50 3.75 5.00 Slice Thickness [mm] Fig. 5.6 Relationship between slice thickness and parameter c of the noise model. (a) Effect of reference phantoms. (b) Effect of exposure doses when an ACR phantom was used as a reference phantom.

5 CT Fig. 5.7 ACR 300 mas 100 mas Fig. 5.7a ACR 0.625 mm Fig. 5.7b 300 mas 100 mas 0.625 mm Fig. 5.7c 0.6 (a) Enhancement Factor 0.4 0.2 0.625 mm 1.250 mm 2.500 mm 5.000 mm RL Filter 0.0 0.0 0.2 0.4 0.6 Spatial Frequency [cycles/mm]

5 CT 0.6 (b) Enhancement Factor 0.4 0.2 200 mas 100 mas 300 mas 100 mas 300 mas 200 mas RL Filter 0.0 0.0 0.2 0.4 0.6 Spatial Frequency [cycles/mm] 0.6 (c) Enhancement Factor 0.4 0.2 ACR Catphan TOS RL Filter 0.0 0.0 0.2 0.4 0.6 Spatial Frequency [cycles/mm] Fig. 5.7 Effects of various factors on the reconstruction filter. (a) Effect of slice thickness for low-dose simulation of 100 mas from 300 mas with the reference ACR phantom. (b) Effect of exposure doses with slice thickness of 0.625 mm and the reference ACR phantom. (c) Effect of reference phantoms for low-dose simulation of 100 mas from 300 mas with the slice thickness of 0.625 mm.

5 CT 5.4 CT Fig. 5.3 SD (Table 5.2) NPS (Fig. 5.5) Fig. 5.4 MTF MTF TOS MTF TOS ACR Fig. 5.6 Fig. 5.7 CT CT CT (4.3) 2 35 cm CT SD 5 [9] 500 mas (50-450 mas) Frush 25 cm SD 2% [7] 120 mas () CT 40-100 mas () CT SD Catphan 3% TOS 1%

5 CT Table 5.1 CT

5 CT 5.5 CT CT CT MTF NPS 2 CT

6 CT 6 CT 6.1 4 CT 5 2 MTF NPS MTF NPS Žabić 88 mas CT 11 mas CT 11 mas CT [9] [7, 8] CT

6 CT 6.2 6.2.1 CT CT CT (50 mas) CT 5 CT 64 CT (Brilliance Philips Healthcare Cleveland OH) (type C) FBP DFOV 120 kv 5.0 mm 250 mm ACR 51-151 2 50 mas 105-339 mas CT 50 mas 2 CT 6 415 6.2.2 5 50 mas 50 mas Fig. 6.1 ROI SD

6 CT Fig. 6.1 ROIs for SD measurement. They are within LV, fat, liver, spleen, and aorta.

6 CT 6.3 Fig. 6.2 CT 1 (50 mas) (322 mas) SD Table 6.1 SD Table 6.1 Error of standard deviation within each ROI. ROI location CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 average LV 0.2% 6.0% 4.7% 8.4% 7.8% 5.4% Fat 13.3% 8.6% 6.9% 15.9% 3.8% 9.7% Liver 9.2% 3.1% 2.2% 1.4% 2.7% 3.7% Spleen 2.9% 4.4% 1.4% 9.2% 1.5% 3.9% Aorta 8.3% -4.2% 1.0% 3.4% 2.0% 3.8%

6 CT Fig. 6.2 Demonstration of low-dose simulation for a clinical CT image: (a) Real high-dose CT image (322 mas), (b) real low-dose CT image (50 mas), (c) simulated low-dose image (50 mas).

6 CT 6.4 Fig. 6.2 CT CT 5 1 SD

6 CT 6.5 CT CT

7 7 CT CT MTF MTF CT ESF logistic curve-fitting CT MTF NPS CT

[1] D. J. Brenner, and E. J. Hall, Computed Tomography - An Increasing Source of Radiation Exposure, N Engl J Med, 2007; 357: 2277-84. [2] M. S. Pearce, J. A. Salotti, M. P. Little, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study, Lancet, 2012; 380(9840): 499-505. [3] J. D. Mathews, A. V. Forsythe, Z. Brady, et al. Cancer risk in 680 000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians, BMJ, 2013; 346: f2360. [4] J. R. Cebral, M. A. Castro, J. E. Burgess, et al. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models, Am J Neuroradiol, 2005; 26(10): 2550-9. [5] A. Nagano, B. R. Umberger, M. W. Marzke, et al. Neuromusculoskeletal computer modeling and simulation of upright, straight-legged, bipedal locomotion of Australopithecus afarensis (A.L. 288-1), Am J Phys Anthropol, 2005; 126(1): 2-13. [6] I. Kawrakow, M. Fippel, K. Friedrich. 3D electron dose calculation using a Voxel based Monte Carlo algorithm (VMC), Med Phys, 1996; 23(4): 445-57. [7] D. P. Frush, C. C. Slack, C. L. Hollingsworth, et al. Computer-Simulated Radiation Dose Reduction for Abdominal Multidetector CT of Pediatric Patients, AJR. 2002; 179: 1107-13. [8] D. Tack, V. D. Maertelaer, W. Petit et al. Multi Detector Row CT Pulmonary Angiography: Comparison of Standard-Dose and Simulated Low-Dose Techniques, Radiology, 2005; 236(1): 318-25. [9] S. Žabić, Q. Wang, T. Morton, et al. A low dose simulation tool for CT systems with energy integrating detectors, Med Phys, 2013; 40(3): 031102-16.

[10] A. J. Britten, M. Crotty, H. Kiremidjlan, et al. The addition of computer simulated noise to investigate radiation dose and image quality in images with spatial correlation of statistical noise: an example application to X-ray CT of the brain, Br J Radiol, 2004; 77: 323-8. [11] X. Li, E. Samei, D. M. DeLong et al. Towards Assessing the Diagnostic Influence of Dose Reduction on the Detection of Small Lung Nodules, Acad Radiol, 2009; 16(7): 872-80. [12] C. Kim and J. Kim. Realistic simulation of reduced-dose CT using DICOM CT images, Med Phys, 2014; 41(1): 011901-17. [13] C. H. McCollough, M. R. Bruesewitz. The phantom portion of the American College of Radiology (ACR) computed tomography (CT) accreditation program: practical tips, artifact examples, and pitfalls to avoid, Med Phys, 2004; 31(9): 2423-42. [14] I. A. Cunningham, and B. K. Reid. Signal and noise in modulation transfer function determinations using the slit, wire, and edge technique, Med Phys, 1992; 19(9): 1037-44 [15] S. N. Friedman, G. S. Fung, J. H. Siewerdsen, et al. A simple approach to measure computed tomography (CT) modulation transfer function (MTF) and noise-power spectrum (NPS) using the American College of Radiology (ACR) accreditation phantom, Med Phys, 2013; 40(5): 0519071-9. [16],. CT 1 4. ; 2013. p. 24-118. [17] K. M. Hanson. Detectability in computed tomographic images, Med Phys, 1979; 6(5): 441-51. [18] J. H. Siewerdsen, I. A. Cunningham, D. A. Jaffray. A framework for noise-power spectrum analysis of multidimensional images, Med Phys, 2002; 29(11): 2655-71.

[19] M. L. Giger, K. Doi, C. E. Metz. Investigation of basic imaging properties in digital radiography. 2. Noise Wiener spectrum, Med Phys, 1984; 11(6): 797-805. [20] M. L. Giger, K. Doi, H. Fujita. Investigation of basic imaging properties in digital radiography. 7. Noise Wiener spectra of II-TV digital imaging systems, Med Phys, 1986; 13(2): 131-8. [21] J. H. Siewerdsen, L. E. Antonuk, Y. el-mohri, et al. Signal, noise power spectrum, and detective quantum efficiency of indirect-detection flat-panel imagers for diagnostic radiology, Med Phys, 1986; 13(2): 131-8. [22],,. CT,, 25(2): 29-34. [23],,. CT MTF,, 2008; 64(6): 672-80. [24] P. F. Judy, The line spread function and modulation transfer function of a computed tomographic scanner, Med Phys, 1976; 3(4): 233-6. [25] G. Borasi, G. Castellani, R. Domenichini, et al. Image quality and dose in computerized tomography: evaluation of four CT scanners, Med Phys, 1984; 11(3): 321-5. [26] J. M. Boone, Determination of the presampled MTF in computed tomography, Med Phys, 2001; 28(3): 356-60. [27] I. Mori, and Y. Machida. Deriving the modulation transfer function of CT from extremely noisy edge profiles, Radiol Physic Technol, 2009; 2(1): 22-32. [28] J. B. Thibault, K. D. Sauer, C. A. Bouman, et al. A three-dimensional statistical approach to improved image quality for multislice helical CT, Med Phys, 2007; 34(11): 4526-44. [29] S. Richard, D. B. Husarik, G. Yadava, et al. Towards task-based assessment of CT performance: system and object MTF across different reconstruction algorithms, Med Phys, 2012; 39(7): 4115-22.

[30] J. M. Wilson, O. I. Christianson, S. Richard, et al. A methodology for image quality evaluation of advanced CT systems, Med Phys, 2013; 40(3): 0319081-9. [31] E. Samei, M. J. Flynn. A method for measuring the presampled MTF of digital radiographic systems using an edge test device, Med Phys., 1998; 25(1): 102-13. [32] R. W. Schafer, What is a Savitzy Golay filter? IEEE Signal Process Mag, 2011; 28: 111-7. [33] A. D. Maidment, M. Albert. Conditioning data for calculation of the modulation transfer function, Med Phys, 2003; 30(2): 248-53. [34] N. Otsu. A threshold selection method from gray-level histograms, IEEE Trans Syst Man Cybern, 1979; 9(1): 62-6. [35] C. M. Bishop. Pattern recognition and machine learning. Singapore: Springer; 2006. p. 207-8. [36] I. S. Gradshteyn, I. M. Ryzhik. Table of integrals, series, and products. 5th ed. San Diego: Academic Press; 1994. p. 908. [37] C. J. Bischof, J. C. Ehrhardt. Modulation transfer function of the EMI CT head scanner, Med Phys, 1977; 4(2): 163-7. [38] E. L. Nickoloff. Measurement of the PSF for a CT scanner: appropriate wire diameter and pixel size, Phys Med Biol, 1988; 33: 149-55. [39] J. Hsieh. Computed tomography: principles, design, artifacts, and recent advances. Bellingham: SPIE Press; 2003. p. 113-8. 235-8. [40] What are the radiation risks from CT?. US Food and Drug Administration. www.fda.gov/radiation-emittingproducts/radiationemittingproductsandproceedures/ MedicalImaging/MedicalX-Rays/ucm115329.htm, 2009. [41] B. Furlow, Radiation dose in computed tomography, Radiol Technol, 2010; 81(5): 437 50.

1) T. Takenaga, M. Goto, M. Hatemura, Y. Uchiyama, S. Katsuragawa, J. Shiraishi, Computer simulation of low-dose clinical CT images, The second International Conference on Radiological Science and Technology, 55-56, 2014. Proceeding, 2) T. Takenaga, S. Katsuragawa, M. Goto, M. Hatemura, Y. Uchiyama J. Shiraishi, A computer simulation method for low-dose CT images by use of real high-dose images: a phantom study, Radiological Physics and Technology, Aug., 2015. Published online 3) T. Takenaga, S. Katsuragawa, M. Goto, M. Hatemura, Y. Uchiyama J. Shiraishi, Modulation transfer measurement of CT images by use of a circular edge method with a logistic curve-fitting technique, Radiological Physics and Technology, 8, 53-59, 2015. 4) T. Takenaga, S. Katsuragawa, M. Goto, M. Hatemura, Y. Uchiyama, J. Shiraishi, Realtime demonstration of simulated low-dose clinical CT images, RSNA, PHE0010B, USA Chicago, November 2014., 5) T. Takenaga, M. Goto, M. Hatemura, Y. Uchiyama, S. Katsuragawa, J. Shiraishi, Computer simulation of low-dose clinical CT images, The second International Conference on Radiological Science and Technology, SP021, Japan Hokkaido, October 2014., 6) T. Takenaga, M. Goto, M. Hatemura, Y. Uchiyama, S. Katsuragawa, J. Shiraishi, Quality assessment of simulated liw-dose CT image, CSIT,, August 2013., 7),,,,, CT, 43, 10112,, 10 2015., 8),,,,,, CT CT, 71, 2071,, 4 2015., 9),,,,,, CT MTF Wire Edge, MII 26 169, C1,, 5 2014., 10) T. Takenaga, M. Goto, M. Hatemura, Y. Uchiyama, S. Katsuragawa, J. Shiraishi,, Computerized simulation of low-dose CT images: Comparison of image quality for different phantoms, 70, 10207,, 4 2014., 11),,,,,, CT MTF,

70, 10206,, 4 2014., 12),,,,,, CT, 41, 10237,, 10 2013., 13),,,,,, CT, 69, 10294,, 4 2013., 14) 21 CSIT, Quality assessment of simulated low-dose CT image,, 8, 2013. 15) 69, CT,, 4, 2013.