96 32 VLBI (IAU International Astronomical Union) 1976 (1) IAU 5 (2) IAU 5 (3) IAU A4 (4) IAU B6 (5) IAU

Size: px
Start display at page:

Download "96 32 VLBI (IAU International Astronomical Union) 1976 (1) IAU 5 (2) IAU 5 (3) IAU A4 (4) IAU B6 (5) IAU"

Transcription

1 32 1 Vol. 32, No PROGRESS IN ASTRONOMY Jan., 2014 doi: /j.issn ( ) (IAU) N Brumberg-Kopeikin Damour-Soffel-Xu (1PN) IAU IAU IAU Brumberg-Kopeikin Damour-Soffel-Xu IAU2000 IAU P129, P132 A [1, 2] [3] ns [4] [5] [6 8] VLBI VLBI 10 µs VLBI [9] Gaia [10] ( ) wbhan@shao.ac.cn

2 96 32 VLBI (IAU International Astronomical Union) 1976 (1) IAU 5 (2) IAU 5 (3) IAU A4 (4) IAU B6 (5) IAU B B1.9 (6) IAU (Reference systems) IAU2000 (Reference frames ) N ( ) N Blanchet Damour 1989

3 1 97 B-D N N N Brumberg Kopeikin (BK ) [11 13] Damour-Soffel-Xu (DSX ) [14 17] 1PN IAU2000 [18] 2 IAU Brumberg-Kopeikin 4 DSX B-D 5 IAU2000 IAU IAU Pound-Rebka [19] Shapiro [20] [21] VLBI GPS 1976 IAU 10 IAU1991 ( ) [22] 2U(t, x) g 00 = O(4), c 2 g 0i = O(3), (1) ( ) 2U(t, x) g ij = δ ij O(4), c 2 U (t, x) U 2 U = 4πGρ. (2) IAU1991 (1) ( ) IAU 1991

4 98 32 N (1) U SI SI c = m s 1 T CB T CG T CB T CG = 1 c 2 [ t t 0 ( ) ] v 2 E 2 + U ext(x E ) dt + reυ i E i + O(4), (3) x i E υi E ri E = xi x i E xi BCRS U ext (x E ) (TT, ) (TAI ) s TAI ( JD= ) TT T CG T T T T = T AI s. (4) T CG T T = L G (JD ) , (5) JD TAI TDB ( ) T CB T DB = L B (JD ) (6) T CG T CB (3) ( ) T CB T CG = L C (JD ) r i Eυ i E/c 2 + P, (7) P [23] P = sin ( T ) sin ( T ) sin ( T ) sin ( T + 25 ) sin ( T ) +, T J [24] L B, L C L G IAU 1991

5 1 99 IAU1991 IAU1991 1PN B-K DSX IAU 3 Brumberg-Kopeikin Brumberg Kopeikin [11 13] (BRS) (GRS) BRS ( ) GRS GRS BRS 100 GRS Brumberg Kopeikin (1) (2) (3) BRS GRS BRS GRS Brumberg Kopeikin Brumberg Kopeikin η µν γ αβ µν = 16πG c 4 ( g)(t αβ + t αβ ) + χ αβµν µν, (8) (8) γ αβ χ αβµν γ αβ η αβ gg αβ, χ αβµν γ αβ γ µν γ αµ γ βν. (9) BRS GRS Brumberg Kopeikin GRS ĝ αβ (u, w)

6 [11] G 00 (T, X) = 1 + c 2(2) G 00 (T, X) + c 4(4) G 00 (T, X) + O(5), G 0i (T, X) = c 3(3) G 0i (T, X) + O(5), G ij (T, X) = δ ij c 2(2) G ij (T, X) + O(4), (2) G 00 (T, X) = 2ÛE(T, X) + 2Q (E) i X i + 3Q (E) ij X i X j + 5Q (E) ijk Xi X j X k + O(R 4 ), (2) (2) G ij (T, X) = δ ij G 00 (T, X), (3) G 0i (T, X) = 4Û i E (T, X) 4ɛ ijkc (E) jm Xk X m + O(R 3 ), (4) G 00 (T, X) = 2Û 2 E (T, X) 2ÛE(T, X)Q (E) i O(ÛER 3 ), Û E (T, X) = G E ÛE i (T, X) = G ρ (T, X ) X X d3 X + O(2), ν i (T, X) = dxi dt = ɛ ijk ˆω j E Xk. E ρ (T, X ) X X νi (T, X )d 3 X, ρ (T, X) = ρ(t, X)u 0 (T, X) G, X i 6ÛE(T, X)Q (E) ij X i X j + (10) (11) ÛE, ÛE i Brumberg Kopeikin Û E (T, X) = G ˆM E R + G 2R 3 Îij E ( δ ij + 3 R 2 Xi X j L 3 E ) + O(α E R ), 3 (12) ÛE i (T, X) = Gɛ ijk ˆω j X m EÎkm E R + O(α L 3 E 3 E R ), 3 ˆM E Îij E B-K GRS Q E i, Q E ij, Q E ijk, CE j, T (8) Q E i (Q E i = 0) B-K GRS [11] BRS

7 1 101 g 00 (t, x) = 1 + c 2(2) g 00 (t, x) + c 4(4) g 00 (t, x) + O(5), g 0i (t, x) = c 3(3) g 0i (t, x) + O(5), g ij (t, x) = δ ij c 2(2) g ij (t, x) + O(4), (2) g 00 (t, x) = 2U E (t, x), (2) g ij (t, x) = δ ij (2) g 00 (t, x), (3) g 0i (t, x) = 4UE i (t, x), (4) g 00 (t, x) = 2UE 2(t, x) + 2W E(t, x), (13) U(t, x) = U E (t, x) + Ū(t, x), U i (t, x) = UE i (t, x) + Ū i (t, x), W (t, x) = W E (t, x) + W (t, x), W E (t, x) = 3 2 υ2 EU E (t, x) + 3υEU i E(t, i x)g 1 2 χ E,00(t, x), (14) χ E (t, x) = G E ρ (t, x ) x x d 3 x, ρ (t, x) = ρ(t, x)u 0 (t, x) g, Ū(t, x) = A E W (t, x) = 3 2 GM A, Ū i GM A (t, x) = υa i, r A r A A E GM A υa 2 r A A E B A A E E ρ (t, x ) x x Ū(t, x )d 3 x G 2 M A M B + 1 GM A r A,00. r A r AB 2 A E U E, U i E, W E, χ E B-K BRS GRS BRS GRS g µν (t, x) =c 2 G 00 (T, X) T x µ T x ν + cg 0i(T, X) T x µ X i x ν + (14) (15) cg 0i (T, X) Xi T x µ x + G ij(t, X) Xi X j. (16) ν x µ x ν

8 BRS GRS T = t c 2 [S(t) + υe krk ] + c 4 [B(t) 1 2 υ2 EυEr k k + B k (t)r k + B km (t)r k r m ]+ O(c 4 r 3 ) + O(5), X i = r i + c 2 {[ 1 2 υi EυE k + F ik (t) + D ik (t)]r k + D ikm (t)r k r m } + O(4). (17) S, B, B k, B ij, F ij, D ik, D ikm GRS Q E ij, Q E ijm, Cij, E. [11, 12] B-K GRS BRS GRS Brumberg Kopeikin B-K GRS BRS 4 Damour-Soffel-Xu Damour Soffel Xu PN [14 17] DSX B-K 2000 IAU DSX [25] 4.1 N (ct, x i ) N N (ct A, XA a )(A = 1, 2,, N) ( A) N + 1 ( ) g 00 g ij = δ ij + O(4), G 00 G ab = δ ab + O(4). DSX DSX DSX PN (18) x µ (X α ) = z µ (T ) + e µ a(t )X a + ξ µ (X α ), (19) x µ X α z e ξ X a X a

9 1 103 e µ a, ξ µ [14] (2.36) w w i ( w µ ) γ ij γ ij = δ ij + O(4) 1PN g 00 = exp( 2w/c 2 ) + O(6), g 0i = 4w i /c 3 + O(5), g 00 = δ ij exp(2w/c 2 ) + O(4). 1PN (20) w µ = 4πGσ µ + O(4, 2), (21) η µν µ ν w µ σ µ (σ, σ i ) σ (T 00 + T ii )/c 2, σ i T 0i /c. (22) B-K DSX w µ w N µ + w N µ (21) wµ N ( ) w µ N ( ) DSX N ( ) w µ N = 0 w N µ 4.2 N A A X α A G 00 = exp( 2W A /c 2 ) + O(6), G 0i = 4Wa A /c 3 + O(5), G 00 = δ ab exp(2w A /c 2 ) + O(4). (21) W A α, (23) X W A α = 4πGΣ A α + O(4, 2), (24) Σ A α (Σ A, Σ A a ) (24) W α +A ( A )

10 W α A ( ) ( A ) 0 W α (X) (W, W a ) w µ (w, w i ) w = (1 + 2V 2 /c 2 )W + 4c 2 V a W a c2 ln(a 0 0A 0 0 A 0 aa 0 a) + O(4), (25) w i = υ i W + RaW i a c3 ln(a 0 0A i 0 A 0 aa i a) + O(2), V a Raυ i i R a(t i ) A µ α = x µ / X α w µ (x) = A µα (T )W α (X) + B µ (X). (26) A W α +A w A µ A ( A ) w A µ (x) = A A µα(t )W +A α (X) + O(4, 2), (27) wµ B (x) = A A µα(t ) W α A (X) + Bµ A (X) + O(4, 2). (28) B A σ A µ Σ A α σµ A (x) = X x AA µα(t )Σ A α(x) + O(4, 2). (29) BD B( A) ( ) 4.3 A x A U(x, t) = GM ( x z A GMi i x z A ( ) l l! L ( GML x z A ) + 1 ( ) 2! GMij ij + + x z A ) +, (30) M L M L (t) = d 3 X ˆX L ρ A (X, t). (31) A

11 1 105 Kip Thorne [26] ( (31)) ( ) (30) (31) (30) (31) Blanchet Damour 1989 [27] DSX [14] BD A X α (W, W a ) ( ) l W (T, X) = G L [R 1 M L (T ± R/c)] + 1 l! c 2 T (Λ λ) + O(4), (32) l 0 ( ) l W a (T, X) = G (ṀaL 1 L 1 R 1 + l l! l + 1 )ɛ abcs cl 1 bl 1 R 1 + l a(λ λ) + O(2), (33) λ(t, X) ( ) l 2l + 1 Λ 4G (l + 1)! 2l + 3 P L L R 1, P L (T ) l 0 A d 3 X ˆX bl Σ b (T, X). (34) M L (T ) d 3 X ˆX L 1 Σ + A 2(2l + 3)c N 4(2l + 1) 2 L P (l + 1)(2l + 3)c 2 L (l 0), (35) S L (T ) d 3 Xɛ ab<c l ˆXL 1>a Σ b (l 1), N L d X X 2 ˆXL Σ. (36) A ( (32) ) N L, P L ( (35)) ( (32)) ( (35)) λ = Λ DSX IAU ( (33)) ( (36)) A

12 ( [28 30]) ( [31]) Hartmann 1994 [32] 1 PN Tao [33] BD BD DSX G A (T ) W A (T, 0) + O(4), G A L (T ) [ <L 1ĒA al> (T, X)] X=0 + O(4), l 1 (37) HL A(T ) [ B <L 1 al> A (T, X)] X=0 + O(2), l 1 G A L l = 0 GA G A (37) λ(t, 0) = O(2) DSX H L A GA L W α A 4 Ē a a W + c W 2 T a, (38) B ab 4( a Wb b Wa ). W A 1 (T, X) = l! { ˆX L G A L(T ) + X 2 ˆXL GA L (T )/[2(2l + 3)c 2 ]}+ l 0 W A a (T, X) = l 0 c 2 T ΛA + O(4), 1 (l + 1)! [ 2l + 1 2l + 3 ˆX al Ġ A L(T ) ɛ abc ˆX bl 1 H A cl 1(T )] a ΛA /4 + O(2), (39) Λ A Λ A (T, 0) = O(2) ΛA X (T, 0) = O(2) DSX BD 1PN (STF) DSX N BD 1PN W α DSX N 1PN Brumberg-Kopeikin IAU2000 DSX

13 IAU 2000 IAU IAU IAU1991 (1) N Einstein-Infeld-Hoffmann [34] (1) Einstein-Infeld-Hoffmann IAU IAU IAU (B1.3 -B1.5 B1.9) N Brumberg-Kopeikin [11 13, 35] Damour-Soffel-Xu [14 17] 5.1 BCRS g 00 = 1 + 2w c 2w2 + O(5), 2 c 4 g 0i = 4 c 3 wi + O(5), ( g ij = δ ij 1 + 2w ) + O(4). c 2 (40) w, w i ( 1 ) 2 c 2 t w = 4πGσ + O(4), 2 w i = 4πGσ i + O(2). (41) σ, σ i T µν σ = 1 c 2 (T 00 + T ii ), σ i = 1 c T 0i. (42) ( ) w(t, x) = G d 3 x σ(t, x ) x x + G 2 2c 2 t 2 w i (t, x) = G d 3 x σi (t, x ). x x d 3 x σ(t, x ) x x, (43)

14 (41) N w(t, x) = N w A (t, x), w i (t, x) = A=1 N wa(t, i x). (44) ( ) A A (t, x) = GM A r A w = w 0 + /c 2 = A w i G(r A S A ) i = 2r 3 A A { 2υ 2 A + B A GM A r A + A A=1 + GM A r A υ i A, A (t, x), GM B + 1 [ ] } (r k A υa k )2 + r k r BA 2 r Aa k A 2 A + 2Gυk A (r A S A ) k ra 3 r BA A B a A 5.2 GCRS BCRS IAU2000 GCRS X a BCRS x i [11, 36] GCRS BCRS G 00 = 1 + 2W c 2W 2 + O(5), 2 c 4 G 0a = 4 c W a + O(5), 3 ( G ab = δ ab 1 + 2W ) + O(4). c 2 W α = (W, W a ) W α E (45), (46) (47) W α (T, X) = W α E (T, X) + W α ext(t, X). (48) (43) (T, X) W α ext W α ext = W α tidal + W α iner IAU2000 B-D [14, 27]

15 1 109 ( ( 1) l 1 W E = G M L L l! X + 1 ) 2c M 2 L L X + 4 c Λ + O(4), 2 l=0 ( WE a ( 1) l 1 = G Ṁ al 1 L 1 l! X + 1 ) l + 1 ɛ 1 abcs cl 1 bl 1 Λ,a + O(2), (49) X l=1 ( 1) l 2l + 1 Λ = G (l + 1)! 2l + 3 P 1 L L X, P L = Σ a ˆXaL d 3 X, l=0 M, S B-D Λ W E { W E = GM l ( ) l E RE 1 + P lm(cos θ)[c lm(t, X ) cos mφ+ X X l=2 m=0 } S lm (T, X ) sin mφ] V + O(4), (50) Clm(T, E X ) = Clm(T E ) 1 X 2 d 2 2(2l 1) c 2 dt 2 CE lm(t ), Slm(T, E X ) = Slm(T E 1 X 2 d 2 ) 2(2l 1) c 2 dt 2 SE lm(t ). (51) Clm E, SE lm GCRS Tao 1998 [33] WE a (49) Soffel [18] ṀaL 1 (Lense-Thirring ) WE(T, a X) = G (X S E ) a, (52) 2 X 3 S E S a W a E - W α ext X a X a W iner = Q a X a, W a iner = c 2 ɛ abc Ω b inerx c /4. (53)

16 Q a [ Q a = δ ai x w ] ext(x i E ) a i E, (54) w µ ext(t, x) = A E wµ A (t, x) Q a [37] [14] (6.30a) Winer a ( )GCRS Ω iner = Ω GP + Ω LTP + Ω TP, (55) Lense-Thirring Thomas Ω GP = 3 2c υ 2 E w ext (x E ), Ω LTP = 2 c w ext(x 2 E ), (56) Ω TP = 1 2c υ 2 E Q. 2 Thomas Lense-Thirring B-K GRS ( ) DSX IAU GCRS Damour 1992 [15] Klioner Voinov 1993 [35] G tidal ab 5.3 W tidal l=2 = 1 2 Gtidal ab X a X b, (57) [17] [38] GCRS BCRS GCRS BCRS x µ (T, X a ) X α (t, x i ) DSX x µ (T, X a ) [14 17] B-K [11 13, 35] x µ X α

17 1 111 T = t 1 [ ] A(t) + υ i c 2 E re i 1 [ + B(t) + B i (t)r c 4 E i + B ij (t)rer i j E + C(t, x)] + O(5), X a = δ ai {re i + 1 [ 1 c 2 2 υi Eυ j E rj E + w E(x E )re i + rea i j E rj E 1 ]} 2 ai ErE 2 + O(4), (58) Ȧ(t) = 1 2 υ2 E + w ext (x E ), Ḃ(t) = 1 8 υ4 E 3 2 υ2 Ew ext (x E ) + 4υEw i ext(x i E ) w2 ext(x E ), B i (t) = 1 2 υ2 EυE i + 4wext(x i E ) 3υEw i ext (x E ), (59) B ij (t) = υeδ i aj Q a + 2 x j wi ext(x E ) υ i E x w ext(x j E ) δij ẇ ext (x E ), C(t, x) = 1 10 r2 E(ȧ i ErE) i. GCRS BCRS x µ (X α ) = z µ (T ) + e µ a(t )X a + ξ µ (X α ), (60) z µ (T ) BCRS DSX e 0 0(T ) = c 1 ż 0 = 1 + O(2), e i 0(T ) = c 1 ż i, e 0 a(t ) = c 1 e i aż i + O(3), e 0 0(T )e i a(t ) = (1 + v 2 /2c 2 )(δ ij + υ i υ j /2c 2 )R i a(t ) + O(4), ξ 0 (X α ) = O(3), ξ i (X α ) = c 2 e i a(t )[A a X 2 /2 X a (A X)] + O(4), A a = R i a z i R i a(t ) BCRS w(t, x) w = w 0 + w L /c 2. (61) (45) w L l 1 TCB dτ dtcb = 1 1 c 2 (w 0 + w L + υ 2 /2) + 1 c 4 ( υ4 /8 3υ 2 /2w 0 + 4υ i w i + w 2 0/2 + ), (62)

18 υ i BCRS TCB TCG { t [ ] } [ υ T CB T CG =c 2 2 E 2 + w 0,ext(x E ) dt + υer i E i + c 4 t 0 c 4 { t t 0 3w 0,ext (x E ) + υ2 E 2 [ υ4 E υ2 Ew 0,ext (x E ) + 4υ i Ew i 0,ext(x E ) w2 0,ext(x E ) ] ] υ i Er i E } dt. IAU1991 T T T CG T CB 3 d T T/d T CG = 1 L G, < T CG/ T CB >= 1 L C, < T T / T CB >= 1 L B, <> 1 [18] (63) (64) 1 L C, L G, L B [18] IAU 1991 IAU 2000 IAU 2000 Constant /s s 1 /s s 1 /ms a 1 L C L G L B L C + L G L C L G BCRS GCRS W E (T, X) = w E (t, x)(1 + 2υE/c 2 2 ) 4 c 2 υi EwE(t, i x) + O(4), W a E (T, X) = δa i [w i E (t, x) υi E w E(t, x)] + O(2), w E (t, x) = W E (T, X)(1 + 2υE/c 2 2 ) + 4 c δ iaυew i E(T, a X) + O(4), 2 we i (t, x) = δi awe a(t, X) + υi E W E(T, X) + O(2). (65) 6 IAU2000 IAU2000 IAU 10 IAU

19 1 113 Gaia IAU2000 Klioner 2003 Gaia (GREM) [38] IAU2000 β, γ de Felice RAMOND [39 41] master RAMOND IAU BCRS RAMOND 1 BCRS 0.1 (VLBI) IAU2000 [42, 43] IAU2000 IAU2000 B-K DSX (PPN) Will BCRS 10 [44] JPL DE 2000 Klioner Soffel [45] 2004 Kopeikin Vlasov [46] IAU DSX 1PN BCRS (Klioner 0.1 [38] ) 0.1 GCRS 1PN 1 2PN GCRS Xu DSX 2PN [47] DSX IAU2000 B-D B-D Tao Huang DSX B-D [33] Klioner [48 50] DSX IAU BCRS GCRS ( ) [51, 52] IAU BCRS

20 GCRS DSX IAU [53] ( ) BCRS GCRS ( ) [54] Kopeikin [55, 56] Turyshev Toth N [57] DSX (1) (2) (3) IAU (, +, +, +) 2. c G 3. α β γ µ ν λ a b c i j k L i 1 i 2... i l, T L T i1i 2...i l, L 1 i 1 i 2... i l 1, T L 1 T i1i 2...i l 1 ; 6. Einstein S L T L i 1i 2...i l S i1i 2...i l T i1i 2...i l 7. ( ) 8. (STF) ˆT L T <L> STF(T L )

21 T (ij) (T ij + T ji )/2, S [i T j] (S i T j S j T i )/2 ; 10. δ ij Kronecker ɛ ijk Levi-Civita 11. g µν G αβ ( BCRS) ( GCRS) (ct, x i ) (ct, X a ) i / x i a / X a 12. O(n) O(c n ) A µ = O(m, n) A 0 = O(m), A i = O(n) B µν = O(m, n, p) B 00 = O(m), B 0i = B i0 = O(n), B ij = O(p) m, n, p > 0 [1]. ( ) 2002 [2] : 288 [3] Murphy T W. Space Science Review, 2009, 148: [4] Manchester R N. AIP Conference Proceedings, 2011, 1357: 65 [5] [6] Pearlman M, Noll C, Dunn P, et al. Journal of Geodynamics, 2005, 40: 470 [7] Gurtner W, Noomen R, Pearlman M R. Advances in Space Research, 2005, 36: 327 [8] Exertier P, Bonnefond P, Deleflie F, et al. Comptes Rendus Geosciences, 2006, 338: 958 [9] IERS / IVS Working Group. IERS Technical Note, 2009: 35 [10] [11] Brumberg V A, Kopeikin S M. Nuovo Cimento, 1989, 103B: 63 [12] Kopeikin S M. Celes. Mech., 1988, 44: 87 [13] Brumberg V A. Essential Relativistic Celestial Mechanics, Bristol: Adam Hilger, 1991: 15 [14] Damour T, Soffel M, Xu C. Phys. Rev. D, 1991, 43: 3273 [15] Damour T, Soffel M, Xu C. Phys. Rev. D, 1992, 45: 1017 [16] Damour T, Soffel M, Xu C. Phys. Rev. D, 1993, 47: 3214 [17] Damour T, Soffel M, Xu C. Phys. Rev. D, 1994, 49: 618 [18] Soffel M, Klioner S A, Petit G, et al. AJ, 2003, 126: 2687 [19] Pound R V, Rebka Jr G A. Phys. Rev. Lett., 1959, 3 (9): 439 [20] Shapiro I I. Phys. Rev. Lett., 1964, 13 (26): 789 [21] Shapiro I I, Ash M E, Ingalls R P, et al. Phys. Rev. Lett., 1971, 26 (18): 1132 [22] IAU XXIst General Assembly, Resolution, Buenos Aires, Argentina, 1991: A4 [23] Seidelmann P K, Fukushima T. A&A, 1992, 265: 833 [24] Fairhead L, Bretagnon P, Lestrade J-F. Proc. of the the IAU Symposium, 1988, 128: 419 [25]. 1999: 6 [26] Thorne K S. Rev. Mod. Phys., 1980, 52: 299 [27] Blanchet L, Damour T. Ann. Inst. Henri Poincaré A, 1989, 50: 377 [28] Anderle R J. Rev. Geophys. & Space Phys., 1979, 17: 1421 [29] Lerch F J. Rev. Geophys. & Space Phys., 1985, 21: 560 [30] Reigber C, Balmino G, Miiller H, et al. J. Geophys. Res., 1985, 90: 9285 [31] wgs84.html, 2013 [32] Hartmann T, Soffel M H, Kioustelidis T. Celes. Mech., 1994, 60: 139

22 [33] Tao J H, Huang T Y. A&A, 1998, 333: 1100 [34] Einstein A, Infeld L, Hoffmann B. Annals of Mathematics, 1938, 39: 65 [35] Klioner S A, Vionov A V. Phys. Rev. D, 1993, 48: 1451 [36] Klioner S A, Soffel M. A&A, 1998, 334: 1123 [37] Kopeikin S M. Manuscripta Geod., 1991, 16: 301 [38] Klioner S A. AJ, 2003, 125: 1580 [39] de Felice F, Bucciarelli B, Lattanzi M G, et al. ApJ, 2004, 607: 580 [40] de Felice F, Vecchiato A, Crosta M T, et al. ApJ, 2006, 653: 1552 [41] Crosta M, Vecchiato A. ApJ, 2010, 509: A37 [42] Eubanks T M A. Proc. of the USNO workshop on Relativistic Models for Use in Space Geodesy, Washington, 1991: 60 [43] McCarthy D D, Petit G. IERS Conventions, IERS Technical Report, 2003: 32 [44] Will C M. Theory and experiment in gravitational physics, Cambridge: Cambridge Univ. Press, 1993: 86 [45] Klioner S A, Soffel M H. Phys. Rev. D, 2000, 62: [46] Kopeikin S A, Vlasov I. Phys. Rep., 2004, 400: 209 [47] Xu C, Klioner S A, Soffel M, Wu X. IAU Joint Discussion 7: Space-Time Reference Systems for Future Research at IAU General Assembly, Beijing, 2012 [48] Klioner S A, Soffel M. Proceedings of Journées, Paris: Paris Observatory, 2007: 139 [49] Klioner S A, Soffel M. Proceedings of the Journées Systèmes de référence spatio-temporels, Soffel M and Capitaine N eds. Lohrmann-Observatorium and Observatoire de Paris Paris, 2008: 3 [50] Klioner S A, Gerlach E, Soffel M. Proc. of the IAU Symposium, 2010, 261: 112 [51] Kopeikin S M, Xie Y. Acta Phys.Slov., 2010, 60: 393 [52]. 2010: 5 [53] Xu M H, Wang G L and Zhao M. A&A, 2012, 544: A135 [54] Kopeikin S M. Proc. of the IAU Symposium, 2009, 261: 7 [55] Kopeikin S M. Phys. Rev. D, 2012, 86: [56] Kopeikin S M. Phys. Rev. D, 2013, 87: [57] Turyshev S G, Toth V T. arxiv: , 2013 Review and Prospect of the Relativistic Astronomical Reference System HAN Wen-biao 1, TAO Jin-he 1, MA Wei 2 (1. Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai , China; 2. School of Economics and Management, Tongji University, Shanghai , China) Abstract: The International Astronomical Union (IAU) released two important resolutions about the relativistic astronomical reference systems at the year 1991 and 2000 respectively. Especially the resolutions in the year 2000, based on two equivalent theories of multi-reference systems of relativistic N-body system: Brumberg-Kopeikin formalism and Damour-Soffel-Xu formalism, the resolutions constructed theoretically rigorous and consistent local reference system and global reference system with first order post-newtonian (1PN) level, and gave

23 1 117 out the coordinate-transformation rules between the two reference systems. During the more than ten years after the publication of the IAU2000 resolutions, it has begun to be used in some data-processing models of the highly accurate astrometry. But the engineerization of the IAU2000 resolutions is still not widely implemented, especially, there is almost no application of the resolutions to astronomical observations and space explorations in China. Therefore, it is necessary to introduce the IAU s relativistic theory of astronomical references in details. Firstly we introduce the simple resolutions on relativistic reference systems given by IAU in 1991; And the Brumberg-Kopeikin and Damour-Soffel-Xu formalisms are discussed in detail in the chapter 3 and 4; Then, we give out the details of the IAU2000 resolutions about the relativistic reference-system theory. Finally, we try to give some discussions of the engineerization of the IAU2000 resolutions, theoretical progress of the relativistic reference systems in the recent ten years, and prospects for the future. Key words: celestial mechanics; astrometry; general relativity; astronomical reference system

[1, 2] [3 6] ns [7] 10 16[8] VLBI [9] Gaia 10 [10] ( ) IAU ( IAU2000 ) (1PN) Brumberg-Kopeikin [11 13] Damour-Soffel-Xu [14 1

[1, 2] [3 6] ns [7] 10 16[8] VLBI [9] Gaia 10 [10] ( ) IAU ( IAU2000 ) (1PN) Brumberg-Kopeikin [11 13] Damour-Soffel-Xu [14 1 34 3 Vol. 34, No. 3 2016 8 PROGRESS IN ASTRONOMY Aug., 2016 doi: 10.3969/j.issn.1000-8349.2016.03.01 1 1,2 1,3 1,3 (1. 200030 2. 100049 3. 200444) (IAU) 2000 N Brumberg-Kopeikin Damour-Soffel-Xu (1PN)

More information

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π ! # % & ( ) + (,. /0 +1, 234) % 5 / 0 6/ 7 7 & % 8 9 : / ; 34 : + 3. & < / = : / 0 5 /: = + % >+ ( 4 : 0, 7 : 0,? & % 5. / 0:? : / : 43 : 2 : Α : / 6 3 : ; Β?? : Α 0+ 1,4. Α? + & % ; 4 ( :. Α 6 4 : & %

More information

Ζ # % & ( ) % + & ) / 0 0 1 0 2 3 ( ( # 4 & 5 & 4 2 2 ( 1 ) ). / 6 # ( 2 78 9 % + : ; ( ; < = % > ) / 4 % 1 & % 1 ) 8 (? Α >? Β? Χ Β Δ Ε ;> Φ Β >? = Β Χ? Α Γ Η 0 Γ > 0 0 Γ 0 Β Β Χ 5 Ι ϑ 0 Γ 1 ) & Ε 0 Α

More information

VLBI2010 [2] 1 mm EOP VLBI VLBI [3 5] VLBI h [6 11] VLBI VLBI VLBI VLBI VLBI GPS GPS ( ) [12] VLBI 10 m VLBI 65 m [13,14] (referen

VLBI2010 [2] 1 mm EOP VLBI VLBI [3 5] VLBI h [6 11] VLBI VLBI VLBI VLBI VLBI GPS GPS ( ) [12] VLBI 10 m VLBI 65 m [13,14] (referen 31 2 Vol. 31, No. 2 2013 5 PROGRESS IN ASTRONOMY May., 2013 doi: 10.3969/j.issn.1000-8349.2013.02.08 VLBI 1,2 1 ( 1. 200030 2. 100049 ) VLBI VLBI VLBI VLBI VLBI VLBI P228.6 A 1 (VLBI) 20 60 (ITRF) (EOP)

More information

! # % & ( & # ) +& & # ). / 0 ) + 1 0 2 & 4 56 7 8 5 0 9 7 # & : 6/ # ; 4 6 # # ; < 8 / # 7 & & = # < > 6 +? # Α # + + Β # Χ Χ Χ > Δ / < Ε + & 6 ; > > 6 & > < > # < & 6 & + : & = & < > 6+?. = & & ) & >&

More information

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9, ! # !! )!!! +,./ 0 1 +, 2 3 4, 23 3 5 67 # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, 2 6 65, 2 6 9, 2 3 9, 2 6 9, 2 6 3 5 , 2 6 2, 2 6, 2 6 2, 2 6!!!, 2, 4 # : :, 2 6.! # ; /< = > /?, 2 3! 9 ! #!,!!#.,

More information

1 VLBI VLBI 2 32 MHz 2 Gbps X J VLBI [3] CDAS IVS [4,5] CDAS MHz, 16 MHz, 8 MHz, 4 MHz, 2 MHz [6] CDAS VLBI CDAS 2 CDAS CDAS 5 2

1 VLBI VLBI 2 32 MHz 2 Gbps X J VLBI [3] CDAS IVS [4,5] CDAS MHz, 16 MHz, 8 MHz, 4 MHz, 2 MHz [6] CDAS VLBI CDAS 2 CDAS CDAS 5 2 32 1 Vol. 32, No. 1 2014 2 PROGRESS IN ASTRONOMY Feb., 2014 doi: 10.3969/j.issn.1000-8349.2014.01.07 VLBI 1,2 1,2 (1. 200030 2. 200030) VLBI (Digital Baseband Convertor DBBC) CDAS (Chinese VLBI Data Acquisition

More information

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7 !! # & ( ) +,. )/ 0 1, 2 ) 3, 4 5. 6 7 87 + 5 1!! # : ;< = > < < ;?? Α Β Χ Β ;< Α? 6 Δ : Ε6 Χ < Χ Α < Α Α Χ? Φ > Α ;Γ ;Η Α ;?? Φ Ι 6 Ε Β ΕΒ Γ Γ > < ϑ ( = : ;Α < : Χ Κ Χ Γ? Ε Ι Χ Α Ε? Α Χ Α ; Γ ;

More information

2 65 m 247 IVS ( VLBI ) IERS ( ) ITRF ( ) [1 3] (3D) VLBI ( ) VLBI [4] VLBI VLBI (LCN) LCN ( ) GPS 3D LCN 3D LCN VLBI LCN (Az-El) ( ) ( ) ( ) LCN LCN

2 65 m 247 IVS ( VLBI ) IERS ( ) ITRF ( ) [1 3] (3D) VLBI ( ) VLBI [4] VLBI VLBI (LCN) LCN ( ) GPS 3D LCN 3D LCN VLBI LCN (Az-El) ( ) ( ) ( ) LCN LCN 32 2 Vol. 32, No. 2 2014 5 PROGRESS IN ASTRONOMY May, 2014 doi: 10.3969/j.issn.1000-8349.2014.02.08 65 m 1 2 3 1,4 1 1 (1. 200030 2. 200072 3. 201203 4. 100049) 65 m ( ) 3 mm ITRF2008 X 2 826 708.604 5

More information

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 & ! # % & ( ) % + ),. / & 0 1 + 2. 3 ) +.! 4 5 2 2 & 5 0 67 1) 8 9 6.! :. ;. + 9 < = = = = / >? Α ) /= Β Χ Β Δ Ε Β Ε / Χ ΦΓ Χ Η Ι = = = / = = = Β < ( # % & ( ) % + ),. > (? Φ?? Γ? ) Μ

More information

&! +! # ## % & #( ) % % % () ) ( %

&! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % ,. /, / 0 0 1,! # % & ( ) + /, 2 3 4 5 6 7 8 6 6 9 : / ;. ; % % % % %. ) >? > /,,

More information

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 / ! # %& ( %) & +, + % ) # % % ). / 0 /. /10 2 /3. /!. 4 5 /6. /. 7!8! 9 / 5 : 6 8 : 7 ; < 5 7 9 1. 5 /3 5 7 9 7! 4 5 5 /! 7 = /6 5 / 0 5 /. 7 : 6 8 : 9 5 / >? 0 /.? 0 /1> 30 /!0 7 3 Α 9 / 5 7 9 /. 7 Β Χ9

More information

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! < ! # % ( ) ( +, +. ( / 0 1) ( 2 1 1 + ( 3 4 5 6 7! 89 : ; 8 < ; ; = 9 ; ; 8 < = 9! ; >? 8 = 9 < : ; 8 < ; ; = 9 8 9 = : : ; = 8 9 = < 8 < 9 Α 8 9 =; %Β Β ; ; Χ ; < ; = :; Δ Ε Γ Δ Γ Ι 8 9 < ; ; = < ; :

More information

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ; ! #! % & ( ) +!, + +!. / 0 /, 2 ) 3 4 5 6 7 8 8 8 9 : 9 ;< 9 = = = 4 ) > (/?08 4 ; ; 8 Β Χ 2 ΔΔ2 4 4 8 4 8 4 8 Ε Φ Α, 3Γ Η Ι 4 ϑ 8 4 ϑ 8 4 8 4 < 8 4 5 8 4 4

More information

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2 ! # %!% # ( % ) + %, ). ) % %(/ / %/!! # %!! 0 1 234 5 6 2 7 8 )9!2: 5; 1? = 4!! > = 5 4? 2 Α 7 72 1 Α!.= = 54?2 72 1 Β. : 2>7 2 1 Χ! # % % ( ) +,.

More information

untitled

untitled arctan lim ln +. 6 ( + ). arctan arctan + ln 6 lim lim lim y y ( ln ) lim 6 6 ( + ) y + y dy. d y yd + dy ln d + dy y ln d d dy, dy ln d, y + y y dy dy ln y+ + d d y y ln ( + ) + dy d dy ln d dy + d 7.

More information

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! # &!! ) ( +, ., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! 2 2 & & 1 3! 3, 4 45!, 2! # 1 # ( &, 2 &, # 7 + 4 3 ) 8. 9 9 : ; 4 ), 1!! 4 4 &1 &,, 2! & 1 2 1! 1! 1 & 2, & 2 & < )4 )! /! 4 4 &! &,

More information

Π Ρ! #! % & #! (! )! + %!!. / 0% # 0 2 3 3 4 7 8 9 Δ5?? 5 9? Κ :5 5 7 < 7 Δ 7 9 :5? / + 0 5 6 6 7 : ; 7 < = >? : Α8 5 > :9 Β 5 Χ : = 8 + ΑΔ? 9 Β Ε 9 = 9? : ; : Α 5 9 7 3 5 > 5 Δ > Β Χ < :? 3 9? 5 Χ 9 Β

More information

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π ! # #! % & ( ) % # # +, % #. % ( # / ) % 0 1 + ) % 2 3 3 3 4 5 6 # 7 % 0 8 + % 8 + 9 ) 9 # % : ; + % 5! + )+)#. + + < ) ( # )# < # # % 0 < % + % + < + ) = ( 0 ) # + + # % )#!# +), (? ( # +) # + ( +. #!,

More information

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 = !! % & ( & ),,., / 0 1. 0 0 3 4 0 5 3 6!! 7 8 9 8!! : ; < = > :? Α 4 8 9 < Β Β : Δ Ε Δ Α = 819 = Γ 8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε 8 9 0 Μ Ε 8 > 9 8 9 = 8 9 = 819 8 9 =

More information

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. ! # !! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. #! % & & ( ) # (!! /! / + ) & %,/ #! )!! / & # 0 %#,,. /! &! /!! ) 0+(,, # & % ) 1 # & /. / & %! # # #! & & # # #. ).! & #. #,!! 2 34 56 7 86 9

More information

: 29 : n ( ),,. T, T +,. y ij i =, 2,, n, j =, 2,, T, y ij y ij = β + jβ 2 + α i + ɛ ij i =, 2,, n, j =, 2,, T, (.) β, β 2,. jβ 2,. β, β 2, α i i, ɛ i

: 29 : n ( ),,. T, T +,. y ij i =, 2,, n, j =, 2,, T, y ij y ij = β + jβ 2 + α i + ɛ ij i =, 2,, n, j =, 2,, T, (.) β, β 2,. jβ 2,. β, β 2, α i i, ɛ i 2009 6 Chinese Journal of Applied Probability and Statistics Vol.25 No.3 Jun. 2009 (,, 20024;,, 54004).,,., P,. :,,. : O22... (Credibility Theory) 20 20, 80. ( []).,.,,,.,,,,.,. Buhlmann Buhlmann-Straub

More information

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! ! # # % & ( ) ! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) 0 + 1 %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! # ( & & 5)6 %+ % ( % %/ ) ( % & + %/

More information

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε ! #!! % & ( ) +,. /. 0,(,, 2 4! 6! #!!! 8! &! % # & # &! 9 8 9 # : : : : :!! 9 8 9 # #! %! ; &! % + & + & < = 8 > 9 #!!? Α!#!9 Α 8 8!!! 8!%! 8! 8 Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :!

More information

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % #! # # %! # + 5 + # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % ,9 989 + 8 9 % % % % # +6 # % 7, # (% ) ,,? % (, 8> % %9 % > %9 8 % = ΑΒ8 8 ) + 8 8 >. 4. ) % 8 # % =)= )

More information

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, )

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) ! # % & # % ( ) & + + !!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) 6 # / 0 1 + ) ( + 3 0 ( 1 1( ) ) ( 0 ) 4 ( ) 1 1 0 ( ( ) 1 / ) ( 1 ( 0 ) ) + ( ( 0 ) 0 0 ( / / ) ( ( ) ( 5 ( 0 + 0 +

More information

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι ! # % & ( ) +,& ( + &. / 0 + 1 0 + 1,0 + 2 3., 0 4 2 /.,+ 5 6 / 78. 9: ; < = : > ; 9? : > Α

More information

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η 1 )/ 2 & +! # % & ( ) +, + # # %. /& 0 4 # 5 6 7 8 9 6 : : : ; ; < = > < # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ #

More information

種 類 左 淋 巴 總 管 ( 胸 管 ) 右 淋 巴 總 管 血 管 連 接 連 接 左 鎖 骨 下 靜 脈 連 接 右 鎖 骨 下 靜 脈 淋 巴 收 集 範 圍 左 上 半 身 及 下 半 身 淋 巴 液 右 上 半 身 淋 巴 液 長 度 很 長 很 短 (3) 循 環 路 徑 : (4)

種 類 左 淋 巴 總 管 ( 胸 管 ) 右 淋 巴 總 管 血 管 連 接 連 接 左 鎖 骨 下 靜 脈 連 接 右 鎖 骨 下 靜 脈 淋 巴 收 集 範 圍 左 上 半 身 及 下 半 身 淋 巴 液 右 上 半 身 淋 巴 液 長 度 很 長 很 短 (3) 循 環 路 徑 : (4) ( 一 ) 淋 巴 系 統 與 循 環 A 淋 巴 系 統 的 功 能 : (1) 包 括 淋 巴 淋 巴 管 淋 巴 組 織 淋 巴 器 官 (2) 回 收 組 織 液 : 有 組 織 液 送 回 血 液, 以 維 持 血 液 成 分 恆 定 (3) 運 送 脂 溶 性 養 分 : 運 送 小 腸 乳 靡 管 吸 收 的 脂 溶 性 養 分 回 血 液 (4) 產 生 免 疫 反 應 : 具 有

More information

( ) Wuhan University

( ) Wuhan University Email: huangzh@whueducn, 47 Wuhan Univesity i L A TEX,, : http://affwhueducn/huangzh/ 8 4 49 7 ii : : 4 ; 8 a b c ; a b c 4 4 8 a b c b c a ; c a b x y x + y y x + y x x + y x y 4 + + 8 8 4 4 + 8 + 6 4

More information

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ ( ! # %! & (!! ) +, %. ( +/ 0 1 2 3. 4 5 6 78 9 9 +, : % % : < = % ;. % > &? 9! ) Α Β% Χ %/ 3. Δ 8 ( %.. + 2 ( Φ, % Γ Η. 6 Γ Φ, Ι Χ % / Γ 3 ϑκ 2 5 6 Χ8 9 9 Λ % 2 Χ & % ;. % 9 9 Μ3 Ν 1 Μ 3 Φ Λ 3 Φ ) Χ. 0

More information

( )... ds.....

( )... ds..... ...... 3.1.. 3.1.. 3.1: 1775. g a m I a = m G g, (3.1) m I m G. m G /m I. m I = m G (3.2)............. 1 2............ 4.................. 4 ( )... ds..... 3.2 3 3.2 A B. t x. A B. O. t = t 0 A B t......

More information

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 = ! # % # & ( ) % # ( +, & % # ) % # (. / ). 1 2 3 4! 5 6 4. 7 8 9 4 : 2 ; 4 < = = 2 >9 3? & 5 5 Α Α 1 Β ΧΔ Ε Α Φ 7 Γ 9Η 8 Δ Ι > Δ / ϑ Κ Α Χ Ε ϑ Λ ϑ 2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ!

More information

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02 ! # % & ( ) +, ) %,! # % & ( ( ) +,. / / 01 23 01 4, 0/ / 5 0 , ( 6 7 8! 9! (, 4 : : ; 0.!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ 5 3 3 5 3 1 Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / 3 0 0 / < 5 02 Ν!.! %) / 0

More information

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+ ! #! &!! # () +( +, + ) + (. ) / 0 1 2 1 3 4 1 2 3 4 1 51 0 6. 6 (78 1 & 9!!!! #!! : ;!! ? &! : < < &? < Α!!&! : Χ / #! : Β??. Δ?. ; ;

More information

untitled

untitled 20 1 2010 10 Vol.20 Special 1 The Chinese Journal of Nonferrous Metals Oct. 2010 1004-0609(2010)S1-s0127-05 Ti-6Al-4V 1 2 2 (1. 710016 2., 710049) 500~1 000 20 Ti-6Al-4V(TC4) TC4 800 TC4 800 TC4 TC4 800

More information

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5,

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5, # # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( 0 2 3 ( & +. 4 / &1 5, !! & 6 7! 6! &1 + 51, (,1 ( 5& (5( (5 & &1 8. +5 &1 +,,( ! (! 6 9/: ;/:! % 7 3 &1 + ( & &, ( && ( )

More information

N E LaCoste ±7 µgal ±10 µgal (1 Gal = 0.01 m/s 2 ) Kringe [8] ξ η = 1 2π

N E LaCoste ±7 µgal ±10 µgal (1 Gal = 0.01 m/s 2 ) Kringe [8] ξ η = 1 2π 2013 34 ANNALS OF SHANGHAI OBSERVATORY ACADEMIA SINICA No. 34, 2013 1986 1998 1,2,3 1,3 2,3 4 ( 1. 100049 2. 200030 3. 100012 4. 430071 ) 1986 1998 32 20 ( M 5) 20 15 0.15 a P631.4 + 43 1 [1,2] 1925 0.18

More information

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ ! # % & & ( ) +, %. % / 0 / 2 3! # 4 ) 567 68 5 9 9 : ; > >? 3 6 7 : 9 9 7 4! Α = 42 6Β 3 Χ = 42 3 6 3 3 = 42 : 0 3 3 = 42 Δ 3 Β : 0 3 Χ 3 = 42 Χ Β Χ 6 9 = 4 =, ( 9 6 9 75 3 6 7 +. / 9

More information

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α # % & ( ) # +,. / 0 1 2 /0 1 0 3 4 # 5 7 8 / 9 # & : 9 ; & < 9 = = ;.5 : < 9 98 & : 9 %& : < 9 2. = & : > 7; 9 & # 3 2

More information

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9 !! #! % & ( ) +,. / 0 1 2 34 5 6 % & +7 % & 89 % & % & 79 % & : % & < < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ

More information

untitled

untitled 2007 Scientific and Technical Documents Publishing House 90 167 183 9 6000 2001 20052006 100100 100100 55 520105 5 (Essential Science IndicatorsESI) 14 (1)5 (2)5 (3)5 = 5 5 (4) = 5 5 (5)50% 50 49.80

More information

) ) ) Ο ΛΑ >. & Β 9Α Π Ν6 Γ2 Π6 Φ 2 Μ 5 ΝΒ 8 3 Β 8 Η 5 Φ6 Β 8 Η 5 ΝΒ 8 Φ 9 Α Β 3 6 ΝΒ 8 # # Ε Ο ( & & % ( % ) % & +,. &

) ) ) Ο ΛΑ >. & Β 9Α Π Ν6 Γ2 Π6 Φ 2 Μ 5 ΝΒ 8 3 Β 8 Η 5 Φ6 Β 8 Η 5 ΝΒ 8 Φ 9 Α Β 3 6 ΝΒ 8 # # Ε Ο ( & & % ( % ) % & +,. & !! # % & ( ) +,.% /.0.% 1 2 3 / 5,,3 6 7 6 8 9 6!! : 3 ) ; < < = )> 2?6 8 Α8 > 6 2 Β 3Α9 Α 2 8 Χ Δ < < Ε! ; # < # )Φ 5 Γ Γ 2 96 Η Ι ϑ 0 Β 9 Α 2 8 Β 3 0 Β 9 Β ΦΚ Α 6 8 6 6 Λ 2 5 8 Η Β 9 Α 2 8 2 Μ 6 Ν Α

More information

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α Ε! # % & ( )%! & & + %!, (./ 0 1 & & 2. 3 &. 4/. %! / (! %2 % ( 5 4 5 ) 2! 6 2! 2 2. / & 7 2! % &. 3.! & (. 2 & & / 8 2. ( % 2 & 2.! 9. %./ 5 : ; 5. % & %2 2 & % 2!! /. . %! & % &? & 5 6!% 2.

More information

3978 30866 4 3 43 [] 3 30 4. [] . . 98 .3 ( ) 06 99 85 84 94 06 3 0 3 9 3 0 4 9 4 88 4 05 5 09 5 8 5 96 6 9 6 97 6 05 7 7 03 7 07 8 07 8 06 8 8 9 9 95 9 0 05 0 06 30 0 .5 80 90 3 90 00 7 00 0 3

More information

MHz 10 MHz Mbps 1 C 2(a) 4 GHz MHz 56 Msps 70 MHz 70 MHz 23 MHz 14 MHz 23 MHz 2(b)

MHz 10 MHz Mbps 1 C 2(a) 4 GHz MHz 56 Msps 70 MHz 70 MHz 23 MHz 14 MHz 23 MHz 2(b) 2011 32 ANNALS OF SHANGHAI OBSERVATORY ACADEMIA SINICA No. 32, 2011 1,2,3 1 2,3 2,3 2,3 2 1 1 ( 1. 200030 2. 100094 3. 100094 ) V474 1 (CEI) ( VLBI ), CEI 100 nrad ( 50 km) CEI 10 100 km 2 2 2 CEI [1]

More information

Technical Acoustics Vol.27, No.4 Aug., 2008,,, (, ) :,,,,,, : ; ; : TB535;U : A : (2008) Noise and vibr

Technical Acoustics Vol.27, No.4 Aug., 2008,,, (, ) :,,,,,, : ; ; : TB535;U : A : (2008) Noise and vibr 8 8 Technical Acoustics Vol., No. Aug., 8,,, (, 8) :,,,,,, : ; ; : TB;U.+ 9 : A : -(8)--- Noise and vibration tests for fuel cell vehicel and noise sources identification SHEN Xiu-min, ZUO Shu-guang, CAI

More information

PowerPoint 演示文稿

PowerPoint 演示文稿 . ttp://www.reej.com 4-9-9 4-9-9 . a b { } a b { }. Φ ϕ ϕ ϕ { } Φ a b { }. ttp://www.reej.com 4-9-9 . ~ ma{ } ~ m m{ } ~ m~ ~ a b but m ~ 4-9-9 4 . P : ; Φ { } { ϕ ϕ a a a a a R } P pa ttp://www.reej.com

More information

& &((. ) ( & ) 6 0 &6,: & ) ; ; < 7 ; = = ;# > <# > 7 # 0 7#? Α <7 7 < = ; <

& &((. ) ( & ) 6 0 &6,: & ) ; ; < 7 ; = = ;# > <# > 7 # 0 7#? Α <7 7 < = ; < ! # %& ( )! & +, &. / 0 # # 1 1 2 # 3 4!. &5 (& ) 6 0 0 2! +! +( &) 6 0 7 & 6 8. 9 6 &((. ) 6 4. 6 + ( & ) 6 0 &6,: & )6 0 3 7 ; ; < 7 ; = = ;# > 7 # 0 7#? Α

More information

SVM OA 1 SVM MLP Tab 1 1 Drug feature data quantization table

SVM OA 1 SVM MLP Tab 1 1 Drug feature data quantization table 38 2 2010 4 Journal of Fuzhou University Natural Science Vol 38 No 2 Apr 2010 1000-2243 2010 02-0213 - 06 MLP SVM 1 1 2 1 350108 2 350108 MIP SVM OA MLP - SVM TP391 72 A Research of dialectical classification

More information

untitled

untitled 995 + t lim( ) = te dt =. α α = lim[( + ) ] = e, α α α α = t t t t te dt = tde = te α α e dt = αe e, =, e α = αe α e α, α =. y z = yf, f( u) z + yz y =. z y y y y y y z = yf + y f = yf f, y y y y z y =

More information

WL100014ZW.PDF

WL100014ZW.PDF A Z 1 238 H U 1 92 1 2 3 1 1 1 H H H 235 238 92 U 92 U 1.1 2 1 H 3 1 H 3 2 He 4 2 He 6 3 Hi 7 3 Hi 9 4 Be 10 5 B 2 1.113MeV H 1 4 2 He B/ A =7.075MeV 4 He 238 94 Pu U + +5.6MeV 234 92 2 235 U + 200MeV

More information

& & ) ( +( #, # &,! # +., ) # % # # % ( #

& & ) ( +( #, # &,! # +., ) # % # # % ( # ! # % & # (! & & ) ( +( #, # &,! # +., ) # % # # % ( # Ι! # % & ( ) & % / 0 ( # ( 1 2 & 3 # ) 123 #, # #!. + 4 5 6, 7 8 9 : 5 ; < = >?? Α Β Χ Δ : 5 > Ε Φ > Γ > Α Β #! Η % # (, # # #, & # % % %+ ( Ι # %

More information

. Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )? : Β Ν :) Ε Ν & Ν? ς Ε % ) Ω > % Τ 7 Υ Ν Ν? Π 7 Υ )? Ο 1 Χ Χ Β 9 Ξ Ψ 8 Ψ # #! Ξ ; Ξ > # 8! Ζ! #!! Θ Ξ #!! 8 Θ!

. Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )? : Β Ν :) Ε Ν & Ν? ς Ε % ) Ω > % Τ 7 Υ Ν Ν? Π 7 Υ )? Ο 1 Χ Χ Β 9 Ξ Ψ 8 Ψ # #! Ξ ; Ξ > # 8! Ζ! #!! Θ Ξ #!! 8 Θ! !! # %& + ( ) ),., / 0 12 3, 4 5 6, 7 6 6, 8! 1 9 :; #< = 1 > )& )? Α Β 3 % Χ %? 7) >ΔΒ Χ :% Ε? 9 : ; Φ Η Ι & Κ Λ % 7 Μ Ν?) 1!! 9 % Ο Χ Χ Β Π Θ Π ; Ρ Ρ Ρ Ρ Ρ ; . Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )?

More information

B = F Il 1 = 1 1 φ φ φ B = k I r F Il F k I 2 = l r 2 10 = k 1 1-7 2 1 k = 2 10-7 2 B = ng Il. l U 1 2 mv = qu 2 v = 2qU m = 2 19 3 16. 10 13. 10 / 27 167. 10 5 = 5.0 10 /. r = m ν 1 qb r = m ν qb

More information

( ) (! +)! #! () % + + %, +,!#! # # % + +!

( ) (! +)! #! () % + + %, +,!#! # # % + +! !! # % & & & &! # # % ( ) (! +)! #! () % + + %, +,!#! # # % + +! ! %!!.! /, ()!!# 0 12!# # 0 % 1 ( ) #3 % & & () (, 3)! #% % 4 % + +! (!, ), %, (!!) (! 3 )!, 1 4 ( ) % % + % %!%! # # !)! % &! % () (! %

More information

习 题 12

习    题  12 .7 Lgrge. ( + = f, ) = f (,, ) = + + + = + + =, f (,, ) = + + A + B + C = 0, > > > 0 A + B + C = L (,, λ) = λ( + ) L = λ = 0 L = λ = 0 λ = ( + ) = 0, = =, + = 4, f m f(, ) = = 4 L (,,, λ) = + λ( + + )

More information

Microsoft Word - ä¸fi颟æ−¥å‚−_å“ı弋论_1104

Microsoft Word - ä¸fi颟æ−¥å‚−_å“ı弋论_1104 中 国 博 弈 论 新 近 进 展 及 展 望 摘 要 1944 年 著 名 数 学 家 冯 诺 伊 曼 和 经 济 学 家 莫 根 施 坦 合 著 并 出 版 的 博 弈 论 与 经 济 行 为 标 志 着 博 弈 论 作 为 一 门 独 立 学 科 的 诞 生 在 国 际 上, 从 1994 到 2012 年, 博 弈 论 学 家 已 先 后 获 得 6 届 诺 贝 尔 经 济 学 奖, 对 于

More information

2 2011 (1) (2) 2010 3 18 2010 3 31 2010 5 19 2010 8 29 (3) /X C L (4) 2010 11 65 m 3 (5) 2010 3 19 2010 9 3 2010 9 10 2010 10 29 2.1.2 ( ) (1) (CE-2)

2 2011 (1) (2) 2010 3 18 2010 3 31 2010 5 19 2010 8 29 (3) /X C L (4) 2010 11 65 m 3 (5) 2010 3 19 2010 9 3 2010 9 10 2010 10 29 2.1.2 ( ) (1) (CE-2) 2011 32 ANNALS OF SHANGHAI OBSERVATORY ACADEMIA SINICA No. 32, 2011 2010 ( 200030 ) 2010 P112,G31 1 2010 65 m VLBI VLBI ( ) 2010 158 SCI 53 SCI 455 2010 22 268 ( ) 10 083 11 234 951, 6 (Gerhard Boerner)

More information

第一章 绪论

第一章  绪论 1-1 1-1 1-5 0.05 1-6 1 60mm 1.5W/(m K) 5-5 m C 1-7 1cm, 0 m 1.04W/(m K) C C 50 50 4.09 10 kj/kg C 1-9 =69 C f =0 w C =14mm d 80mm 8.5W 1-11 10mm 0 C 85 C ( ) 175 W m K 1mm 1-14 T0 0K T = w 50K ε = 0. 7

More information

2. 3. 1 2 TI 3 TI TABLE 4 RANDBIN 5 6 172 6 Research of Modern Basic Education 2012 6

2. 3. 1 2 TI 3 TI TABLE 4 RANDBIN 5 6 172 6 Research of Modern Basic Education 2012 6 6 2012 6 Research of Modern Basic Education Vol. 6 June 2012 201200 20 1. G 1976-171 2. 3. 1 2 TI 3 TI TABLE 4 RANDBIN 5 6 172 6 Research of Modern Basic Education 2012 6 1 GPS 4. 01 TI - nspire cx 1.

More information

m0 m = v2 1 c 2 F G m m 1 2 = 2 r m L T = 2 π ( m g 4 ) m m = 1 F AC F BC r F r F l r = sin sinl l F = h d G + S 2 = t v h = t 2 l = v 2 t t h = v = at v = gt t 1 l 1 a t g = t sin α 1 1 a = gsinα

More information

: ; # 7 ( 8 7

: ; # 7 ( 8 7 (! # % & ( ) +,. / +. 0 0 ) 1. 2 3 +4 1/,5,6 )/ ) 7 7 8 9 : ; 7 8 7 # 7 ( 8 7 ; ;! #! % & % ( # ) % + # # #, # % + &! #!. #! # # / 0 ( / / 0! #,. # 0(! #,. # 0!. # 0 0 7 7 < = # ; & % ) (, ) ) ) ) ) )!

More information

非线性系统控制理论

非线性系统控制理论 AIsdo 985 5 6 Fobeus Albeo Isdo Nolea Cool Ssems Spe-Vela 989 He Njmeje Aja Va de Sca Nolea Damcal Cool Ssems Spe-Vela 99 988 4 99 5 99 6J-JESloe 99 7 988 4 6 5 8 6 8 7 8 9 4 9 9 9 4 5 6 7 Dsbuos 8 Fobeus

More information

m m (1) 4 (2) (3) (4) 4 K GBT S/X (5) GBT Noto SRT (6) VLBI ( AGC VSI ) (7) ( ) 2009 VLBI 2010 CE-2 (1)

m m (1) 4 (2) (3) (4) 4 K GBT S/X (5) GBT Noto SRT (6) VLBI ( AGC VSI ) (7) ( ) 2009 VLBI 2010 CE-2 (1) 2010 31 ANNALS OF SHANGHAI OBSERVATORY ACADEMIA SINICA No. 31, 2010 2009 ( 200030) 2009 P112 G31 1 2009 65 m VLBI 973 863 2009 64 223 SCI 55 SCI 464 1 1 2 2.1 2.1.1 65 m 2009 1 9 65 m 2009 9 17 18 65 m

More information

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ ! # % & ( ) +,. / 0 1 + 2. 3 4. 56. / 7 89 8.,6 2 ; # ( ( ; ( ( ( # ? >? % > 64 5 5Α5. Α 8/ 56 5 9. > Β 8. / Χ 8 9 9 5 Δ Ε 5, 9 8 2 3 8 //5 5! Α 8/ 56/ 9. Φ ( < % < ( > < ( %! # ! Β Β? Β ( >?? >?

More information

Β Χ Χ Α Β Φ Φ ; < # 9 Φ ; < # < % Γ & (,,,, Η Ι + / > ϑ Κ ( < % & Λ Μ # ΝΟ 3 = Ν3 Ο Μ ΠΟ Θ Ρ Μ 0 Π ( % ; % > 3 Κ ( < % >ϑ Κ ( ; 7

Β Χ Χ Α Β Φ Φ ; < # 9 Φ ; < # < % Γ & (,,,, Η Ι + / > ϑ Κ ( < % & Λ Μ # ΝΟ 3 = Ν3 Ο Μ ΠΟ Θ Ρ Μ 0 Π ( % ; % > 3 Κ ( < % >ϑ Κ ( ; 7 ! # % & ( ) +, + )% ). )% / 0 1. 0 3 4 5 6 7 8 7 8 9 : ; < 7 ( % ; =8 9 : ; < ; < > ;, 9 :? 6 ; < 6 5 6 Α Β 5 Δ 5 6 Χ 5 6 5 6 Ε 5 6 Ε 5 5 Β Χ Χ Α Β 7 8 9 Φ 5 6 9 Φ ; < # 9 Φ ; < # 7 8 5 5 < % Γ & (,,,,

More information

悖论

悖论 年 月总第 8 期 数学方法与数学思想 编辑点评 数学与哲学都是研究最普遍的事物的 但是研究的角度 目的 方法 过 程和成果并不一样 所以两者之间有联系也有区别 该文通过对像 先有鸡 还是先有蛋 这样一些通俗又典型的例子 说明数学家与哲学家对于同一 个问题思维和处理的方式如何不同 便于读者形象地理解文中的论点 文 章的论述比较恰当 准确 深刻 写作也通顺流利 是一篇可读性较强的 文章 值得读者体会和学习

More information

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ ! # % & ( ) % + ( ), & ). % & /. % 0 1!! 2 3 4 5# 6 7 8 3 5 5 9 # 8 3 3 2 4 # 3 # # 3 # 3 # 3 # 3 # # # ( 3 # # 3 5 # # 8 3 6 # # # # # 8 5# :;< 6#! 6 =! 6 > > 3 2?0 1 4 3 4! 6 Α 3 Α 2Η4 3 3 2 4 # # >

More information

Microsoft Word - 33-p0191-14skyd8.doc

Microsoft Word - 33-p0191-14skyd8.doc 第 20 卷 第 4 期 中 南 大 学 学 报 ( 社 会 科 学 版 ) Vol.20 No.4 2014 年 8 月 J. CENT. SOUTH UNIV. (SOCIAL SCIENCE) Aug. 2014 基 于 模 糊 层 次 分 析 法 的 政 府 干 部 胜 任 力 评 价 实 证 研 究 薛 琴 ( 南 京 工 程 学 院 经 济 与 管 理 学 院, 江 苏 南 京,211167)

More information

untitled

untitled 4 y l y y y l,, (, ) ' ( ) ' ( ) y, y f ) ( () f f ( ) (l ) t l t lt l f ( t) f ( ) t l f ( ) d (l ) C f ( ) C, f ( ) (l ) L y dy yd π y L y cosθ, π θ : siθ, π yd dy L [ cosθ cosθ siθ siθ ] dθ π π π si

More information

% 5 CPI CPI PPI Benjamin et al Taylor 1993 Cukierman and Gerlach 2003 Ikeda 2013 Jonas and Mishkin

% 5 CPI CPI PPI Benjamin et al Taylor 1993 Cukierman and Gerlach 2003 Ikeda 2013 Jonas and Mishkin 2016 9 435 No. 9 2016 General No. 435 130012 1996 1-2016 6 LT - TVP - VAR LT - TVP - VAR JEL E0 F40 A 1002-7246201609 - 0001-17 2016-03 - 20 Emailjinquan. edu. cn. Email1737918817@ qq. com. * 15ZDC008

More information

untitled

untitled 4 6 4 4 ( n ) f( ) = lim n n +, f ( ) = = f( ) = ( ) ( n ) f( ) = lim = lim n = = n n + n + n f ( ), = =,, lim f ( ) = lim = f() = f ( ) y ( ) = t + t+ y = t t +, y = y( ) dy dy dt t t = = = = d d t +

More information

: Π Δ 9 Δ 9 Δ 9 7 Θ Μ 9 8 Ρ Σ # = Μ 0 ; 9 < = 5 Λ 6 # = = # Μ Μ 7 Τ Μ = < Μ Μ Ο = Ρ # Ο Ο Ο! Ο 5 6 ;9 5 5Μ Ο 6

: Π Δ 9 Δ 9 Δ 9 7 Θ Μ 9 8 Ρ Σ # = Μ 0 ; 9 < = 5 Λ 6 # = = # Μ Μ 7 Τ Μ = < Μ Μ Ο = Ρ # Ο Ο Ο! Ο 5 6 ;9 5 5Μ Ο 6 ! # % # & ( ) +, #,. # / 0. 0 2 3 4! 5 6 5 6 7 8 5 6 5 6 8 9 : # ; 9 < = 8 = > 5 0? 0 Α 6 Β 7 5ΧΔ ΕΦ 9Γ 6 Η 5+3? 3Ι 3 ϑ 3 6 ΗΚ Η Λ!Κ Η7 Μ ΒΜ 7 Ν!! Ο 8 8 5 9 6 : Π 5 6 8 9 9 5 6 Δ 9 Δ 9 Δ 9 7 Θ Μ 9 8 Ρ

More information

3 4 Ψ Ζ Ζ [, Β 7 7>, Θ0 >8 : Β0 >, 4 Ε2 Ε;, ] Ε 0, 7; :3 7;,.2.;, _ & αε Θ:. 3 8:,, ), β & Φ Η Δ?.. 0?. χ 7 9 Ε >, Δ? Β7 >7 0, Τ 0 ΚΚ 0 χ 79 Ε >, Α Ε

3 4 Ψ Ζ Ζ [, Β 7 7>, Θ0 >8 : Β0 >, 4 Ε2 Ε;, ] Ε 0, 7; :3 7;,.2.;, _ & αε Θ:. 3 8:,, ), β & Φ Η Δ?.. 0?. χ 7 9 Ε >, Δ? Β7 >7 0, Τ 0 ΚΚ 0 χ 79 Ε >, Α Ε (! # # %& ) +,./ 0 & 0 1 2 / & %&( 3! # % & ( ) & +, ), %!,. / 0 1 2. 3 4 5 7 8 9 : 0 2; < 0 => 8?.. >: 7 2 Α 5 Β % Χ7 Δ.Ε8 0Φ2.Γ Φ 5 Η 8 0 Ι 2? : 9 ϑ 7 ϑ0 > 2? 0 7Ε 2?. 0. 2 : Ε 0 9?: 9 Κ. 9 7Λ /.8 720

More information

%% &% %% %% %% % () (! #! %!!!!!!!%! # %& ( % & ) +, # (.. /,) %& 0

%% &% %% %% %% % () (! #! %!!!!!!!%! # %& ( % & ) +, # (.. /,) %& 0 !! # # %% &% %% %% %% % () (! #! %!!!!!!!%! # %& ( % & ) +, # (.. /,) %& 0 +! (%& / 1! 2 %& % & 0/ / %& + (.%.%, %& % %& )& % %& ) 3, &, 5, % &. ) 4 4 4 %& / , %& ).. % # 6 /0 % &. & %& ) % %& 0.!!! %&

More information

! + +, ) % %.!&!, /! 0! 0 # ( ( # (,, # ( % 1 2 ) (, ( 4! 0 & 2 /, # # ( &

! + +, ) % %.!&!, /! 0! 0 # ( ( # (,, # ( % 1 2 ) (, ( 4! 0 & 2 /, # # ( & ! # %! &! #!! %! %! & %! &! & ( %! & #! & )! & & + ) +!!, + ! + +, ) % %.!&!, /! 0! 0 # ( ( # (,, # ( % 1 2 ) (, 3 0 1 ( 4! 0 & 2 /, # # ( 1 5 2 1 & % # # ( #! 0 ) + 4 +, 0 #,!, + 0 2 ), +! 0! 4, +! (!

More information

欢迎参加 《计量基础知识》培训班

欢迎参加  《计量基础知识》培训班 µ kσ y µ t y i y µ+kσ n 1 i = ik = k 1 n ( ) v i = i n ( i s ( ) = i = 1 n 1 ) 2 s ( ) = s( ) n σ d 3 d s G ( n ) 1 1 2 1 1 10 10, n n n n = = 1 1 1 2 2 1 11 11, n n n n = = 1 1 1 3 2 2 21 21, n n

More information

P r = 1 + ecosθ 2 V = V + V 1 2 2V1V2 cosθ 2 2 = ( V V ) + 2V V ( 1 cos θ) 1 2 1 2 40000 V = 0. 5( / ) 24 60 60 λ m = 5100A = 0.51 Å 2 u e d s 3 1 e uud udd 3 2 3 e 1 3 e V = 2 9. 8 2000 = 198 V

More information

Ε? Φ ) ( % &! # +. 2 ( (,

Ε? Φ ) ( % &! # +. 2 ( (, 0 12 ( 1! # # % & ( ) % ( +, & ). % & /. 4 2! 5 # /6 78 7 7 9 9 / 6 7 7 7 9 9 : 7; 7 ; < =% >9>?!#! Α 2 1 9? Β / 6! #Χ Α 7 5 7 Δ 7 / 6 ; Χ < 7? Ε? Φ ) ( % &! # +. 2 (1 5 5 6 5 6 6 4 0 (, [ Β, Η / Β Γ 7

More information

ΗΗ Β Η Η Η ϑ ΗΙ ( > ( > 8 Κ Κ 9 Λ! 0 Μ 4 Ν ΟΠ 4 Ν 0 Θ Π < Β < Φ Ρ Σ Ο ΟΦ Ρ Σ ) Ο Τ 4 Μ 4 Ν Π Υ Φ Μ ς 6 7 6Ω : 8? 9 : 8 ; 7 6Ω 1 8? ; 7 : ; 8 ; 9

ΗΗ Β Η Η Η ϑ ΗΙ ( > ( > 8 Κ Κ 9 Λ! 0 Μ 4 Ν ΟΠ 4 Ν 0 Θ Π < Β < Φ Ρ Σ Ο ΟΦ Ρ Σ ) Ο Τ 4 Μ 4 Ν Π Υ Φ Μ ς 6 7 6Ω : 8? 9 : 8 ; 7 6Ω 1 8? ; 7 : ; 8 ; 9 !! # % # & ( & ) #, #,., # / 01. 0 3 4 4!! 5 6 7 6 7 8 9 : 9 ; 6 1 7 < 1? :! ; = >, 8 8 9 ; Α < 1 6 7 Β 6 7 6. Χ : 9 8? 9 ; 7 8? 9 ; = = Δ Ε Φ Γ 5 =!!? ΗΗ Β Η Η Η ϑ ΗΙ ( > ( > 8 Κ Κ 9 Λ! 0 Μ 4 Ν ΟΠ 4 Ν

More information

! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ! 7 7 Δ Δ 2! Χ Δ = Χ! Δ!! =! ; 9 7 Χ Χ Χ <? < Χ 8! Ε (9 Φ Γ 9 7! 9 Δ 99 Φ Γ Χ 9 Δ 9 9 Φ Γ = Δ 9 2

! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ! 7 7 Δ Δ 2! Χ Δ = Χ! Δ!! =! ; 9 7 Χ Χ Χ <? < Χ 8! Ε (9 Φ Γ 9 7! 9 Δ 99 Φ Γ Χ 9 Δ 9 9 Φ Γ = Δ 9 2 ! # % ( % ) +,#./,# 0 1 2 / 1 4 5 6 7 8! 9 9 : ; < 9 9 < ; ?!!#! % ( ) + %,. + ( /, 0, ( 1 ( 2 0% ( ),..# % (., 1 4 % 1,, 1 ), ( 1 5 6 6 # 77 ! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ!

More information

= Β Χ Δ

= Β Χ Δ , 0! # %! & ( ) +! % &. / 1 2 3 4 56 6 5 8 9 8 5 86 2 3 : 5 : 5 5 5: ; < = : 5 5 % >6 ; 5 8 98 58? : 2 3 4 56 6 68 5 8 Α 1 6 5 5 = Β Χ Δ ; 2 3 Ε9 58 8 98 5 86 65 5 5 5: : 2 3 Α Φ 5 65 Α Γ 5 5: Η 5? 9 :

More information

; < 5 6 => 6 % = 5

; < 5 6 => 6 % = 5 ! # % ( ),,. / 0. 1, ) 2 3, 3+ 3 # 4 + % 5 6 67 5 6, 8 8 5 6 5 6 5 6 5 6 5 6 5 9! 7 9 9 6 : 6 ; 7 7 7 < 5 6 => 6 % = 5 Δ 5 6 ; Β ;? # Ε 6 = 6 Α Ε ; ; ; ; Φ Α Α Ε 0 Α Α Α Α Α Α Α Α Α Α Α Α Α Β Α Α Α Α Α

More information

9 : : ; 7 % 8

9 : : ; 7 % 8 ! 0 4 1 % # % & ( ) # + #, ( ) + ) ( ). / 2 3 %! 5 6 7! 8 6 7 5 9 9 : 6 7 8 : 17 8 7 8 ; 7 % 8 % 8 ; % % 8 7 > : < % % 7! = = = : = 8 > > ; 7 Ε Β Β % 17 7 :! # # %& & ( ) + %&, %& ) # 8. / 0. 1 2 3 4 5

More information

[9] R Ã : (1) x 0 R A(x 0 ) = 1; (2) α [0 1] Ã α = {x A(x) α} = [A α A α ]. A(x) Ã. R R. Ã 1 m x m α x m α > 0; α A(x) = 1 x m m x m +

[9] R Ã : (1) x 0 R A(x 0 ) = 1; (2) α [0 1] Ã α = {x A(x) α} = [A α A α ]. A(x) Ã. R R. Ã 1 m x m α x m α > 0; α A(x) = 1 x m m x m + 2012 12 Chinese Journal of Applied Probability and Statistics Vol.28 No.6 Dec. 2012 ( 224002) Euclidean Lebesgue... :. : O212.2 O159. 1.. Zadeh [1 2]. Tanaa (1982) ; Diamond (1988) (FLS) FLS LS ; Savic

More information

第9章 排队论

第9章  排队论 9, 9. 9.. Nt () [, t] t Nt () { Nt ( ) t [, T]} t< t< t< t + N ( ( t+ ) i+ N( t) i, N( t) i,, N( t) i N + + N ( ( t ) i ( t ) i ) (9-) { Nt ( ) t [, T)} 9- t t + t, t,, t t t { Nt ( ) t [, T] } t< t,,

More information

Γ Ν Ν, 1 Ο ( Π > Π Θ 5?, ΔΓ 2 ( ΜΡ > Σ 6 = Η 1 Β Δ 1 = Δ Ι Δ 1 4 Χ ΓΗ 5 # Θ Γ Τ Δ Β 4 Δ 4. > 1 Δ 4 Φ? < Ο 9! 9 :; ;! : 9!! Υ9 9 9 ; = 8; = ; =

Γ Ν Ν, 1 Ο ( Π > Π Θ 5?, ΔΓ 2 ( ΜΡ > Σ 6 = Η 1 Β Δ 1 = Δ Ι Δ 1 4 Χ ΓΗ 5 # Θ Γ Τ Δ Β 4 Δ 4. > 1 Δ 4 Φ? < Ο 9! 9 :; ;! : 9!! Υ9 9 9 ; = 8; = ; = ! 0 1 # & ( & ) +! &,. & /.#. & 2 3 4 5 6 7 8 9 : 9 ; < = : > < = 9< 4 ; < = 1 9 ; 3; : : ; : ;? < 5 51 ΑΒ Χ Δ Ε 51 Δ!! 1Φ > = Β Γ Η Α ΒΧ Δ Ε 5 11!! Ι ϑ 5 / Γ 5 Κ Δ Ε Γ Δ 4 Φ Δ Λ< 5 Ε 8 Μ9 6 8 7 9 Γ Ν

More information

Microsoft Word - 专论综述1.doc

Microsoft Word - 专论综述1.doc 1 基 于 协 同 过 滤 的 高 考 志 愿 推 荐 系 统 徐 兰 静, 李 珊, 严 钊 ( 南 京 航 空 航 天 大 学 经 济 与 管 理 学 院, 南 京 211100) 摘 要 : 近 年 来 信 息 过 载 问 题 的 出 现 使 得 个 性 化 推 荐 技 术 应 运 而 生, 其 中 协 同 过 滤 推 荐 技 术 通 过 在 用 户 和 信 息 之 间 建 立 联 系, 被

More information

% % %/ + ) &,. ) ) (!

% % %/ + ) &,. ) ) (! ! ( ) + & # % % % %/ + ) &,. ) ) (! 1 2 0 3. 34 0 # & 5 # #% & 6 7 ( ) .)( #. 8!, ) + + < ; & ; & # : 0 9.. 0?. = > /! )( + < 4 +Χ Α # Β 0 Α ) Δ. % ΕΦ 5 1 +. # Ι Κ +,0. Α ϑ. + Ι4 Β Η 5 Γ 1 7 Μ,! 0 1 0

More information

Vol. 15 No. 1 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb O21 A

Vol. 15 No. 1 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb O21 A 5 200 2 Vol 5 No JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 200 2 2 50080 2 30024 O2 A 007-2683 200 0-0087- 05 A Goodness-of-fit Test Based on Empirical Likelihood and Application ZHOU

More information

7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ;

7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ; ! #! % & % ( ) ( +, & %. / & % 0 12 / 1 4 5 5! 6 7 8 7 # 8 7 9 6 8 7! 8 7! 8 7 8 7 8 7 8 7 : 8 728 7 8 7 8 7 8 7 8 7 & 8 7 4 8 7 9 # 8 7 9 ; 8 ; 69 7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β

More information

2015 年 第 24 卷 第 11 期 计 算 机 系 统 应 用 历 的 主 体 部 分 多 以 非 结 构 化 的 文 本 形 式 存 储, 很 多 研 究 只 能 基 于 有 限 的 结 构 化 数 据 进 行 [4,5], 无 法 满 足 临

2015 年 第 24 卷 第 11 期  计 算 机 系 统 应 用 历 的 主 体 部 分 多 以 非 结 构 化 的 文 本 形 式 存 储, 很 多 研 究 只 能 基 于 有 限 的 结 构 化 数 据 进 行 [4,5], 无 法 满 足 临 计 算 机 系 统 应 用 http://www.c-s-a.org.cn 2015 年 第 24 卷 第 11 期 1 面 向 电 子 病 历 中 文 医 学 信 息 的 可 视 组 织 方 法 徐 天 明 1,2, 樊 银 亭 3, 马 翠 霞 1, 滕 东 兴 1 ( 中 国 科 学 院 软 件 研 究 所 人 机 交 互 技 术 与 智 能 信 息 处 理 实 验 室, 北 京 100190)

More information

Β Χ + Δ Ε /4 10 ) > : > 8 / 332 > 2 / 4 + Φ + Γ 0 4 Η / 8 / 332 / 2 / 4 + # + Ι + ϑ /) 5 >8 /3 2>2 / 4 + ( )( + 8 ; 8 / 8. 8 :

Β Χ + Δ Ε /4 10 ) > : > 8 / 332 > 2 / 4 + Φ + Γ 0 4 Η / 8 / 332 / 2 / 4 + # + Ι + ϑ /) 5 >8 /3 2>2 / 4 + ( )( + 8 ; 8 / 8. 8 : !! # % & % () + (. / 0 ) 1 233 /. / 4 2 0 2 + + 5. 2 / 6 ) 6. 0 ) 7. 8 1 6 / 2 9 2 :+ ; < 8 10 ; + + ( =0 41 6< / >0 7 0?2) 29 + +.. 81 6> Α 29 +8 Β Χ + Δ Ε /4 10 )+ 2 +. 8 1 6 > 2 9 2 : > 8 / 332 > 2

More information

Reconstruction of the dark energy model 2006 9 .......................................................................... 2 Abstract.......................................................................

More information

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ ! % & ( ),. / & 0 1 & 2 1 // % & 3 0 4 5 ( 6( ) ( & 7 8 9:! ; < / 4 / 7 = : > : 8 > >? :! 0 1 & 7 8 Α :! 4 Β ( & Β ( ( 5 ) 6 Χ 8 Δ > 8 7:?! < 2 4 & Ε ; 0 Φ & % & 3 0 1 & 7 8 Α?! Γ ), Η % 6 Β% 3 Ι Β ϑ Ι

More information

1 2 / 3 1 A (2-1) (2-2) A4 6 A4 7 A4 8 A4 9 A ( () 4 A4, A4 7 ) 1 (2-1) (2-2) ()

1 2 / 3 1 A (2-1) (2-2) A4 6 A4 7 A4 8 A4 9 A ( () 4 A4, A4 7 ) 1 (2-1) (2-2) () (39mm E-Mail ( )( ), : : 1 1 ( ) 2 2 ( ) 29mm) WSK ( 1 2 / 3 1 A4 2 1 3 (2-1) 2-1 4 (2-2) 2-2 5 A4 6 A4 7 A4 8 A4 9 A4 10 11 ( () 4 A4, 5 6 7 8 A4 7 ) 1 (2-1) (2-2) () 1 2 (2-1) 3 (2-2) 4 5 6 7 (8 ) 9

More information

2.1 1980 1992 % 80 81 82 83 84 85 86 87 88 89 90 91 92 81.9 69.5 68.7 66.6 64.7 66.1 65.5 63.1 61.4 61.3 65.6 65.8 67.1 5.0 12.0 14.2 10.9 13.0 12.9 13.0 15.0 15.8 13.8 10.9 12.7 17.3 13.1 18.6 17.1 22.5

More information