Microsoft Word - Lecture 24 notes, 322, v2.doc

Similar documents

ANSYS 在航空航天器电磁兼容、电磁干扰分析中的应



usbintr.PDF



,,: 65,A - 10A, 9, M1A1, 85 %: 148,35 72,1/ 6, 17 % (20 15 %) [1 ] ;1994,, 2 2,;2001, ; , ; ; F - 16 ;2 ;; F - 15 ; ;, :,,,, ,,,, M

Ω Ω 75Ω

untitled

Microsoft PowerPoint L10

PCB a 2.5mm b 4.0mm A mm W/cm 3 PCB PCB 2.0mm 1.5mm PCB PCB

PCB Layout using ADS November 29, 2005 PCB Layout using ADS Dr. B. Frank Department of Electrical and Computer Engineering Queen's University Slide 1

g g,, IFA [6 ] IFA (7),, H, IPFA, L, ; H, E E 1 IFA [8 ], L S [ 8 ], F ( PIFA), 2 L C, L C d ν H, Z0 [ 7 ], E : L C L C Z0 = ( 0 /

Design of Dual-Frequency Microstrip Antennas Using a Shorting-Pin Loading - Antennas and Propagation Society International Symposium, IEEE

CAM350 CAM350 CAM350 CAM350 Export Gerber 274D 274X Fire9000 Barco DPF NC Drill Mill Excellon Sieb Meyer IPC D 350 IPC D A Modification CAM/Ger

The project High Datarate satellite transmission system Design of a space qualifiable transmitter Suited for LEO satellites and other small satellites

, V m 3,, I p R 1 = ( I p + I 1 ) / R 0 I p, R 1 / 4, R m V d, 1. 1 Doherty MRF6P21190 LDMOS,,, Doherty B Freescale M6P21190 ADS 2 Doherty 3 Doherty,

Microsoft Word - AN95007.doc

Design System Designer RF Analog - Designer Ptolemy Simulator System level - Designer E D A - s Modelsim RTL EDGE GSM WLAN Numeric Ptolemy Timed NC-Ve

Dual-band Dipole Antenna for ISO /ISO Passive RFID Tag Applications

DATASHEET SEARCH SITE |

6 7 EPCOS S+M 4 = å r =21, 7 GHz Q 7 200, MgTiO 3 -CaTiO 3 å r =38 7 GHz Q (Zr Sn)TiO 4 å r = GHz Q Ba(Zr Zn Ta)O 3 å r

3.1.doc

DSCHA Jun 06

( ) T arget R ecogn ition),,,,,,, ( IFF, Iden tification F riend o r Foe),,,,,,, ( N CTR, N on2 Cooperative T arget R ecogn ition), (

amp_b3.PDF

APPLI002.DOC

第1讲-电磁兼容导论.ppt

Microsoft Word - LAB 2 non-linear LNA.doc

Yageo Chip Antenna Sum V doc

RF Balum Transformers integrated circuit is a common application of these devices. Figure 4 shows the first mixer stage and second mixer stage of a re

Microsoft PowerPoint - Lecture-08.ppt

untitled

Balun Design

PowerPoint Presentation

1262 PIERS Proceedings, Beijing, China, March 23 27, 2009 with the tag IC, the gap width of the capacitive coupling structure was varied to tune the i

Microsoft PowerPoint - Pres_ansoft_elettronica.ppt

BranchLine Coupler - Quadrature

Title

Presentation - Advanced Planar Antenna Designs for Wireless Devices

TB215.doc

Filter Design in Thirty Seconds

HBCU-5710r Dec11

Novel 2-D Photonic Bandgap Structure For Microstrip Lines - IEEE Microwa ve and Guided Wave Letters

Microsoft PowerPoint - seminaari 26_5_04_antenniteknologiat.ppt

pages.pdf

A Miniature GPS Planar Chip Antenna Integrated with Low Noise Amplifier

CSTHandOut

SGS-Apache BQB proposal_04_11_2003

書名:

4.2 DC Bias

AWT6166_Rev_0.3.PMD

Progress In Electromagnetics Research Symposium 27, Prague, Czech Republic, August W1 H Feed Line Z L2 L1 W2 X Y Radiating Patch L3 I-Shaped Sl

Directional Couplers.doc

A stair-shaped slot antenna for the triple-band WLAN applications

Integrated microstrip and rectangular waveguide in planar form - IEEE Microwave and Wireless Components Letters [see also IEEE Microwave and Guided Wave Letters]

Microsoft Word - Differential Circuit Comparison App note_B.doc

Microsoft Word - SLVU2.8-4 Rev04.doc

Microsoft Word - M3_PB_IPJ_Monza3DuraProductBrief_ _R6.doc

Microsoft Word - nAN900-04_rev2_1.doc

FSA W Low Voltage Dual DPDT Analog Switch

untitled

lumprlc.fm

untitled



New compact six-band internal antenna - Antennas and Wireless Propagation Letters

192 IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 5, 2006 This method can be applied to all kinds of antennas in any environment and it becomes

Full Band Waveguide-to-Microstrip Probe Transitions - Microwave Symposium Digest, 1999 IEEE MTT-S International

HFSS Antenna Design Kit

Special Materials in CST STUDIO SUITE 2012

DDR2 Signal Quality Analysis on VIA PC Board

Balun Design

3 MIMO 2 l WLAN FIR l0 t l -t l0 l60 l6 T 64 l6 GI 80 0 OFDM 2 64 OFDM OFDM l6 CP CP FFT Viterbi G 2 3 IEEE802.lla CSI ChanneI State Information l GI

3152 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 52, NO. 11, NOVEMBER 2004 (c) Fig. 2. y z plane radiation patterns ofoma computed using FDTD

ims2001_TUIF_28_1659_CD.PDF

Hybrid of Monopole and Dipole Antennas for Concurrent 2.4- and 5-GHz WLAN Access Point

Microsoft Word - APMC譛€邨ゆク雁さV2.0.doc

Combline Cavity Filter Design in HFSS

rd 5.7 = = = 1. cm (II-4) fd 9 This is more of what we are looking for. If we would use a frequency of 900 MHz this even reduces to 6.cm (assumed ε r

*P Q RSS &T OO!! " #$% "" " "&! "! (! " "! " "! ) " *! +, -."/0! 1 23! )+4 5! * " 6&73 " F M <6&,3 = ; - <,3 => -&A4">3 %<,3B /0C D E? > 1&>">3 6

Vortrag Arpad.ppt

50 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 16, NO. 1, JANUARY 2006 Fig. 2. Geometry of the three-section PSL power divider. Fig. 5. Schem

APN1013.qxd

A low-profile planar monopole antenna for multiband operation of mobile handsets - Antennas and Propagation, IEEE Transactions on

untitled

Application Note template form-tc-004f

CBW = Ri BW = - n*gd Table 3. Normalized coupling matrix for filter Wire diameter: 0.075inch I R1 =0.9

RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS Qizheng Gu Nokia Mobile Phones, Inc. Q - Springer

High-Q RF-MEMS Tunable Evanescent-Mode Cavity Filter

Triple-band triangular-shaped meander monopole antenna with two coupled lines

Practical RF Printed Circuit Board Design

投影片 1

PADS Router PADS Router (KGS Technology Ltd.) Mentor ( Innoveda-PADS) PADS PowerPCB APLAC DPS CAD KGS 1989 PADS CAE/CAD/CAM EDA PCB PCB PCB PCB PCB PA

BlueCore chips 29th Sept04

Thus, the antenna has the ability to receive both vertically and horizontally polarized electromagnetic waves, which can be proven beneficial in indoo

SILICON RF DEVICES

幻灯片 1

Microsoft Word - 466CEBEF-25A E.doc

Transcription:

Whites, EE 322 Lecture 24 Page 1 of 10 Lecture 24: Oscillators. Clapp Oscillator. VFO Startup Oscillators are circuits that produce periodic output voltages, such as sinusoids. They accomplish this feat without any input signal, other than dc power. Our NorCal 40A has three: 1. VFO (an LC oscillator), 2. BFO (a crystal oscillator), 3. Transmitter oscillator (also a crystal oscillator). You ve likely had some experience with oscillators, perhaps with the astable multivibrator using the 555 IC. This RC oscillator produces a square-wave output voltage that is useful at low frequencies. Generally used in hobby-type circuits. The oscillators in the NorCal 40A are called feedback oscillators. This is a somewhat difficult subject since these oscillators are intrinsically nonlinear devices. Feedback oscillators have three basic parts: 1. An amplifier with signal gain G, 2. A linear feedback network with signal loss L, 3. A load of resistance R. We ll ignore the effects of R for now. The amplifier and feedback network are connected as shown in Figure 11.1(a): 2006 Keith W. Whites

Whites, EE 322 Lecture 24 Page 2 of 10 G= gain amplifier x y L= loss linear feedback network For the amplifier y = Gx (11.1) y while for the feedback network x= y= Lx (11.2) L Here we have two equations for two unknowns. However, these are not linearly independent equations! If G L x= y= 0. No oscillation is possible. G = L y and x may not be zero. Hence, oscillation is possible. Generally, G and L are complex numbers, so we have two real equations to satisfy in the equality G = L: 1. G = L the magnitudes are equal. (11.3) 2. G = L the phase angles are equal. (11.4) The meaning of (11.3) is that the gain of the amplifier compensates for the loss of the feedback network. The meaning of (11.4) is that the feedback network compensates for the phase shift (i.e., time delay) of the amplifier. In a feedback oscillator, noise in the circuit will be amplified repeatedly until a single frequency output signal y is produced a perfect oscillation.

Whites, EE 322 Lecture 24 Page 3 of 10 In general, (11.3) and (11.4) can be satisfied for the situations shown in Figs. 11.1(b) and (c). In Fig. 11.1(b), G may decreases at high power levels due to amplifier overloading: In the NorCal 40A this decreasing G occurs because of gain limiting rather than overloading of the amplifier this scheme yields a cleaner sinusoidal output signal. The phase criterion in (11.4) is met using a resonant circuit in the feedback network. Why? Because near the resonant frequency of the feedback circuit, the phase L varies rapidly, as shown in Fig. 11.1(c). This characteristic allows precise placement of the oscillator frequency. Clever! (Also has the effect of producing smaller phase noise. ) Hence, from the two curves in Fig. 11.1 we see that the oscillation criteria are met when G P = L (at a certain P o ) (11.5) ( o ) L( f ) = G (at a certain f 0 ) (11.6) 0

Whites, EE 322 Lecture 24 Page 4 of 10 Oscillator Startup Another important aspect of oscillators is how they begin oscillating (remember: no input!). The criteria we just derived apply to steady state power at the frequency of oscillation. There are two general approaches to starting an oscillator: (1) repeated amplification of noise, or (2) with an external startup signal (as in super-regenerative receivers). If G > L, then noise that meets the phase criterion (11.6) will be repeatedly amplified. At startup, we will use the small signal gain g to state the start-up criterion for feedback oscillators: 1. g > L, (11.8) 2. L( f ) = g. (11.9) 0 Interestingly, some oscillators that work well at relatively high power will not start-up by themselves at low power. An example of this is Class C amplifiers, like the Power Amplifier Q7 in the NorCal 40A. Rather than the gain curve shown in Fig. 11.1(b), class C amplifiers have the gain curve shown below. (This G curve was constructed from data collected in Prob. 24.B.)

Whites, EE 322 Lecture 24 Page 5 of 10 20 Gain versus output power for the class C Power Amplifier in the NorCal 40A 18 G L 16 Stable operating power 14 12 10 0 0.5 1 1.5 2 P s P [W] P o Class C amplifiers will not oscillate if P < Ps. However, once P > P s oscillation may occur if the feedback network meets the phase criterion (11.9). It turns out, interestingly, that the oscillators in the NorCal 40A (such as the VFO) actually startup in Class A then shift to Class C as P increases. Clapp Oscillator There are many topologies for feedback oscillator circuits. However, all can be divided into two general classes: (1) Colpitts and (2) Hartley oscillators. Each contains an amplifier, a resonator and a voltage divider network to feed some of the output signal back to the input (called feedback ).

Whites, EE 322 Lecture 24 Page 6 of 10 In Colpitts oscillators, capacitors form the voltage divider, while inductors form the divider network in Hartley oscillators. The VFO in the NorCal 40A is a Clapp oscillator, which is a member of the Colpitts family since capacitors form the voltage divider network: We will analyze the NorCal 40A VFO in two stages. First is startup using small-signal (i.e., linear) analysis. In the next lecture, we will look at steady state using a large signal analysis.

Whites, EE 322 Lecture 24 Page 7 of 10 VFO Startup Condition We can construct the small signal equivalent circuit for the VFO in Fig. 11.4 as shown in Fig. 11.5: v s s i i 2 - i d = g m v gs R C 2 C 1 vgs L 1 C 3 + d g v g Amplifier Load Feedback network Referring back to Fig. 11.1, the input x in this circuit is v gs while the output y is i d : x G y = Gx With id gmvgs = for the JFET, we use the small-signal gain g = g m in the startup criterion (11.8) and (11.9): 1. gm > L, (11.8) L f = g. (11.9) 2. ( ) 0 m g m is a real and positive quantity dependent on the type of JFET and the value of v gs. See Fig. 9.16 (p. 173) for an example (J309).

Whites, EE 322 Lecture 24 Page 8 of 10 We ll now solve for v gs in terms of i d, since L is a ratio of them. This circuit will oscillate at the resonant f of the tank because of the phase criterion (11.9). The resonant frequency f 0 is 1 f0 = (11.13) 2π LC 1 1 1 where C = + + C C C which is in series with L 1. 1 1 2 3 1 (11.14) Now, at this resonant f = f 0, i+ i2 = 0 (a key!). Hence, with vs i = = jω C v 2 1 ( ) 0 2 s i= jω C v 0 2 s (11.15) jω 0C2 Therefore, i ( jω0c2vs ) C2 vgs = = = vs (11.16) jω C jω C C 0 1 0 1 1 At resonance, the source terminal of the JFET has the voltage v = Ri (11.17) s Substituting (11.17) into (11.16) gives C2 vgs = Rid (11.18) C1 This is our needed equation since we have v gs in terms of i d. Now, by the definition of L in (11.2) and using (11.18): d

Whites, EE 322 Lecture 24 Page 9 of 10 id C1 L = = [S] (11.19) v RC gs (11.18) 2 By obtaining this equation, we have solved for the small signal loss factor of the feedback network in Fig. 11.5. With this L factor now known, it is simple matter to determine the startup condition for the VFO. Specifically, using (11.8) and (11.19), we find that the startup condition for this JFET VFO (Clapp oscillator) is gm C1 > L or gm > [S] (11.20) RC In the NorCal 40A, C 1 = C 2 (actually C52 = C53) giving the startup condition 1 g m > [S] (11.25) R But what about the phase condition L( f ) 0 = gm? Notice that both g m and L have zero phase shift at the resonant frequency. Consequently, the phase criterion for startup is intrinsically satisfied. In summary, if the condition (11.25) is satisfied the VFO circuit in the NorCal 40A will begin to oscillate on its own by repeatedly amplifying noise. Very cool! 2

Whites, EE 322 Lecture 24 Page 10 of 10 Check VFO Startup Design Let s carefully look at VFO startup in the NorCal 40A. The load resistance R of Fig. 11.5 is R23. The VFO begins oscillation with v g near zero because of R21, which is why it is called the start up resistor. With vgs 0, then g m is large: g m At VFO startup 2I V dss c 18 ms for J309 (see Fig. 9.16) V c 0 V gs Now let s check the startup condition. From (11.25), is? 1 g > m vgs 0 R23 At startup, gm 18 ms while 1/R23 0.556 ms. The answer is then yes (by 32x). Therefore, the VFO in the NorCal 40A should easily start up.

易迪拓培训 专注于微波 射频 天线设计人才的培养网址 :http://www.edatop.com 射频和天线设计培训课程推荐 易迪拓培训 (www.edatop.com) 由数名来自于研发第一线的资深工程师发起成立, 致力并专注于微波 射频 天线设计研发人才的培养 ; 我们于 2006 年整合合并微波 EDA 网 (www.mweda.com), 现已发展成为国内最大的微波射频和天线设计人才培养基地, 成功推出多套微波射频以及天线设计经典培训课程和 ADS HFSS 等专业软件使用培训课程, 广受客户好评 ; 并先后与人民邮电出版社 电子工业出版社合作出版了多本专业图书, 帮助数万名工程师提升了专业技术能力 客户遍布中兴通讯 研通高频 埃威航电 国人通信等多家国内知名公司, 以及台湾工业技术研究院 永业科技 全一电子等多家台湾地区企业 易迪拓培训课程列表 :http://www.edatop.com/peixun/rfe/129.html 射频工程师养成培训课程套装该套装精选了射频专业基础培训课程 射频仿真设计培训课程和射频电路测量培训课程三个类别共 30 门视频培训课程和 3 本图书教材 ; 旨在引领学员全面学习一个射频工程师需要熟悉 理解和掌握的专业知识和研发设计能力 通过套装的学习, 能够让学员完全达到和胜任一个合格的射频工程师的要求 课程网址 :http://www.edatop.com/peixun/rfe/110.html ADS 学习培训课程套装该套装是迄今国内最全面 最权威的 ADS 培训教程, 共包含 10 门 ADS 学习培训课程 课程是由具有多年 ADS 使用经验的微波射频与通信系统设计领域资深专家讲解, 并多结合设计实例, 由浅入深 详细而又全面地讲解了 ADS 在微波射频电路设计 通信系统设计和电磁仿真设计方面的内容 能让您在最短的时间内学会使用 ADS, 迅速提升个人技术能力, 把 ADS 真正应用到实际研发工作中去, 成为 ADS 设计专家... 课程网址 : http://www.edatop.com/peixun/ads/13.html HFSS 学习培训课程套装该套课程套装包含了本站全部 HFSS 培训课程, 是迄今国内最全面 最专业的 HFSS 培训教程套装, 可以帮助您从零开始, 全面深入学习 HFSS 的各项功能和在多个方面的工程应用 购买套装, 更可超值赠送 3 个月免费学习答疑, 随时解答您学习过程中遇到的棘手问题, 让您的 HFSS 学习更加轻松顺畅 课程网址 :http://www.edatop.com/peixun/hfss/11.html `

易迪拓培训 专注于微波 射频 天线设计人才的培养网址 :http://www.edatop.com CST 学习培训课程套装该培训套装由易迪拓培训联合微波 EDA 网共同推出, 是最全面 系统 专业的 CST 微波工作室培训课程套装, 所有课程都由经验丰富的专家授课, 视频教学, 可以帮助您从零开始, 全面系统地学习 CST 微波工作的各项功能及其在微波射频 天线设计等领域的设计应用 且购买该套装, 还可超值赠送 3 个月免费学习答疑 课程网址 :http://www.edatop.com/peixun/cst/24.html HFSS 天线设计培训课程套装套装包含 6 门视频课程和 1 本图书, 课程从基础讲起, 内容由浅入深, 理论介绍和实际操作讲解相结合, 全面系统的讲解了 HFSS 天线设计的全过程 是国内最全面 最专业的 HFSS 天线设计课程, 可以帮助您快速学习掌握如何使用 HFSS 设计天线, 让天线设计不再难 课程网址 :http://www.edatop.com/peixun/hfss/122.html 13.56MHz NFC/RFID 线圈天线设计培训课程套装套装包含 4 门视频培训课程, 培训将 13.56MHz 线圈天线设计原理和仿真设计实践相结合, 全面系统地讲解了 13.56MHz 线圈天线的工作原理 设计方法 设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体操作, 同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试 通过该套课程的学习, 可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹配电路的原理 设计和调试 详情浏览 :http://www.edatop.com/peixun/antenna/116.html 我们的课程优势 : 成立于 2004 年,10 多年丰富的行业经验, 一直致力并专注于微波射频和天线设计工程师的培养, 更了解该行业对人才的要求 经验丰富的一线资深工程师讲授, 结合实际工程案例, 直观 实用 易学 联系我们 : 易迪拓培训官网 :http://www.edatop.com 微波 EDA 网 :http://www.mweda.com 官方淘宝店 :http://shop36920890.taobao.com 专注于微波 射频 天线设计人才的培养易迪拓培训官方网址 :http://www.edatop.com 淘宝网店 :http://shop36920890.taobao.com