4 020 The Growth of Two Dimensional Materials by Pused Laser Deposition (Transition Metal Dichalcogenides, TMDs) (Dangling Bond) (MoS 2 ) (Chemical Vapor Deposition, CVD) (Pulsed Laser Deposition, PLD) MoS 2 MoS 2 PLD RHEED TEM PLD MoS 2 MoS 2 c-sapphire : (0006) sapphire // (0002) MoS 2 and [2110] sapphire // [0110] MoS 2 PLD Abstract Recently, transition metal dichalcogenides (TMDs) have received intense interest mainly due to their automatically formation of layered structure without dangling bond providing excellent quantum confinement. Among TMDs, MoS 2 top gate field effect transistor (FET) has been demonstrated its extraordinary characteristics from exfoliation. Therefore, numerous bottom up growth method have been inspired and developed to meet the requirement for application. The chemical vapor deposition (CVD) is one of the important method to realize two dimensional (2D) layered MoS 2. However, the number of monolayer and the coverage degree of MoS 2 grown by CVD are still a challenge. In this article, the pulsed laser deposition method used to grow oxide epitaxy is primarily proposed to develop the epitaxy of MoS 2. The Raman analysis of MoS 2 with various pulse number in PLD demonstrate the excellent controllability, suggesting the feasibility for thin layered material growth. The results of Reflection high energy electron diffraction
NANO COMMUNICATION 22 No. 1 021 (RHEED) and transmission electron microscopy (TEM) analysis revealing the superiority of 2D layered growth of PLD for MoS 2. Also the epitaxial relationship of MoS 2 on c-sapphire are: (0006) sapphire // (0002) MoS 2 and [2 11 0] sapphire // [0110] MoS 2. The primarily results demonstrate the promising of PLD for the growth of thin layered materials. Keywords TMDs 2D materials MoS 2 PLD 2004 (scotch tape method) ( ~200,000 cm 2 /Vs) [1] (I on /I off ) (Transition Metal Dichalcogenides, TMDs) Molybdenum Disulphide (MoS 2 ) (Quantum Conferment Effect) [2] [3-6] MoS 2 1(a) MoS 2 1.2 ev 1.9 ev [7] MoS 2 S-Mo-S (Hexagonal) (Van der Waals Forces) 6.5 1(b) 2011 (Exfoliation) MoS 2 n (Field Effect Transistor, FET) ( 1(c) ) 8 (I on /I off >10 8 ) 200 cm 2 /Vs [8] ( 1(d) ) MoS 2 FET [8, 9] (Surface/Volume Ratio) (Fermi Level Position) ph MoS 2 FET 74 [10] MoS 2 1 (a) MoS 2 1.2eV 1.9V. ;(b) MoS 2 S-Mo-S 6.5 ; (c) MoS 2 MoS 2 ;(d) [8] MoS 2 MoS 2 FET MoS 2 FET (Button up) (Chemical Vapor Deposition, CVD) CVD MoS 2 Mo [11, 12] MoO [13] 3
022 MoS 2 1 Mo MoS 2 3 MoS 2 MoO [14] 3 MoCl [15] 5 MoS 2 MoS 2 [16, 17] MoS 2 2 (PLD) : (Pulsed Laser Deposition, PLD) (Physical Vapor Deposition) ( ) 1980 [18] PLD PLD 20 PLD (Target) PLD ( Gd 2 O 3 ) [19] ( ZnO, GaN ) [20, 21] ( Ti, Hastelloy ) [22, 23] 2 (a) CVD (b) MoS 2 [24] [25] [14] PLD 3(a) PLD 45 ( Plume Plasma) 3 (a) PLD ;(b) excimer laser ZnO 10-100 ev Plume. Plume
NANO COMMUNICATION 22 No. 1 023 3(b) PLD (MBE) (Sputtering) (MOCVD) : 1. (Stoichiometry Transfer) PLD ( ) 2. PLD ( KrF, ArF ) [26] (MOCVD) [27-29] 3. PLD (UHV) ZnO (Laser MBE) Laser MBE RF (RF Plasma Source) PLD (Ts) (Excimer Laser Energy Density) (PO 2 ) (Repetition Rate) PLD PLD PLD MoS 2 PLD MoS 2 [30-32] 4(a) (HRTEM) MoS 2 2006 HuMoS 2 / Sb 2 O 3 [32] 4(b), 4(c) PLD 65 5 MoS 2 LED c (c-plane Sapphire) PLD Pascal Laser MBE System 1x10-7 torr (850 ) 4 (a) PZT TEM ; (b) PZT EDX
024 : 800 < 6 x 10-6 torr KrF 3~5J/cm 2, repetition rate 10Hz pulse PLD MoS 2 5 pulse MoS 2 E 1 2g A 1g MoS 2 E 1 2g A 1g ~383 ~408cm -1 ( ) MoS 2 Y. Liu MoS 2 [33] MoS 2 CVD ( ) 20.4cm - 1[15] E 1 2g A 1g ( ) 5 (Vg) (Vint) 70 pulse 1 (monolayer); 100 pulse 2 140 pulse 3 300 pulse 5 1 E 1 2g, A 1g MoS 2 1 PLD pulse MoS 2 (Reflection High Energy Electron Diffraction, RHEED) 6(a) sapphire [1010] 6 (b) 100 pulse MoS 2 RHEED 6 (c) (d) 6(a) (b) 218 184 (L sapp /L MoS2 ) (a sapphire / a MoS2 ) : sapphire 7 MoS 2 sapphire 3.16 [34] 4.76 30a sapphire a*=4.76/ 3 =2.75 : RHEED MoS 2 (lattice mismatch) : MoS 2 c-sapphire : c-mos 2 //c-sapphire; [1120]MoS 2 // [1010] c-sapphire 30 32% MoS 2 (Transmission Electron Microscopy) 8 8 (a) 300 pulse5 MoS 2 sapphire 3.2
NANO COMMUNICATION 22 No. 1 025 0.64 (Focus Ion Bean, FIB) TEM 1 2 TEM PLD pulse MoS 2 sapphire 8 (b) 8 (c) [2110] sapphire (Selected Area Diffraction, SAD) 3 (002) MoS 2 and (210) MoS 2 [011 0] MoS 2 TEM MoS 2 c-sapphire : (0006) sapphire // (0002) MoS 2 and [2 1 1 0] sapphire // [0 1 1 0] MoS 2. 6 (a) sapphire 850 RHEED ; (b) PLD 100 pulse MoS 2 RHEED (c) (d) (a) (b) 30 RHHED (GaN) c-sapphire [35] 7 MoS 2 c-sapphire 30 CVD (PLD) MoS 2 MoS 2 PLD RHEED TEM PLD MoS 2 MoS 2 c-sapphire : (0006) sapphire // (0002) MoS 2 and [2 1 1 0] sapphire // [0 1 1 0] MoS 2. ; PLD 8 PLD MoS 2 sapphire TEM (a) 300 pulse 5 MoS 2 sapphire ; (b) ; (c) [2 1 1 0] sapphire (Selected Area Diffraction, SAD)
4 026 [1] V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker and S. Seal, Progress in Materials Science 56, pp. 1178, 2011. [2] Y. Yoon, K. Ganapathi and S. Salahuddin, Nano Lett. 11, pp. 3768, 2011. [3] V. Sorkin, H. Pan, H. Shi, S. Y. Quek and Y. W. Zhang, Crit. Rev. Solid State 39, pp. 319, 2014. [4] K. Wang, J. Wang, J. Fan., M. Lotya, A. O Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, ACS Nano 7, pp. 9260, 2013. [5] D. S. Tsai, K. K. Liu, D. H. Lien, M. L. Tsai, C. F. Kang, C. A. Lin, L. J. Li and J. H. He, ACS Nano 7, pp. 3905, 2013. [6] R. S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A. C. Ferrari, P. Avouris and M. Steiner, Nano Lett., 13, pp. 1416, 2013. [7] K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, Phys. Rev.Lett. 105, pp. 136805, 2010. [8] B.Radisavljevic, A.Radenovic, J.Brivio, V.Giacometti and A.Kis, Nat. Nanotechnol. 6, pp. 147, 2011. [9] B. Liu, L. Chen, G. Liu, A. N. Abbas, M. Fathi, and C. Zhou, ACS Nano, 8, pp. 5304, 2014. [10] D. Sarkar, W. Liu, X. Xie, A. C. Anselmo, S. Mitragotri, K. Banerjee, ACS Nano, 8, pp. 3992, 2014. [11] M. R. Laskar, L. Ma, S. Kannappan, P. Sung Park, S. Krishnamoorthy, D. N. Nath, W. Lu, Y. Wu and S. Rajan, Appl. Phys. Lett. 102, pp. 252108, 2013. [12] Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan and J. Lou, Small 8, pp. 966, 2012. [13] Y. C. Lin, W. Zhang, J. K. Huang, K. K. Liu, Y.-H. Lee, C. T. Liang, C. W. Chu and L. J. Li, Nanoscale 4, pp. 6637, 2012. [14] H. Liu, K. K. A. Antwi, J. Ying, S. Chua and D. Chi, Nanotechnology 25, 405702, 2014. [15] Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang and L. Cao, Sci. Rep. 3, pp. 1866, 2013. [16] Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. Wang, C.S. Chang, L.J. Li and T.W. Lin, Adv. Mater. 24, pp. 2320, 2012. [17] M. Amani, M. L. Chin, A. G. Birdwell, T. P. O Regan, S. Najmaei, Z. Liu, P. M. Ajayan, J. Lou and M. Dubey, Appl. Phys.Lett. 102, pp. 193107, 2013. [18]C. Belouet, Appl. Surf. Sci., 96-98, 630, 1996. [19] X. Cheng, D. Xu, Z. Song, D. He, Y. Yu, Q. Zhao; D. Shen, Appl. Surf. Sci., 256, pp. 921, 2009. [20] A. Tsukazaki, A. Ohtomo, and M. Kawasaki, Appl. Phys. Lett. 88, pp. 152106, 2006. [21] X. L. Tong, D. S. Jiang, L. Liu, and H. Dai, J. Vac. Sci. Technol. B 26, pp. 1398, 2008. [22] M.J.J Schmidt,. L. Li, Appl. Surf. Sci. 208/209, pp. 651, 2003. [23] A. Zocco, A. Perrone, M.F. Vignolo, S. Duhalde, I. Avram, C. Morales, T. Pérez, Appl. Surf. Sci. 208/209, pp. 669, 2003. [24] R. Cristescu, G. Socol, I.N. Mihailescu, M. Popescu, F. Sava, E. Ion, C.O. Morosanu, I. Stamatin, Appl. Surf. Sci. 208/209, 6pp. 45, 2003. [25] Y. Tsuboi, M. Goto, and A. Itaya, J. Appl. Phys. 89, pp. 7917, 2001. [26] J. Ohta, H. Fujioka, S. Ito, and M. Oshima, Thin Solid Films 435, pp. 218, 2003. [27] S. Ito, H. Fujioka, J. Ohta, A. Sasaki, J. Liu, M. Yoshimoto, and M. Oshima, Appl. Surf. Sci. 216, pp. 508, 2002. [28]J. Ohta, H. Fujioka, H. Takahashi, and M. Oshima, Appl. Surf. Sci. 190, pp. 352, 2002. [29] V. Craciun, D. Craciun, M.C. Bunescu, R. Dabu, and I.W. Boyd, Appl. Surf. Sci., 109/110, pp. 354, 1997.
NANO COMMUNICATION 22 No. 1 027 [30] S. D. Walek, M. S. Donley, J. S. Zabinski and V. J. Dyhouse, J. Mater. Res. 8, pp. 2933, 1993. [31] J. J. Hu, J. S. Zabinski, J. E. Bultman, J. H. Sanders, A. A Voevodin, Tribol. Lett. 24, pp. 127, 2006. [32] J. J. Hu, J. E. Bultman and J. S. Zabinski, Tribol. Lett. 21, pp. 169, 2006. [33] Y. Liu, H. Nan, X. Wu, W. Pan, W. Wang, J. Bai, W. Zhao, L. Sun, X. Wang and Z. Ni, ACS Nano 7, pp. 4202, 2013. [34] K. Miura, S. Kamiya, Europhys. Lett., 58, pp. 610, 2002. [35] J. Shena, S. Johnston, S. Shang, T. Anderson, J. Cryst. Growth. 240, p. 6, 2002.