DS Ω(1.1)t 1 t 2 Q = t2 t 1 { S k(x, y, z) u } n ds dt, (1.2) u us n n (t 1, t 2 )u(t 1, x, y, z) u(t 2, x, y, z) Ω ν(x, y, z)ρ(x, y, z)[u(t 2, x, y,

Similar documents
Cauchy Duhamel Cauchy Cauchy Poisson Cauchy 1. Cauchy Cauchy ( Duhamel ) u 1 (t, x) u tt c 2 u xx = f 1 (t, x) u 2 u tt c 2 u xx = f 2 (



微积分 授课讲义

1. PDE u(x, y, ) PDE F (x, y,, u, u x, u y,, u xx, u xy, ) = 0 (1) F x, y,,uu (solution) u (1) u(x, y, )(1)x, y, Ω (1) x, y, u (1) u Ω x, y, Ωx, y, (P

koji-13.dvi

5 (Green) δ

&! +! # ## % & #( ) % % % () ) ( %

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

x y z.... X Y (cdf) F (x, y) = P (X x, Y y) (X, Y ) 3.1. (X, Y ) 3.2 P (x 1 < X x 2, y 1 < Y y 2 ) = F (x 2, y 2 ) F (x 2, y 1 ) F (x 1, y 2


! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

➀ ➁ ➂ ➃ Lecture on Stochastic Processes (by Lijun Bo) 2

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P.

( )

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+

lim f(x) lim g(x) 0, lim f(x) g(x),

PowerPoint 演示文稿

Gauss div E = 1 ε 0 ρ(x, y, z), (1.3) E (x, y, z)ε 0 ρ(x, y, z) E = 0 (curl E = 0), (1.4) E = u(x, y, z), (1.5) u ( )(1.5) (1.3) u(x, y, z) = 1 ε 0 ρ(


4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ

untitled

7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ;

WL100014ZW.PDF

E = B B = B = µ J + µ ε E B A A E B = B = A E = B E + A ϕ E? = ϕ E + A = E + A = E + A = ϕ E = ϕ A E E B J A f T = f L =.2 A = B A Aϕ A A = A + ψ ϕ ϕ

10-03.indd

= Β Χ Δ

8 8 Β Β : ; Χ; ; ; 8 : && Δ Ε 3 4Φ 3 4Φ Ε Δ Ε > Β & Γ 3 Γ 3 Ε3Δ 3 3 3? Ε Δ Δ Δ Δ > Δ # Χ 3 Η Ι Ι ϑ 3 Γ 6! # # % % # ( % ( ) + ( # ( %, & ( #,.

untitled

Ⅰ Ⅱ 1 2 Ⅲ Ⅳ

Β Χ + Δ Ε /4 10 ) > : > 8 / 332 > 2 / 4 + Φ + Γ 0 4 Η / 8 / 332 / 2 / 4 + # + Ι + ϑ /) 5 >8 /3 2>2 / 4 + ( )( + 8 ; 8 / 8. 8 :

untitled


untitled

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

( ) (! +)! #! () % + + %, +,!#! # # % + +!

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

& &((. ) ( & ) 6 0 &6,: & ) ; ; < 7 ; = = ;# > <# > 7 # 0 7#? Α <7 7 < = ; <

% %! # % & ( ) % # + # # % # # & & % ( #,. %

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, )

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α

3 4 Ψ Ζ Ζ [, Β 7 7>, Θ0 >8 : Β0 >, 4 Ε2 Ε;, ] Ε 0, 7; :3 7;,.2.;, _ & αε Θ:. 3 8:,, ), β & Φ Η Δ?.. 0?. χ 7 9 Ε >, Δ? Β7 >7 0, Τ 0 ΚΚ 0 χ 79 Ε >, Α Ε

& & ) ( +( #, # &,! # +., ) # % # # % ( #

9. =?! > = 9.= 9.= > > Η 9 > = 9 > 7 = >!! 7 9 = 9 = Σ >!?? Υ./ 9! = 9 Σ 7 = Σ Σ? Ε Ψ.Γ > > 7? >??? Σ 9

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ

9! >: Ε Φ Ε Ε Φ 6 Φ 8! & (, ( ) ( & & 4 %! # +! ; Γ / : ; : < =. ; > = >?.>? < Α. = =.> Β Α > Χ. = > / Δ = 9 5.


,..,.,,,,,.,,.,., ,.,,.,,.,, 1,,, ; 2,,,,.,,,,.,,.,,,.,.,.,,.,.,,,.,,,.,,,,.,.,,,, i


= > : ; < ) ; < ; < ; : < ; < = = Α > : Β ; < ; 6 < > ;: < Χ ;< : ; 6 < = 14 Δ Δ = 7 ; < Ε 7 ; < ; : <, 6 Φ 0 ; < +14 ;< ; < ; 1 < ; <!7 7

! # Χ Η Ι 8 ϑ 8 5 Χ ΚΗ /8 Η/. 6 / Λ. /. Η /. Α Α + Α 0. Η 56 + Α : Α Μ / Η +9 Δ /. : Α : ϑ. Η. /5 % Χ

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2

9 : : ; 7 % 8

; < 5 6 => 6 % = 5

,, ( Δ! # % & % ) % & )% % +, % &. + / +% % % +,. / )% )%. + /. /. 0 / +% )0 )1 2) 20 )1 % 4 0 % % 0 5 % % )) % %6 ) % 6 ) % % % ) % 6. 4 /. 2 %, 78 9

% % %/ + ) &,. ) ) (!

Φ2,.. + Φ5Β( 31 (+ 4, 2 (+, Η, 8 ( (2 3.,7,Χ,) 3 :9, 4 (. 3 9 (+, 52, 2 (1 7 8 ΙΜ 12 (5 4 5? ), 7, Χ, ) 3 :9, 4( > (+,,3, ( 1 Η 34 3 )7 1 )? 54

3 = 4 8 = > 8? = 6 + Α Β Χ Δ Ε Φ Γ Φ 6 Η 0 Ι ϑ ϑ 1 Χ Δ Χ ΦΚ Δ 6 Ε Χ 1 6 Φ 0 Γ Φ Γ 6 Δ Χ Γ 0 Ε 6 Δ 0 Ι Λ Χ ΦΔ Χ & Φ Μ Χ Ε ΝΓ 0 Γ Κ 6 Δ Χ 1 0

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ

1 <9= <?/:Χ 9 /% Α 9 Δ Ε Α : 9 Δ 1 8: ; Δ : ; Α Δ : Β Α Α Α 9 : Β Α Δ Α Δ : / Ε /? Δ 1 Δ ; Δ Α Δ : /6Φ 6 Δ

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9

?.! #! % 66! & () 6 98: +,. / / 0 & & < > = +5 <. ( < Α. 1

3?! ΑΑΑΑ 7 ) 7 3

1#

Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3 Ε Φ Γ ΕΙΙ 3 Χ 3 Φ 4 Κ? 4 3 Χ Λ Μ 3 Γ Ε Φ ) Μ Ε Φ? 5 : < 6 5 % Λ < 6 5< > 6! 8 8 8! 9 9 9! 9 =! = 9!

; 9 : ; ; 4 9 : > ; : = ; ; :4 ; : ; 9: ; 9 : 9 : 54 =? = ; ; ; : ;

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5,

untitled


8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, ; > 8? : 5 4 +? Α > 6 + > 3, > 5 <? 9 5 < =, Β >5


: ; 8 Β < : Β Δ Ο Λ Δ!! Μ Ν : ; < 8 Λ Δ Π Θ 9 : Θ = < : ; Δ < 46 < Λ Ρ 0Σ < Λ 0 Σ % Θ : ;? : : ; < < <Δ Θ Ν Τ Μ Ν? Λ Λ< Θ Ν Τ Μ Ν : ; ; 6 < Λ 0Σ 0Σ >

996,,,,,,, 997 7, 40 ; 998 4,,, 6, 8, 3, 5, ( ),, 3,,, ;, ;,,,,,,,,,

: Π Δ 9 Δ 9 Δ 9 7 Θ Μ 9 8 Ρ Σ # = Μ 0 ; 9 < = 5 Λ 6 # = = # Μ Μ 7 Τ Μ = < Μ Μ Ο = Ρ # Ο Ο Ο! Ο 5 6 ;9 5 5Μ Ο 6

Θ Θ Γ 2 Ρ 3 Ω Ω Ω Ξ, ;;> /;? ; ;;<<; > # ( 3 ) #2# #% 3 (#) # ( #) ) ( ) #) & ) 3 % & &89#(#( #3) ) 2 (#(# % ) ()# <= +: ;8.../;< # ; / +2.. ;//.;.82

Υ 2 Δ Υ 1 = 1 : Φ Υ 1 Ω 5 ς ) Ν + Φ 5 ς ς Α+ ) Ν Φ 6 Ξ ς Α+ 4 Φ Ψ Ψ + = Ε 6 Ψ Ε Ε Π Υ Α Ε Ω 2? Ε 2 5 Ο ; Μ : 4 1 Ω % Β 3 : ( 6 Γ 4 Ρ 2 Ρ

ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν Α Γ Β 1 Α Ο Α : Α 3. / Π Ο 3 Π Θ

Δ 6 Ε Φ Φ 9 > : : Γ Γ Η : 8 Κ 9 : > % Α%Β Β 8 6 Β 8 6 Κ Ι > ϑ, ϑ Λ, 1ϑ (, Β ϑ 9 9 Μ = >+? Β = ; ΕΝ Ν1Ο Κ Λ 69 Α% 0 8

(r s) {φ r1, φ r2,, φ rn } {φ s1, φ s2,, φ sn } u r (t) u s (t). F st ι u st u st k 1 ι φ i q st i (6) r β u r β u r u r(t) max u st r φ

Γ Ν Ν, 1 Ο ( Π > Π Θ 5?, ΔΓ 2 ( ΜΡ > Σ 6 = Η 1 Β Δ 1 = Δ Ι Δ 1 4 Χ ΓΗ 5 # Θ Γ Τ Δ Β 4 Δ 4. > 1 Δ 4 Φ? < Ο 9! 9 :; ;! : 9!! Υ9 9 9 ; = 8; = ; =

Β Χ Χ Α Β Φ Φ ; < # 9 Φ ; < # < % Γ & (,,,, Η Ι + / > ϑ Κ ( < % & Λ Μ # ΝΟ 3 = Ν3 Ο Μ ΠΟ Θ Ρ Μ 0 Π ( % ; % > 3 Κ ( < % >ϑ Κ ( ; 7

Ψ! Θ! Χ Σ! Υ Χ Ω Σ Ξ Ψ Χ Ξ Ζ Κ < < Κ Ζ [Ψ Σ Ξ [ Σ Ξ Χ!! Σ > _ Κ 5 6!< < < 6!< < α Χ Σ β,! Χ! Σ ; _!! Χ! Χ Ζ Σ < Ω <!! ; _!! Χ Υ! Σ!!!! ββ /β χ <

! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ! 7 7 Δ Δ 2! Χ Δ = Χ! Δ!! =! ; 9 7 Χ Χ Χ <? < Χ 8! Ε (9 Φ Γ 9 7! 9 Δ 99 Φ Γ Χ 9 Δ 9 9 Φ Γ = Δ 9 2

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α

Transcription:

u = u(t, x 1, x 2,, x n ) u t = k u kn = 1 n = 3 n = 3 Cauchy ()Fourier Li-Yau Hanarck tcauchy F. JohnPartial Differential Equations, Springer-Verlag, 1982. 1. 1.1 Du(t, x, y, z)d(x, y, z) t Fourier dtn dsdqds u n dq = k(x, y, z) u dsdt, (1.1) n k(x, y, z)(x, y, z)(1.1) dq u n 1

DS Ω(1.1)t 1 t 2 Q = t2 t 1 { S k(x, y, z) u } n ds dt, (1.2) u us n n (t 1, t 2 )u(t 1, x, y, z) u(t 2, x, y, z) Ω ν(x, y, z)ρ(x, y, z)[u(t 2, x, y, z) u(t 1, x, y, z)]dxdydz, νρ t2 t 1 S k u n dsdt = νρ[u(t 2, x, y, z) u(t 1, x, y, z)]dxdydz. (1.3) Ω u x, y, z t Green(1.3) t2 [ ( k u ) + ( k u ) + ( k u )] dxdydzdt t 1 Ω x x y y z z ( t2 ) u = νρ t dt dxdydz, Ω t 1 t2 [ νρ u t ( k u ) ( k u ) ( k u )] dxdydzdt =. (1.4) x x y y z z t 1 Ω t 1 t 2 Ω νρ u t = ( k u ) + ( k u ) + ( k u ). (1.5) x x y y z z (1.5) kνρ k/νρ = c 2 ( ) u 2 t = u c2 x + 2 u 2 y + 2 u. (1.6) 2 z 2 () (1.5) 2

F (t, x, y, z) t2 t 1 = Ω S k u t2 n dsdt + F (t, x, y, z)dxdydzdt t 1 Ω νρ[u(t 2, x, y, z) u(t 1, x, y, z)]dxdydz. (1.5) νρ u t = ( k u ) + ( k u ) + ( k u ) + F (t, x, y, z). (1.7) x x y y z z (1.6) ( ) u 2 t = u c2 x + 2 u 2 y + 2 u + f(t, x, y, z), (1.8) 2 z 2 (1.6) f(t, x, y, z) = (1.8) F (t, x, y, z). (1.9) νρ Fourier (1.1)(1.3) t2 t 1 S dm = γ(x, y, z) U dsdt, (1.1) n γ U n dsdt = [U(t 2, x, y, z) U(t 1, x, y, z)]dxdydz, (1.11) Ω Udmdtn dsγ(x, y, z) (1.1)(1.3) 3

(1.1)(1.11)(1.1)(1.3) QukmUγ(1.3) νρ1 U t = ( γ U ) + ( γ U ) + x x y y z ( γ U ). (1.12) z γγ = c 2 (1.12)(1.6) 1.2 ( ) u(, x, y, z) = ϕ(x, y, z), (1.13) ϕ(x, y, z)t = u(t, x, y, z) (x,y,z) S = g(t, x, y, z), (1.14) S g(t, x, y, z)[, T ] S T Dirichlet QFourier dq = k u n dsdt u u n = g(t, x, y, z), (1.15) (x,y,z) S 4

u us ng(t, x, y, z)[, T ] n S Neumann 1 1u 1 u u 1 1 γ dq = γ(u u 1 )dsdt, (1.16) S Fourier1 k u n dsdt = γ(u u 1)dSdt, γu + k u n = γu 1. γk ( σu) u n (x,y,z) S + = g(t, x, y, z), (1.17) u us ng(t, x, y, z)[, T ] n S σ Cauchy u(, x, y, z) = ϕ(x, y, z) ( < x, y, z < ). (1.18) 5

uxt u t = 2 u c2 x. (1.19) 2 ( ) u 2 t = u c2 x + 2 u. (1.2) 2 y 2 Cauchy 1. L dq = γ(u u 1 )dsdt. ρνku 2. 3. Q(t)Q dq dt = βqβνρ ku 6

2. Cauchy Fourier Fourier Cauchy Cauchy 2.1 Fourier (, )f(x)fourier F [f](λ) g(λ) = f(x)e iλx dx. (2.1) f(x)(, )Fourier (, )g(λ) Fourier f(x) = 1 g(λ)e iλx dλ. (2.2) 2π g(λ)f(x) Fourier F [f](λ) f(λ) f(x)g(λ)fourier F 1 [g](x) f(x)(, )FourierF [f](λ) Fourier f(x) F 1 [F [f]] = f. FourierFourier FourierCauchy Fourier Fourier Fourier 2.1 Fourierα 1 α 2 f 1 f 2 F [α 1 f 1 + α 2 f 2 ] = α 1 F [f 1 ] + α 2 F [f 2 ]. (2.3) 2.1 f 1 (x)f 2 (x)x R f(x) = f 1 (x y)f 2 (y)dy (2.4) 1

f(x)f 1 (x)f 2 (x) f 1 (x)f 2 (x)f(x)f 1 f 2 Fourier f 1 f 2 = f 2 f 1, (2.5) 2.2 f 1 (x)f 2 (x)fourierf 1 (x)f 2 (x)fourier F [f 1 f 2 ] = F [f 1 ] F [f 2 ]. (2.6) F [f 1 f 2 ] = e iλx dx f 1 (x y)f 2 (y)dy f 1 f 2 (, ) F [f 1 f 2 ] = = = (2.6) f 2 (y)dy f 2 (y)dy e iλy f 2 (y)dy = F [f 1 ] F [f 2 ]. e iλx f 1 (x y)dx f 1 (ξ)e iλ(y+ξ) dξ f 1 (ξ)e iλξ dξ 2.3 g 1 (λ)g 2 (λ)fourierg 1 (λ)g 2 (λ)fourier 2π 2.2 F 1 [g 1 g 2 ] = 1 2π = 1 2π = 1 2π = 1 2π F 1 [g 1 g 2 ] = 2πF 1 [g 1 ] F 1 [g 2 ]. (2.7) e iλx dλ g 2 (η)dη g 2 (η)dη e iηx g 2 (η)dη = 2πF 1 [g 1 ] F 1 [g 2 ]. 2 g 1 (λ η)g 2 (η)dη g 1 (λ η)e iλx dλ g 1 (ξ)e i(η+ξ)x dξ e iξx g 1 (ξ)dξ

(2.7) 2.3 2.4 f 1 (x)f 2 (x) Fourier f 1 (x)f 2 (x)fourier (2π) 1 (2.7) F [f 1 f 2 ] = 1 2π F [f 1] F [f 2 ]. (2.8) g 1 = F [f 1 ], g 2 = F [f 2 ]. F 1 [g 1 g 2 ] = 2πF 1 [g 1 ] F 1 [g 2 ] = 2πF 1 [F [f 1 ]] F 1 [F [f 2 ]] = 2πf 1 f 2. Fourier g 1 g 2 = 2πF [f 1 f 2 ]. (2.8) 2.5 f(x)f (x)fourier x f(x) F [f ](λ) = F [f ] = iλf [f]. (2.9) e iλx f (x)dx = { e iλx f(x) } x= x= + = iλ e iλx f(x)dx = iλf [f](λ). 2.6 f(x)xf(x)fourier iλe iλx f(x)dx F [ ixf(x)] = d F [f]. (2.1) dλ F [ ixf(x)] = = d dλ ( ix)f(x)e iλx dx f(x)e iλx dx = d dλ F [f]. 3

Fourier F [f](λ) = g(λ 1,, λ n ) = Fourier f(x 1,, x n ) = (2π) n e i P n k=1 λ kx k f(x 1,, x n )dx 1 dx n. (2.11) e i P n k=1 λ kx k g(λ 1,, λ n )dλ 1 dλ n. (2.11a) Fourier2.1 2.6 2.1 f(x)(, )Fourier(, ) cos λxλsin λxλ F [f] = F [f](λ) = = e iλx f(x)dx (cos λx + i sin λx) f(x)dx f(x) cos λxdx. 2.2 Fourier Fourier Fourier 2.2 Cauchy FourierCauchy u t = c 2 u xx + f(t, x), (2.12) tcauchy u(, x) = ϕ(x). (2.13) u t = c 2 u xx, (2.14) 4

u(, x) = ϕ(x). (2.15) xfourier F [u(t, x)] = ũ(t, λ), F [ϕ(x)] = ϕ(λ). (2.16) (2.14)xFourier2.5 (2.15) dũ dt = c2 λ 2 ũ, (2.17) ũ(, λ) = ϕ(λ). (2.18) (2.17)(2.18)λ ũ(t, λ) = ϕ(λ)e c2 λ 2t. (2.19) e c2 λ 2t Fourier F 1 [e c2 λ 2t ] = 1 e (c2 λ 2t iλx) dλ = 1 e c2 t(λ ix 2c 2π 2π 2 t )2 dλ e x2 4c 2 t. e c2 t(λ ix 2c 2 t )2 dλ = e c2 tλ 2 dλ = 1 c e y2 dy = t F 1 [e c2 λ 2t ] = 1 2c πt e x 2 4c 2 t. π c t, 2.2(2.19)Cauchy(2.14)-(2.15) u(t, x) = 1 2c ϕ(ξ)e (x ξ)2 4c 2 t dξ. (2.2) πt Cauchy u t = c 2 u xx + f(t, x), (2.21) u(, x) =. (2.22) Cauchy(2.21)-(2.22) u(t, x) = t 5 w(t, x; τ)dτ, (2.23)

w(t, x; τ)cauchy w t = c 2 w xx (t > τ), (2.24) (2.2)Cauchy(2.21)-(2.22) u(t, x) = 1 2c π w(τ, x) = f(τ, x). (2.25) t f(τ, ξ) e (x ξ) 2 4c 2 (t τ) dξdτ. (2.26) t τ (2.2)(2.26)Cauchy(2.12)-(2.13) u(t, x) = 1 2c πt + 1 2c π ϕ(ξ)e (x ξ)2 4c 2 t dξ t f(τ, ξ) e (x ξ) 2 (2.27) 4c 2 (t τ) dξdτ. (t τ) 2.3 ufourier (2.27) Cauchy(2.12)-(2.13) ϕ(x) (2.2)Cauchy(2.14)-(2.15)(2.2) Poisson ϕ(x) Poisson ϕ(x) M. (2.28) (2.2) u(t, x) M 1 π = M 1 π e ζ2 dξ = π, 1 2c (x ξ) 2 π e 4c 2 t dξ e ζ2 dξ = M ( ζ = ξ x ) 2c. t (2.2)u(t, x)u(t, x) 6

t > (2.2)u(t, x)(2.14) 1 2c (x ξ) 2 πt e 4c 2 t (2.29) tx(ξ)t > (2.14) t > (2.14)(2.2) (2.2) x (2.2)x 1 2c π (x ξ)ϕ(ξ) 2c 2 t 3 2 e (x ξ)2 4c 2 t dξ, t t > (t )t > u(t, x) x = 1 2c π (x ξ)ϕ(ξ) 2c 2 t 3 2 e (x ξ)2 4c 2 t dξ, x(2.2) t > (2.2)u(t, x)(2.14) (2.2)u(t, x)(2.15) x t, x x u(t, x) ϕ(x )ε > δ > x x δ, t δ (2.2)ζ = ξ x 2c t ϕ(x ) u(t, x) = 1 π u(t, x) ϕ(x ) ε. ϕ(x ) = 1 π ϕ(x + 2c tζ)e ζ2 dζ. (2.3) ϕ(x )e ζ2 dζ. (2.31) u(t, x) ϕ(x ) = 1 [ϕ(x + 2c tζ) ϕ(x )]e ζ2 dζ. (2.32) π ε > N > 1 e ζ2 dζ π N ε 6M, 1 N π 7 e ζ2 dζ ε 6M. (2.33)

Nϕ(x)δ > x x δ, < t δ ϕ(x + 2c tζ) ϕ(x ) ε 3 ( N ζ N). (2.34) (2.28)(2.33)(2.34)(2.32) u(t, x) ϕ(x ) = 1 [ϕ(x + 2c tζ) ϕ(x )]e ζ2 dζ π 1 π N N + 2M π N ε 3 π N N [ϕ(x + 2c tζ) ϕ(x )]e ζ2 dζ e ζ2 dζ + 2M e ζ2 dζ π e ζ2 dζ + 4M ε 6M ε 3 + 2ε 3 = ε. N (2.35) Poisson(2.2)u(t, x)cauchy (2.14)- (2.15) (2.27)(2.12)(2.13) 1. Fourier (1) e ηx2 (η > ); (2) e a x (a > ); (3) x (a 2 + x 2 ), 1 (a >, k). k (a 2 + x 2 ) k 2. f(x)(, )F [f] 3. FourierCauchy u t = c 2 (u xx + u yy + u zz ), u t= = ϕ(x, y, z). 4. (2.27)(2.12)(2.13) 5. (2.14)Cauchy (1) u t= = sin x, 8

(2) (2.14) u(, x) = ϕ(x) ( < x < ), 6. (t, x, y) u(t, ) =. v(t, x, y; τ, ξ, η) = 1 (x ξ) 2 +(y η) 2 4πc 2 (t τ) e 4c 2 (t τ) v t = c 2 (v xx + v yy ), (τ, ξ, η) v t + c 2 (v ξξ + v ηη ) =. 7. u 1 (t, x)u 2 (t, x)cauchy u(t, x, y) = u 1 (t, x)u 2 (t, y)cauchy u 1 t = 2 u 1 c2 x, 2 u 1 t= = ϕ 1 (x); u 2 t = 2 u 2 c2 y, 2 u 2 t= = ϕ 2 (y), ( 2 u x + 2 u 2 y 2 u t = c2 u t= = ϕ 1 (x)ϕ 2 (y) 8. Cauchy ( 2 u x + 2 u 2 y 2 u t = c2 u t= = ϕ(x, y) u(t, x, y) = 1 4πc 2 t ), ), ϕ(ξ, η)e (x ξ)2 +(y η) 2 4c 2 t dξdη. 9

3. u t c 2 u xx = (t >, < x < l), (3.1) t = : u = ϕ(x), (3.2) x = : u =, (3.3) x = l : u x + σu =, (3.4) σ u(t, x) = T (t)x(x), (3.5) T (t)x(x)tx(3.5)(3.1) XT = c 2 X T, T c 2 T = X X. λ T + λc 2 T =, (3.6) X + λx =. (3.7) 1

(3.7)(3.3(3.4)X(x) X() =, X (l) + σx(l) =. (3.8) (3.7)(3.8) 2 (i) λ X (ii) λ > X(x) = A cos λx + B sin λx. (3.9) X() = A =. (3.8) B( λ cos λl + σ sin λl) =. (3.1) X(x)λ λ cos λl + σ sin λl =, (3.11) λ (3.12) tan λl = λ σ. (3.12) w = λl, (3.13) tan w = w lσ. (3.14) (3.1)3.1(3.14) w k > (k = 1, 2, )w k (k 1 2 )π < w k < kπ f f=tan w w 1 w 2 w f = w lσ 3.1. (3.14) 2

(3.7)(3.8) λ = λ k (3.6) λ k = ( wk l ) 2 (k = 1, 2, ) (3.15) X k (x) = B k sin λ k x = B k sin w k x (k = 1, 2, ). (3.16) l T k (t) = C k e c2 λ k t (k = 1, 2, ). (3.17) u k (t, x) = A k e c2 λ k t sin λ k x (k = 1, 2, ). (3.18) (3.1)(3.3)(3.4) u(t, x) = A k e c2 λ k t sin λ k x. (3.19) A k (3.19)(3.2) (3.3)t = u(t, x)ϕ(x) k=1 ϕ(x) = A k sin λ k x. (3.2) k=1 A k {X k } = {sin λ k x}[, l] X n X m λ n λ m X n + λ n X n =, X m + λ m X m =. X m X n [, l]x n X m (3.3)(3.4) (λ n λ m ) t λ n λ m l X n X m dx = X n X m dx = (X n X m X m X n) l =. l sin λ n x sin λ m xdx = (m n). (3.21) 3

l l M k = sin 2 1 cos 2 λ k x λ k xdx = dx 2 = l 2 sin 2 λ k l 4 = l λ k 2 tan λk l 2 λ k (1 + tan 2 λ k l) = l 2 + σ 2(σ 2 + λ k ). (3.22) (3.2)sin λ k x(3.21) A k = 1 l ϕ(ξ) sin λ k ξdξ. (3.23) M k (3.19)(3.1)-(3.4) u(t, x) = 1 l M k k=1 ϕ(ξ) sin λ k ξdξ e c2 λ k t sin λ k x. (3.24) (3.24)(3.1)-(3.4) ϕ(x) (3.24) t > tx (3.1) (3.3)(3.4) (3.24) e c2 λ k t δ > t δp > k=1 λp k e c2 λ k t ϕ ϕ(x) M (M), (3.25) (3.22) l ϕ(ξ) sin λ k ξdξ Ml 1 2 M k l. (3.26) (3.24)t > tx (3.1)(3.3)(3.4)(3.24) t > t x [, l](3.24)ϕ(x) ϕ(x)ϕ(x) C 1 ([, l])ϕ() = ϕ (l) + σϕ(l) = (3.24)(3.1)-(3.4) 4

1. u t = c 2 u xx (t >, < x < 1), u(t, ) = u x (t, 1) = (t > ), u(, x) = f(x) ( < x < 1). 2. u t = u xx (t >, < x < 1), x, < x 1 u(, x) = 2 1 1 x, 2 < x < 1, u(t, ) = u(t, 1) = (t > ). (3.27) (3.28) 3. lx =, x = l u(, x) = f(x)f(x)u u(t, x) = u. 5