The width and length of those microstrip lines control the coupled power amplitude to the patches. Likewise, each subarray is fed by means of a vertic
|
|
|
- 糖 柏
- 7 years ago
- Views:
Transcription
1 IEEE MELECON 26, May 16-19, Benalmádena (Málaga), Spain Monopulse Waveguide Patch Array Antenna in 37 GHz Band Manuel Sierra Pérez, Pedro Rodríguez Fernández, José Luis Masa Campos, José Luis Fernández Jambrina Department: Señales y sistemas de Radiocomunicación. E.T.S.I. de Telecomunicación (Universidad Politécnica de Madrid). Madrid (Spain). [email protected] II. ANTENNA STRUCTURE Abstract This paper presents a circularly polarized patch array in 37 GHz frequency, integrated in a narrow band application (BW < 1%) for signal detection. The designed array has to fulfill some specific requirements related to its radiation pattern (monopulse in the horizontal pattern and cosecant shape in the vertical one); other significant requirements are: circular polarization (RHCP with axial ratio under 3 db), low side lobes (-2 db below the main lobe) in the sum pattern of the monopulse, and high gain (greater than 32.5 db). I. INTRODUCTION Due to the high operation frequency and gain, a lossless scheme is required. A waveguide feeding provides it in a satisfactory way. The power coupling mechanism from the waveguides to the radiating elements is done through a new concept, which is based on microstrip lines located inside the waveguides. The radiating element is a modified circular patch easily manufactured on printed circuit. Circular polarization has been forced by a proper design of the dimensions of the perturbation elements inserted in the standard circular patch. Three different modules have been projected (Fig. 1), namely: (1) the radiating circuit (patches and microstrip coupling lines), (2) the waveguide feeding network and (3) the monopulse network in charge of obtaining the right phase configuration in each subarray to get a sum pattern or a difference pattern for a monopulse working in the horizontal plane; if the outputs of the network present the same phase a sum pattern is obtained, however, if there is a phase difference of 18º between the two outputs in the left part of the circuit and the two outputs in the right part, the difference radiation pattern is achieved. Antenna ANTEN Vertical feeding waveguides Cosecant feeding network Waveguide connection to the monopulse - beam forming network Coupling slots between radiating and feeding waveguides Radiating waveguide Figure 1. : Antenna structure. The first module of the antenna (1) consists of four subarrays fed, named horizontal/radiating waveguides (Fig. 1) (module 2). Inside these radiating waveguide rectangular microstrip coupling lines have been placed. They carry the power to each radiating element (Fig. 2) through a metallic via hole Red Sum Patch Mono-pulse beam forming ReDifference diferenc Phases in sum Phases in difference Figure 2. : Detailed horizontal waveguide and coupling microstrip lines /6/$2. 26 IEEE 324
2 The width and length of those microstrip lines control the coupled power amplitude to the patches. Likewise, each subarray is fed by means of a vertical/feeding waveguide (Fig. 3) mm S/2.25 mm.25 mm Figure 5. :Detailed modified circular patch (radiating element). Figure 3. Detailed vertical waveguide with its slots to feed one subarray The field from those vertical waveguides is coupled to the horizontal ones by slots placed in every junction wall between them. The monopulse network (3), placed in the bottom side of the structure, presents two different inputs related to the obtaining of the sum or difference pattern, as well as four outputs corresponding to each subarray. Connection between the monopulse network and the feeding network (vertical waveguides) is carried out by a hybrid based waveguide circuit. Over the radiating circuit a foam layer will be placed to fasten it. Covering the antenna it s placed a radome taken into account in the design process to minimize the reflection coefficient at the working frequency (Fig. 4). The perturbations generate two orthogonal modes and, as the dimensions of the additional elements are adjusted to the optimum value both modes are excited in equal amplitude and 9º out of phase at the centre frequency, getting the rotation of the field. With the dimensions shown in Fig. 4 the following axial ratio is obtained (Fig. 5). Figure 6. : Axial ratio IV. FEEDING NETWORK As it was mentioned previously, the antenna feeding network was implemented by using waveguide technology, due to losses requirements. The main advantage of this technology is lossless design; however it has some drawbacks compared to PCB design as bigger cost and size. Fig. 6 shows a transverse view of the feeding network: Figure 4. : Picture of the antenna. III. RADIATING ELEMENT The radiating elements are printed patches on a thin dielectric plate with a 2.17 dielectric constant. The resultant circuit is placed over the top walls of every single horizontal waveguide (Fig. 1). The main characteristic of the patches used in this design is the circular polarization of the radiated field. To get this sort of polarization a modified circular patch has been used (Fig. 4). 325
3 Foam >6mm Radome Fiber glass.5mm -2 db from the main lobe level in the sum pattern. The difference radiation pattern must be over the sum pattern except in the pointing angular zone (6º). 3mm 6 7 mm Radiating Waveguides 5 6 mm Feeding Waveguide Figure 7. : Waveguides dimensions. The dimensions of the horizontal waveguides are selected to work with only one propagating mode. We must realize that with this configuration the horizontal waveguides are not totally closed because of the thickness of the substrate of the coupling microstrip lines; therefore each horizontal waveguide is fed with opposite phase respect to the contiguous one, in order to generate a virtual short-circuit that electromagnetically closes the waveguide; this can be done in a simple way by choosing a vertical waveguide whose half wavelength was equal to the distance between two consecutive horizontal waveguides ( gv /2 = 7 mm. ). Fig. 8 shows a picture of the manufactured feeding network where we can see the horizontal waveguides that distribute the power among the radiating elements through the microstrip coupling lines. The slots to couple power from every single vertical waveguide to the corresponding horizontal one are also shown. Figure 9. Monopulse radiation pattern. In the vertical plane a cosecant shape is needed for the radiation pattern (Fig. 1) Figure 1. Cosecant radiation pattern. The radiating patches must be fed in order to achieve the radiation pattern in the two main planes. The feeding amplitude will be controlled by the dimensions of the microstrip coupling lines in the horizontal plane (Fig. 11) and by the length of every slot and its distance to the centre of the vertical waveguide in the vertical plane (Fig. 12). Figure 8. :Feeding network V. RADIATION PATTERNS The design requires a monopulse radiation pattern in the horizontal plane (Fig. 9), with secondary lobes level under Figure 11. Microstrip coupling lines. 326
4 Figure 12. Slots in printed circuit. In the case of the cosecant radiation pattern (vertical array) the feeding phase must also be controlled. It hast to be different between consecutive horizontal waveguides. It is carried out by turning the patches around its feeding point an appropriate angle (in vertical direction). Furthermore, patches separation in a same horizontal waveguide has been selected to be 3 grad/4 to minimize both reflections between microstrip lines and grating lobes appearance; however, the same feeding phase in the radiating elements of the horizontal array is needed, so an additional patch rotation must be done (in horizontal direction). Fig. 13 shows the complete array where the visual effect of the patch rotation is observed. Figure 13. Patch array. VI. MONOPULSE NETWORK In order to get the monopulse functioning in the horizontal plane, a waveguide network has been designed (Fig. 14). Figure 14. Waveguide monopulse networkt. Figure 15. Measured output phases-(a)sum input, (b) diff. input.. The structure presents four outputs each for the corresponding subarray. The hybrid circuit together with the control of the waveguides length obtain the desired phase difference at the outputs depending on the excited input (Fig. 15). Using one of the inputs the same feed phase is obtained for both horizontal semi-arrays, which leads to a sum pattern. If the other input is excited, a phase difference of 18º will be obtained, resulting in a difference radiation pattern. REFERENCES [1] Manuel Sierra Castañer, Manuel Sierra Pérez, María Vera Isasa, José Luis Fernández Jambrina, Low-Cost Monopulse Radial Line Slot Antenna, IEEE Trans. on Antennas and Propagat., vol. 51, no2, pp , Feb. 23 [2] J. R. James, P.S. Hall, Handbook of Microstrip Antennas, IEE ELECROMAGNETIC WAVES SERIES 28, Peter Peregrinus Ltd., 1989 [3] J.L. Masa, M. Sierra Pérez, A New Feeding Structure For Radial Line Planar Match Antenna, Proceedings of Symposium on APS, pp , Monterey, California, USA, June 24 [4] K. Sakakibara, Y. Kimura, J. Hirokawa, M. Ando, N. Goto, A Two- Beam Slotted Leaky Waveguide Array for Mobile Reception of Dual- Polarization DBS, IEEE Trans. on Vehicular Technology., vol. 48, no1, pp. 1-7, Jan [5] C.G Montgomery, R. H. Dicke, E.M. Purcell, Principles of Microwave Circuits vol. 8, M.I.T. Radiation Laboratory Series, Boston Technical Publishers, Inc., pp , Ed.1964 [6] Y. Kimura, T. Hirano, J. Hirokawa, M. Ando, Alternating- Phase Fed Single-Layer Slotted Waveguide Arrays with Chokes Dispensing With Narrow Wall Contacts, IEE. Proc. Microw. Antennas Propag., vol. 148, no.5, Oct
5 易迪拓培训 专注于微波 射频 天线设计人才的培养网址 : 如何学习天线设计 天线设计理论晦涩高深, 让许多工程师望而却步, 然而实际工程或实际工作中在设计天线时却很少用到这些高深晦涩的理论 实际上, 我们只需要懂得最基本的天线和射频基础知识, 借助于 HFSS CST 软件或者测试仪器就可以设计出工作性能良好的各类天线 易迪拓培训 ( 专注于微波射频和天线设计人才的培养, 推出了一系列天线设计培训视频课程 我们的视频培训课程, 化繁为简, 直观易学, 可以帮助您快速学习掌握天线设计的真谛, 让天线设计不再难 HFSS 天线设计培训课程套装套装包含 6 门视频课程和 1 本图书, 课程从基础讲起, 内容由浅入深, 理论介绍和实际操作讲解相结合, 全面系统的讲解了 HFSS 天线设计的全过程 是国内最全面 最专业的 HFSS 天线设计课程, 可以帮助你快速学习掌握如何使用 HFSS 软件进行天线设计, 让天线设计不再难 课程网址 : CST 天线设计视频培训课程套装套装包含 5 门视频培训课程, 由经验丰富的专家授课, 旨在帮助您从零开始, 全面系统地学习掌握 CST 微波工作室的功能应用和使用 CST 微波工作室进行天线设计实际过程和具体操作 视频课程, 边操作边讲解, 直观易学 ; 购买套装同时赠送 3 个月在线答疑, 帮您解答学习中遇到的问题, 让您学习无忧 详情浏览 : MHz NFC/RFID 线圈天线设计培训课程套装套装包含 4 门视频培训课程, 培训将 13.56MHz 线圈天线设计原理和仿真设计实践相结合, 全面系统地讲解了 13.56MHz 线圈天线的工作原理 设计方法 设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体操作, 同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试 通过该套课程的学习, 可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹配电路的原理 设计和调试 详情浏览 :
6 ` 专注于微波 射频 天线设计人才的培养易迪拓培训网址 : 关于易迪拓培训 : 易迪拓培训 ( 由数名来自于研发第一线的资深工程师发起成立, 一直致力和专注于微波 射频 天线设计研发人才的培养 ; 后于 26 年整合合并微波 EDA 网 ( 现已发展成为国内最大的微波射频和天线设计人才培养基地, 成功推出多套微波射频以及天线设计经典培训课程和 ADS HFSS 等专业软件使用培训课程, 广受客户好评 ; 并先后与人民邮电出版社 电子工业出版社合作出版了多本专业图书, 帮助数万名工程师提升了专业技术能力 客户遍布中兴通讯 研通高频 埃威航电 国人通信等多家国内知名公司, 以及台湾工业技术研究院 永业科技 全一电子等多家台湾地区企业 我们的课程优势 : 成立于 24 年,1 多年丰富的行业经验 一直专注于微波射频和天线设计工程师的培养, 更了解该行业对人才的要求 视频课程 既能达到了现场培训的效果, 又能免除您舟车劳顿的辛苦, 学习工作两不误 经验丰富的一线资深工程师主讲, 结合实际工程案例, 直观 实用 易学 联系我们 : 易迪拓培训官网 : 微波 EDA 网 : 官方淘宝店 :
ANSYS 在航空航天器电磁兼容、电磁干扰分析中的应
易迪拓培训 专注于微波 射频 天线设计人才的培养网址 :http://www.edatop.com 射频和天线设计培训课程推荐 易迪拓培训 (www.edatop.com) 由数名来自于研发第一线的资深工程师发起成立, 致力并专注于微波 射频 天线设计研发人才的培养 ; 我们于 2006 年整合合并微波 EDA 网 (www.mweda.com), 现已发展成为国内最大的微波射频和天线设计人才培养基地,
PowerPoint Presentation
Sizing Handbook I 6 to 10 10w, w or 5w (3 to 4), w < Note: Port sizing guidelines are not inviolable rules true in all cases. For example, if meeting te eigt and widt requirements outlined result in a
pages.pdf
A Novel Dual-Band Microstrip Antenna for WLAN Application R.J. Lin, M. Ye School of Communication and Information Engineering, Shanghai University, Shanghai 200072, China Keywords: dual-band; microstrip
usbintr.PDF
USB(Universal Serial Bus) USB( ) USB, USB PCI PC USB (host) USB (device) USB 1 PC PC USB PC 2 Plug-and-Play PC Plug-and- Play USB Plug-and-Play 3 PC / USB (USB 2.0 480Mb/s) USB USB 1 1 USB Toplogy USB
,,: 65,A - 10A, 9, M1A1, 85 %: 148,35 72,1/ 6, 17 % (20 15 %) [1 ] ;1994,, 2 2,;2001, ; , ; ; F - 16 ;2 ;; F - 15 ; ;, :,,,, ,,,, M
2004 6 32 3 MODERN DEFENCE TECHNOLOGY J une 2004 Vol. 32 No. 3 Ξ,, (, 264001) :, :,,,,,,4 :; ;; : TN95911 + 7 ; TN957151 :A :10092086X(2004) 0320064205 Present situation, development and enlightenment
Ω Ω 75Ω
18 A A A 0.1 AWG10 0.001 0.7m 1 0.083 m 1 90 RC=/Kρ /P /F N+R RC K ρ / 2 1 1 ρ 2.54 P / 2 F N R 0 A 1. 2. 3. 4. 5. 1.0 0.1 0.05Ω 10 100Ω 75Ω 50Ω 12 100 0.1A 1.0V 1.0A 10V 1.0A 10V I 2 R 100V 50A 100V 1.
PCB a 2.5mm b 4.0mm A mm W/cm 3 PCB PCB 2.0mm 1.5mm PCB PCB
1. PCB PCB PCB PCB EMC EMI 2. PCB PCB PCB 3. via Blind via Buried via Through via Component hole Stand off 4. / TS S0902010001 TS SOE0199001 TS SOE0199002 IEC60194 > > > > Printed Circuit
PCB Layout using ADS November 29, 2005 PCB Layout using ADS Dr. B. Frank Department of Electrical and Computer Engineering Queen's University Slide 1
Dr. B. Frank Department of Electrical and Computer Engineering Queen's University Slide 1 Motivation Need circuit more reliable than breadboard? Working at RF/microwave frequencies? Printed circuit board
RFID Transponder operating at MHz
RF-ID Transponder operating at 13.56 MHz Radio Frequency Identification Systems (RF-ID) are widely used and allow advanced solutions for a variety of applications in the area of authentication, ticketing,
Directional Couplers.doc
Directional ouplers [] THE QUADRATURE (90 ) HYBRID The Hybrid coupler is often made of microstrip or stripline as shown in Figure. The microstrip form is also pictured in Figure 2. These couplers are 3
Presentation - Advanced Planar Antenna Designs for Wireless Devices
2003-11 Ansoft Workshop Advanced Planar Antenna Designs for Wireless Devices 翁金輅 (Kin-Lu Wong) 國立中山大學電機系 Dept. of Electrical Engineering National Sun Yat-Sen University Kaohsiung 80424, Taiwan E-mail:
2014 年 8 月 第4 期 Aug 2014 No 4 城 市 勘 测 Urban Geotechnical Investigation Surveying 文章编号 1672 8262 2014 04 91 04 中图分类号 P228 文献标识码 B GNSS 接 收 机 天 线 相 位 中 心 改 正 的 影 响 分 析 1倡 2 3 2 张碧波 李江卫 熊佑祥 孙伟 1畅天门市勘察测绘研究院
Yageo Chip Antenna Sum V doc
1 Yageo - Chip Antenna Version :Step. 2010 Features : Embedded antenna - small antennas with moderate gain and efficiency performance Ultra compact - various sizes (2012, 3012, 3216, 4018, 5010, 5320,
CAM350 CAM350 CAM350 CAM350 Export Gerber 274D 274X Fire9000 Barco DPF NC Drill Mill Excellon Sieb Meyer IPC D 350 IPC D A Modification CAM/Ger
CAM350 CAM350 CAM350 PCB CAM CAM350 CAM350 Fabrication Modules C350-750 C350-460 C350-260 C350-110 C350-050 Import X X X X X Information X X X X X Export X X X X Opt. Modification X X X X Opt. Optimization
TB215.doc
2 1 C5 10uF +28 V C4 R3 3.9k C8 R5 1k C18 R10 3.9k C23 10uF D1 5.6V D2 5.6V C11 10uF D3 5.6V L6 B P1 10k L3 P2 10k L5 P3 10k L7 B R2 9.1k R4 C6 SP201 C7 T1 R6 9.1k C9 R8 C12 L4 C13 T2 C16 T3 T4a R11 9.1k
, V m 3,, I p R 1 = ( I p + I 1 ) / R 0 I p, R 1 / 4, R m V d, 1. 1 Doherty MRF6P21190 LDMOS,,, Doherty B Freescale M6P21190 ADS 2 Doherty 3 Doherty,
TN702 A 1009-2552(2007) 03-0045 - 06 Doherty, (, 430074) Doherty WCDMA ADS, 35 (45. 4dBm), ACLR - 55dBc WCDMA ; ; Doherty ; ; PAE Design of linearized Doherty power amplifier GENG Zhi, GUO Wei (Department
A stair-shaped slot antenna for the triple-band WLAN applications
of the constructed prototype at 5800 MHz (center frequency of the 5.8-GHz band), and similar directional radiation patterns are also obtained. Figure 5 shows the measured peak antenna gain for operating
Microsoft PowerPoint - Pres_ansoft_elettronica.ppt
1,5-40 GHz Meander Spiral Antenna Simulation and Design Presenter: Fabrizio Trotta Ansoft Corporation Application Introduction Design Specification Antenna Topology Numerical Method Approach Design Methodology
3.1.doc
SMEMA FIDUCIAL MARK STANDARD Standard 3.1 1.0 SCOPE: This SMEMA standard is for fiducial marks. It was developed to facilitate the accurate placement of components on printed circuit boards. SMEMA standards
A stair-shaped slot antenna for the triple-band WLAN applications
of the constructed prototype at 5800 MHz (center frequency of the 5.8-GHz band), and similar directional radiation patterns are also obtained. Figure 5 shows the measured peak antenna gain for operating
DATASHEET SEARCH SITE |
2 18 GHz Ultra Low Noise Pseudomorphic HEMT Technical Data ATF-3677 Features PHEMT Technology Ultra-Low Noise Figure:.5 db Typical at 12 GHz.3 db Typical at 4 GHz High Associated Gain: 12 db Typical at
BranchLine Coupler - Quadrature
of 3 () Branchine oupler - Quadrature Zo Zo λ/4 90 NOTE This device is sensitive to load mismatches. () ange oupler (Quadrature) Output oupled φ90 Broadband coupling 3dB 0dB Quadrature Input λ/4 Directive
3152 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 52, NO. 11, NOVEMBER 2004 (c) Fig. 2. y z plane radiation patterns ofoma computed using FDTD
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 52, NO. 11, NOVEMBER 2004 3151 An Omnidirectional Planar Microstrip Antenna Randy Bancroft and Blaine Bateman Abstract A new omnidirectional printed
Design System Designer RF Analog - Designer Ptolemy Simulator System level - Designer E D A - s Modelsim RTL EDGE GSM WLAN Numeric Ptolemy Timed NC-Ve
Content Reprint Advanced Design System for Designer E D A 21 GPRS WCDMA TDS-CDMA IEEE 802.11a IEEE 802.11b IEEE 802.11g PDA CICeNews-23 CIC Agilent Advanced 1 Design System Designer RF Analog - Designer
Balun Design
1 of 6 Balun Design In the design of mixers, push-pull amplifiers, baluns are used to link a symmetrical (balanced) circuit to a asymmetrical (unbalanced) circuit. Baluns are designed to have a precise
Hybrid of Monopole and Dipole Antennas for Concurrent 2.4- and 5-GHz WLAN Access Point
Hybrid of Monopole and Dipole Antennas for Concurrent 2.4- and 5-GHz WLAN Access Point Saou-Wen Su 1, Jui-Hung Chou 2 Network Access Strategic Business Unit Lite-On Technology Corp., No. 9, Chien I Road,
DSCHA Jun 06
CHA3666 RoHS COMPLIANT 6-17GHz Low Noise Amplifier GaAs Monolithic Microwave IC Description The CHA3666 is a two-stage self biased wide band monolithic low noise amplifier. D1 D2 The circuit is manufactured
Microsoft Word - AN95007.doc
Understanding VCO Concepts OSCILLATOR FUNDAMENTALS An oscillator circuit can be modeled as shown in Figure 1 as the combination of an amplifier with gain A (jω) and a feedback network β (jω), having frequency-dependent
amp_b3.PDF
San Jose State University Department of Electrical Engineering ELECTRICAL ENGINEERING SENIOR PROJECT Microwave Amplifier Design (part 3) by Steve Garcia Jaime Cordoba Inderpreet Obhi December 15, 2003
Novel 2-D Photonic Bandgap Structure For Microstrip Lines - IEEE Microwa ve and Guided Wave Letters
IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 8, NO. 2, FEBRUARY 1998 69 Novel 2-D Photonic Bandgap Structure for Microstrip Lines Vesna Radisic, Student Member, IEEE, Yongxi Qian, Member, IEEE, Roberto
Balun Design
1 of 6 Balun Design In the design of mixers, push-pull amplifiers, baluns are used to link a symmetrical (balanced) circuit to a asymmetrical (unbalanced) circuit. Baluns are designed to have a precise
Combline Cavity Filter Design in HFSS
Presented by Jim Reed of Optimal Designs 3 Pole Cavity Combline Filter to be used in Demonstration for Filter Tuning Simulated / Measured Data for Real World Example, Compliments of Sierra Microwave Technologies
Special Materials in CST STUDIO SUITE 2012
Modelling Thin Materials in CST STUDIO SUITE 2012 Lossy Metal Ohmic Sheets Tabulated Surface Impedance Thin Panel Various Material Types Material types Available in which solvers? * FIT TLM *Apart from
untitled
Compact Metamaterial High Isolation MIMO Antenna Subsystem Cheng-Jung Lee, Maha Achour, and Ajay Gummalla Rayspan Corporation, San Diego, CA, USA [email protected] Introduction The use of multiple antennas
( ) T arget R ecogn ition),,,,,,, ( IFF, Iden tification F riend o r Foe),,,,,,, ( N CTR, N on2 Cooperative T arget R ecogn ition), (
V o l. 33, N o. 11 N ovem ber, 2008 F ire Contro l and Comm and Contro l 33 11 2008 11 : 100220640 (2008) 1120005203 1, 1, 1, 2, 1 (11, 100072, 21, 100072) :,,,, g :,,, : TN 97111 : A The Iden tif ication
A Miniature GPS Planar Chip Antenna Integrated with Low Noise Amplifier
A Miniature GPS Planar Chip Antenna Integrated with Low Noise Amplifier 1 Chao-Wei Wang*, Yen-Ming Chen, Chang-Fa Yang Department of Electrical Engineering, National Taiwan University of Science and Technology
untitled
( RF Application list Application Wireless mouse Wireless Keyboard Wireless joystick FRS (Family Radio Service) Remote control Car alarm Home security Cordless phone Video sender Wireless earphone microphone
Microsoft PowerPoint - seminaari 26_5_04_antenniteknologiat.ppt
Antenna technologies Antenna technologies Current status trends Outlook to different antenna solutions, examples Summary, challenges for the future Current status trends dual-band GSM tri-band GSM GPS
HFSS Antenna Design Kit
Ansoft HFSS Antenna Design Kit Arien Sligar 2007 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Overview of HFSS Antenna Design Kit GUI-based wizard tool Automates geometry creation, solution
HFSS Antenna Design Kit
Ansoft HFSS Antenna Design Kit Arien Sligar 2007 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Overview of HFSS Antenna Design Kit GUI-based wizard tool Automates geometry creation, solution
APPLI002.DOC
SIEGET 25 Silicon Bipolar- Dielectric Resonator Oscillator (DRO) at 10 GHz Oscillators represent the basic microwave energy source for all microwave systems such as radar, communications and navigation.
Integrated microstrip and rectangular waveguide in planar form - IEEE Microwave and Wireless Components Letters [see also IEEE Microwave and Guided Wave Letters]
68 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 11, NO. 2, FEBRUARY 2001 Integrated Microstrip and Rectangular Waveguide in Planar Form Dominic Deslandes and Ke Wu, Fellow, IEEE Abstract Usually
Cross-slot-coupled microstrip antenna and dielectric resonator antenna for circular polarization - Antennas and Propagation, IEEE Transactions on
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 4, APRIL 1999 605 Cross-Slot-Coupled Microstrip Antenna and Dielectric Resonator Antenna for Circular Polarization Chih-Yu Huang, Member, IEEE,
Full Band Waveguide-to-Microstrip Probe Transitions - Microwave Symposium Digest, 1999 IEEE MTT-S International
THlB-5 Full Band Waveguide-to-Microstrip Probe Transitions Yoke-Choy Leong' and Sander Weinreb2 'Department of Electrical and Computer Engineering University of Massachusetts, Amherst, MA 01003 Jet Propulsion
Triple-band triangular-shaped meander monopole antenna with two coupled lines
TRIPLE-BAND TRIANGULAR-SHAPED MEANDER MONOPOLE ANTENNA WITH TWO COUPLED LINES Horng-Dean Chen Department of Electronic Engineering Cheng-Shiu Institute of Technology Kaohsiung, Taiwan 833, R.O.C. Received
Filter Design in Thirty Seconds
Application Report SLOA093 December 2001 Filter Design in Thirty Seconds Bruce Carter High Performance Analog ABSTRACT Need a filter fast? No theory, very little math just working filter designs, and in
lumprlc.fm
Ansoft HFSS Engineering Note Lumped RLC Elements in HFSS Version 8 In Ansoft s High Frequency Structure Simulator (HFSS), a specified impedance boundary condition has always referred to field values because
A compact dual-band dual-polarized patch antenna for 900/1800-MHz cellul ar systems - Antennas and Propagation, IEEE Transactions on
1936 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 51, NO. 8, AUGUST 2003 A Compact Dual-Band Dual-Polarized Patch Antenna for 900/1800-MHz Cellular Systems Tzung-Wern Chiou and Kin-Lu Wong, Senior
CSTHandOut
CST DESIGN STUDIO TM, CST PARTICLE STUDIO TM - 1 - Linking MATLAB and CST STUDIO USER NOTE This user note is centered on the use of CST MICROWAVE STUDIO (CST MWS) with MATLAB. MATLAB is a scientific computing
AWT6166_Rev_0.3.PMD
FEATURES Integrated Vreg (regulated supply) Harmonic Performance 25 High Efficiency (PAE) at Pmax: GSM850, 54% GSM900, 56% DCS, 53% PCS, 51% +35 GSM850/900 Output Power at 3.5 V +33 DCS/PCS Output Power
844 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 17, NO. 12, DECEMBER 2007 Fig. 1. Proposed broadband SIW planar balun. Fig. 2. Electrical fie
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 17, NO. 12, DECEMBER 2007 843 A Broadband Substrate Integrated Waveguide (SIW) Planar Balun Zhen-Yu Zhang and Ke Wu, Fellow, IEEE Abstract A broadband
書名:
8 I/O Circuit Package 8-2 VLSI / 8.1 I/O Circuit Schematic entry Layout I/O Circuit I/O IC [33] IC µm IC mm Bonding wire Bonding wire µm IC 8-1 Dual In line Package (DIP) Die Bonding Pad Bonding Wire Bonding
FSA W Low Voltage Dual DPDT Analog Switch
0.4: Low Voltage Dual DPDT Analog Switch General Description The FSA2467 is a Dual Double Pole Double Throw (DPDT) analog switch. The FSA2467 operates from a single 1.65V to 4.3V supply. The FSA2467 features
第1讲-电磁兼容导论.ppt
Advanced EMC +62784709 13601024327 [email protected] 1 1 1.1 1.2 1.3 1.4 1.5 1.6 EMC 2 1 166.111.63.4:1021 emc 303 3 1975 7 14 25 26 50 700 21 4 0 400GHz EMC 1994 25 5 6 1.1 Electromagnetic Compatibility
Microsoft PowerPoint - Unit Cell.ppt
Simulating Unit Cell Problems PML and Master Slave Boundary Conditions Array Functionality in HFSS Ansoft High Frequency Structure Simulator v10: Advanced Notes Simulating Unit Cell Problems Simulating
Microsoft Word - Differential Circuit Comparison App note_B.doc
Sisonic and ECM in Circuits Date: Author: 20.Jan.2005 Bill Ryan Benefits of Circuits amplifiers are desirable to use in audio applications, especially those where signal levels are very low such as those
Microsoft Word - IJMOT-VS - Patch Antenna.doc
115 Suspended Microstrip Patch Antenna for Wireless Applications T.Shanmuganantham, Dr. S. Raghavan Department of Electronics & Communication Engineering National Institute of Technology, Thiruchirappali-620015
No Slide Title
Workshop 5: Basic Transient Sources and Circuit 16.0 Release ANSYS Maxwell 3D 2015 1 2015 ANSYS, Inc. March 19, 2015 Transient Setup About Workshop This workshop discusses basic setup details of Magnetic
untitled
ICSP006 Proceedings Analysis and Simulation of UHF RFID System Jin Li, Cheng Tao Modern Telecommunication Institute, Beijing Jiaotong University, Beijing 100044, P. R. China Email: [email protected] Abstract
4.2 DC Bias
1 of Microwave Bipolar/FET Bias circuits F/Microwave transistors/fet s require some form of circuit to set the correct bias conditions for a particular F performance. There are two main types used an active
50 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 16, NO. 1, JANUARY 2006 Fig. 2. Geometry of the three-section PSL power divider. Fig. 5. Schem
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 16, NO. 1, JANUARY 2006 49 A Wideband Compact Parallel-Strip 180 Wilkinson Power Divider for Push Pull Circuitries L. Chiu, Student Member, IEEE, T.
