Microsoft Word - HSDPA test report.doc

Similar documents

ANSYS 在航空航天器电磁兼容、电磁干扰分析中的应



usbintr.PDF



,,: 65,A - 10A, 9, M1A1, 85 %: 148,35 72,1/ 6, 17 % (20 15 %) [1 ] ;1994,, 2 2,;2001, ; , ; ; F - 16 ;2 ;; F - 15 ; ;, :,,,, ,,,, M

untitled

Ω Ω 75Ω

PCB a 2.5mm b 4.0mm A mm W/cm 3 PCB PCB 2.0mm 1.5mm PCB PCB

Microsoft PowerPoint L10

PCB Layout using ADS November 29, 2005 PCB Layout using ADS Dr. B. Frank Department of Electrical and Computer Engineering Queen's University Slide 1

g g,, IFA [6 ] IFA (7),, H, IPFA, L, ; H, E E 1 IFA [8 ], L S [ 8 ], F ( PIFA), 2 L C, L C d ν H, Z0 [ 7 ], E : L C L C Z0 = ( 0 /

CAM350 CAM350 CAM350 CAM350 Export Gerber 274D 274X Fire9000 Barco DPF NC Drill Mill Excellon Sieb Meyer IPC D 350 IPC D A Modification CAM/Ger

The project High Datarate satellite transmission system Design of a space qualifiable transmitter Suited for LEO satellites and other small satellites

Design of Dual-Frequency Microstrip Antennas Using a Shorting-Pin Loading - Antennas and Propagation Society International Symposium, IEEE

, V m 3,, I p R 1 = ( I p + I 1 ) / R 0 I p, R 1 / 4, R m V d, 1. 1 Doherty MRF6P21190 LDMOS,,, Doherty B Freescale M6P21190 ADS 2 Doherty 3 Doherty,

Design System Designer RF Analog - Designer Ptolemy Simulator System level - Designer E D A - s Modelsim RTL EDGE GSM WLAN Numeric Ptolemy Timed NC-Ve

Dual-band Dipole Antenna for ISO /ISO Passive RFID Tag Applications

DATASHEET SEARCH SITE |

6 7 EPCOS S+M 4 = å r =21, 7 GHz Q 7 200, MgTiO 3 -CaTiO 3 å r =38 7 GHz Q (Zr Sn)TiO 4 å r = GHz Q Ba(Zr Zn Ta)O 3 å r

3.1.doc

Yageo Chip Antenna Sum V doc

DSCHA Jun 06

( ) T arget R ecogn ition),,,,,,, ( IFF, Iden tification F riend o r Foe),,,,,,, ( N CTR, N on2 Cooperative T arget R ecogn ition), (

第1讲-电磁兼容导论.ppt

Microsoft Word - LAB 2 non-linear LNA.doc

Microsoft Word - AN95007.doc

RF Balum Transformers integrated circuit is a common application of these devices. Figure 4 shows the first mixer stage and second mixer stage of a re

untitled

Microsoft Word - Lecture 24 notes, 322, v2.doc

1262 PIERS Proceedings, Beijing, China, March 23 27, 2009 with the tag IC, the gap width of the capacitive coupling structure was varied to tune the i

Microsoft PowerPoint - Lecture-08.ppt

amp_b3.PDF

PowerPoint Presentation

APPLI002.DOC

Microsoft PowerPoint - Pres_ansoft_elettronica.ppt

Microsoft PowerPoint - seminaari 26_5_04_antenniteknologiat.ppt

BranchLine Coupler - Quadrature

Presentation - Advanced Planar Antenna Designs for Wireless Devices

SGS-Apache BQB proposal_04_11_2003

Title

Balun Design

TB215.doc

CSTHandOut

A Miniature GPS Planar Chip Antenna Integrated with Low Noise Amplifier

Filter Design in Thirty Seconds

HBCU-5710r Dec11

pages.pdf

A stair-shaped slot antenna for the triple-band WLAN applications

Novel 2-D Photonic Bandgap Structure For Microstrip Lines - IEEE Microwa ve and Guided Wave Letters

AWT6166_Rev_0.3.PMD

Microsoft Word - M3_PB_IPJ_Monza3DuraProductBrief_ _R6.doc

Progress In Electromagnetics Research Symposium 27, Prague, Czech Republic, August W1 H Feed Line Z L2 L1 W2 X Y Radiating Patch L3 I-Shaped Sl

FSA W Low Voltage Dual DPDT Analog Switch

書名:

Microsoft Word - SLVU2.8-4 Rev04.doc

untitled

Microsoft Word - nAN900-04_rev2_1.doc

192 IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 5, 2006 This method can be applied to all kinds of antennas in any environment and it becomes

Directional Couplers.doc


Full Band Waveguide-to-Microstrip Probe Transitions - Microwave Symposium Digest, 1999 IEEE MTT-S International


HFSS Antenna Design Kit

lumprlc.fm

untitled

Integrated microstrip and rectangular waveguide in planar form - IEEE Microwave and Wireless Components Letters [see also IEEE Microwave and Guided Wave Letters]

rd 5.7 = = = 1. cm (II-4) fd 9 This is more of what we are looking for. If we would use a frequency of 900 MHz this even reduces to 6.cm (assumed ε r

一、 标题

Combline Cavity Filter Design in HFSS

Microsoft Word - Differential Circuit Comparison App note_B.doc

New compact six-band internal antenna - Antennas and Wireless Propagation Letters

3152 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 52, NO. 11, NOVEMBER 2004 (c) Fig. 2. y z plane radiation patterns ofoma computed using FDTD

Special Materials in CST STUDIO SUITE 2012

3 MIMO 2 l WLAN FIR l0 t l -t l0 l60 l6 T 64 l6 GI 80 0 OFDM 2 64 OFDM OFDM l6 CP CP FFT Viterbi G 2 3 IEEE802.lla CSI ChanneI State Information l GI

untitled

Hybrid of Monopole and Dipole Antennas for Concurrent 2.4- and 5-GHz WLAN Access Point

4.2 DC Bias

RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS Qizheng Gu Nokia Mobile Phones, Inc. Q - Springer

DDR2 Signal Quality Analysis on VIA PC Board

Vortrag Arpad.ppt

Microsoft Word - APMC譛€邨ゆク雁さV2.0.doc

Application Note template form-tc-004f

*P Q RSS &T OO!! " #$% "" " "&! "! (! " "! " "! ) " *! +, -."/0! 1 23! )+4 5! * " 6&73 " F M <6&,3 = ; - <,3 => -&A4">3 %<,3B /0C D E? > 1&>">3 6

Practical RF Printed Circuit Board Design

A low-profile planar monopole antenna for multiband operation of mobile handsets - Antennas and Propagation, IEEE Transactions on

Balun Design

ims2001_TUIF_28_1659_CD.PDF

Triple-band triangular-shaped meander monopole antenna with two coupled lines

BlueCore chips 29th Sept04

AWR ICSICT 2008 paper 91608

CBW = Ri BW = - n*gd Table 3. Normalized coupling matrix for filter Wire diameter: 0.075inch I R1 =0.9

High-Q RF-MEMS Tunable Evanescent-Mode Cavity Filter

50 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 16, NO. 1, JANUARY 2006 Fig. 2. Geometry of the three-section PSL power divider. Fig. 5. Schem

Thus, the antenna has the ability to receive both vertically and horizontally polarized electromagnetic waves, which can be proven beneficial in indoo

幻灯片 1

投影片 1

Antenna Matching for the TRF7960 RFID Reader

Transcription:

HSDPA Radio Test Report Test spec version : 3GPP TS34.121 V7.1.0 Model No. PCB Radio Version Measurement date Test By Remark 1

Contents Initiation Setting of CMU200...3 1. Transmitter (5)...4 1.1. MAXIMUM OUTPUT POWER WITH HS-DPCCH(5.2A)...5 1.2. HS-DPCCH (5.7A)...7 1.3. SPECTRUM EMISSION MASK (5.9A)...9 1.4. ADJACENT CHANNEL LEAKAGE POWER RATIO WITH HS-DPCCH(5.10A)... 11 1.5. ERROR VECTOR MAGNITUDE WITH HS-DPCCH(5.13.1A)... 14 2. Receiver(6)... 16 2.1. MAXIMUM INPUT LEVEL FOR HS-PDSCH RECEPTION (16QAM) (6.3A)... 16 3. Annex --- Configuration... 18 2

Initiation Setting of CMU200 1. Dedicated Channel select RMC mode. 2. [Network] [Requested UE Data] [Secret Key part1] set 0011223344556677, [Secret Key part2] set 8899AABBCCDDEEFF which depends on 3G SIM card s secret key number. 3. [BS Signal] [Level reference] select Output Channel Power(Ior) 4. [BS Signal] [Downlink Physical Channel] setting physical channels value following Table E.5.1 and Table E.5.10 3

5. [BS Signal] [Downlink Physical Channel] [HSDPA channel] set On. 6. Power on the MS and waiting for CS:Registed & PS:Attached successfully. 7. [Connect Control] [Trigger] [Trigger Source] select HSDPCCH. 8. Change some BS signal/ue signal settings must be in Disconnect UE(PS) mode. 1. Transmitter (5) 4

1.1. Maximum Output Power with HS-DPCCH(5.2A) 1.1.1 Minimum Requirements The UE maximum output power with HS-DPCCH shall be within the value and tolerance specified in table 5.2A.1 when HS-DPCCH is fully or partially transmitted during a DPCCH timeslot. 1.1.2 Initial conditions Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH Frequencies to be tested: low range, mid range, high range 1.1.3. Setting Item and Values on CMU200 1. Set [Downlink power] to -86dBm. 2. [BS Signal] [Downlink Physical Channels] [DL DPCH Time Offset] set 0 (default value). 3. [BS Signal] [HSDPA HS-DSCH] [UE Category] set 1 [Channel Configuration Type] select Fixed Reference Channel [H-Set Selection] select H-Set1 QPSK 4. [UE Signal] [UE Gain factor] [Packet Data] [HSDPA Test mode] set Beta c to 1, Beta d to 15, delta ACK/delta NACK to 5(default), delta CQI to 2(default). 5

5. Pressing [Connection] [Connect UE(PS)] 6. [Menu] [Power] [Application] select Maximum Power to read UE Power(RMS) averaged value. 7. [Connect Control] [Disconnect UE(PS)] 8. Repeat step3 to step6 for varied Beta c and Beta d. 1.2.4 Test Data Normal Condition CH 9613 1922.6MHz CH 9750 1950MHz CH 9887 1977.4MHz Test requirements βc = 1, βd = 15 24dBm +1/-3dB βc = 12, βd = 15 24dBm +1/-3dB βc = 15, βd = 8 23dBm +2/-3dB βc = 15, βd = 1 22dBm +3/-3dB HTHV CH 9613 1922.6MHz CH 9750 1950MHz CH 9887 1977.4MHz Test requirements βc = 1, βd = 15 24dBm +1/-3dB βc = 12, βd = 15 24dBm +1/-3dB βc = 15, βd = 8 23dBm +2/-3dB βc = 15, βd = 1 22dBm +3/-3dB HTLV CH 9613 1922.6MHz CH 9750 1950MHz CH 9887 1977.4MHz Test requirements βc = 1, βd = 15 24dBm +1/-3dB βc = 12, βd = 15 24dBm +1/-3dB βc = 15, βd = 8 23dBm +2/-3dB βc = 15, βd = 1 22dBm +3/-3dB LTHV CH 9613 1922.6MHz CH 9750 1950MHz CH 9887 1977.4MHz Test requirements βc = 1, βd = 15 24dBm +1/-3dB βc = 12, βd = 15 24dBm +1/-3dB βc = 15, βd = 8 23dBm +2/-3dB βc = 15, βd = 1 22dBm +3/-3dB LTLV CH 9613 1922.6MHz CH 9750 1950MHz CH 9887 1977.4MHz Test requirements βc = 1, βd = 15 24dBm +1/-3dB βc = 12, βd = 15 24dBm +1/-3dB βc = 15, βd = 8 23dBm +2/-3dB βc = 15, βd = 1 22dBm +3/-3dB 6

1.2. HS-DPCCH (5.7A) 1.2.1 Test Requirements The transmit power levels and steps shall meet the time mask specified in Figure 5.7A.2. Table 5.7A.2: Transmitter power test requirements Sub-test in table C.10.1.4 3 Power step Power step slot boundary Power step size, P [db] Transmitter power step tolerance [db] 1 Start of Ack/Nack 6 +/- 2.3 2 Start of CQI 1 +/- 0.6 3 Middle of CQI 0 +/- 0.6 4 End of CQI 5 +/- 2.3 Table 5.7A.1: Transmitter power step tolerance Power step size (Up or down) P [db] Transmitter power step tolerance [db] 0 +/- 0.5 1 +/- 0.5 2 +/- 1.0 3 +/- 1.5 4 P 7 +/- 2.0 1.2.2 Initial conditions Test environment: normal 7

Frequencies to be tested: mid range The test specific content for the TRANSPORT CHANNEL RECONFIGURATION message is as follows: Information Element - Ack-Nack repetition factor 1 - CQI repetition factor 1 Value/remark 1.2.3 Setting Item and Values using CMU200 1. Set [Downlink power] to -86dBm. 2. [BS Signal] [Downlink Physical Channels] [DL DPCH Time Offset] set 6 (default value). 3. [BS Signal] [HSDPA HS-DSCH] [UE Category] set 1 [Channel Configuration Type] select User Defined Channel Change the value of Inter-T T ID i s ta nc e to 2 i n the U s er D efi ned Channel gr oup 4. [UE Signal] [UE Gain factor] [Packet Data] [HSDPA Test mode] set Beta c to 15, Beta d to 8, delta ACK/delta NACK to 8, delta CQI to 7. 5. Pressing [Connection] [Connect UE(PS)] 8

6. [BS Signal Settings] [TPC Pattern Config.] [Set1 Pattern Type] select ALL 1. 7. [Menu] [Code Domain Power] [Application] select HS-DPCCH Time Mask. 8. [HS-DPCCH Time Mask] [Repetition] select Single [Diagram Type] select HS-DPCCH to get HS-DPCCH Time mask result at Tx max output. 9. [BS Signal Settings] [TPC Pattern Config.] [Set1 Pattern Type] select Closed loop, [Set1 Target power] set 0dBm to get HS-DPCCH Time mask result at Tx output power is 0dBm. 1.2.4 Test Data Tx output power = 0dBm Sub-test in table C.10.1.4 3 CH9750 1950MHz 1 6 +/-2dB 2 1 +/-0.5dB 3 0 +/-0.5dB Power Step Test requirments 4 5 +/-2dB Tx output power = Max output Sub-test in table CH9750 Power Step Test requirments C.10.1.4 1950MHz 1 6 +/-2dB 2 1 +/-0.5dB 3 3 0 +/-0.5dB 4 5 +/-2dB 1.3. Spectrum emission mask (5.9A) 1.3.1 Test Requirements 9

f in MHz (Note 1) Table 5.9A.1: Spectrum Emission Mask Requirement Minimum requirement (Note 2) Relative requirement f 5 MHz f 1 3. 5 MHz f 10 7. 5 MHz Absolute requirement Additional requirements Band II, Band IV and Band V (Note 3) 2.5 to 3.5 35 15 2. dbc -71.1 dbm -15 dbm 3.5 to 7.5 35 dbc -55.8 dbm -13 dbm 7.5 to 8.5 39 dbc -55.8 dbm -13 dbm Measurement bandwidth (Note 6) 30 khz (Note 4) 1 MHz (Note 5) 1 MHz (Note 5) 8.5 to 12.5 MHz -49 dbc -55.8 dbm -13 dbm 1 MHz (Note 5) Note 1: f is the separation between the carrier frequency and the centre of the measurement bandwidth. Note 2: The minimum requirement is calculated from the relative requirement or the absolute requirement, whichever is the higher power. Note 3: For operation in Band II, Band IV and Band V only, the minimum requirement is calculated from the minimum requirement calculated in Note 2 or the additional requirement for band II, whichever is the lower power. Note 4: The first and last measurement position with a 30 khz filter is at f equals to 2.515 MHz and 3.485 MHz. Note 5: The first and last measurement position with a 1 MHz filter is at f equals to 4 MHz and 12 MHz. Note 6: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth. 1.3.2 Initial conditions Test environment: normal Frequencies to be tested: low range, mid range, high range 1.3.3 Setting Item and Values on CMU200 1. Set [Downlink power] to -86dBm. 2. [BS Signal] [Downlink Physical Channels] [DL DPCH Time Offset] set 0 (default value). 3. [BS Signal] [HSDPA HS-DSCH] [UE Category] set 1 [Channel Configuration Type] select Fixed Reference Channel [H-Set Selection] select H-Set1 QPSK 4. [BS Signal] [TPC Settings] [Set1 Pattern Type] select ALL 1. 5. [UE Signal] [UE Gain factor] [Packet Data] [HSDPA Test mode] set Beta c to 1, Beta d to 15, delta ACK/delta NACK to 5(default), delta CQI to 2(default). 6. Pressing [Connection] [Connect UE(PS)] 7. [Menu] [Power] [Application] select Emission Mask to get spectrum mask test result. 8. [Connect Control] [Disconnect UE(PS)] 10

9. Repeat step 5~8 for varied Beta c and Beta d. 1.3.4 Test Data Normal Condition CH 9613 βc = 1, βd = 15 βc = 12, βd = 15 βc = 15, βd = 8 βc = 15, βd = 1 1922.6MHz CH 9750 1950MHz CH 9887 1977.4MHz 1.4. Adjacent Channel Leakage Power Ratio with HS-DPCCH(5.10A) 1.4.1 Test Requirements If the adjacent channel RRC filtered mean power is greater than 50dBm then the ACLR shall be higher than the value specified in table 5.10A.1. This is applicable for all values of β c, βd and β hs as Table C.10.1.4 Table 5.10A.1: UE ACLR Power Class UE channel ACLR limit 3 +5 MHz or 5 MHz 33 db 3 +10 MHz or 10 MHz 43 db 4 +5 MHz or 5 MHz 33 db 4 +10 MHz or 10 MHz 43 db 1.4.2 Initial conditions Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH Frequencies to be tested: low range, mid range, high range 1.4.3 Setting Item and Values on CMU200 1. Set [Downlink power] to -86dBm. 2. [BS Signal] [Downlink Physical Channels] [DL DPCH Time Offset] set 0 (default value). 3. [BS Signal] [HSDPA HS-DSCH] [UE Category] set 1 [Channel Configuration Type] select Fixed Reference Channel [H-Set Selection] select H-Set1 QPSK 4. [BS Signal] [TPC Settings] [Set1 Pattern Type] select ALL 1. 11

5. [UE Signal] [UE Gain factor] [Packet Data] [HSDPA Test mode] set Beta c to 1, Beta d to 15, delta ACK/delta NACK to 5(default), delta CQI to 2(default). 6. Pressing [Connection] [Connect UE(PS)] 7. [Menu] [Power] [Application] select ACLR Filter to get ACLR test result. 8. [Connect Control] [Disconnect UE(PS)] 9. Repeat step 5~8 for varied Beta c and Beta d. 1.3.4 Test Data Normal CH9613 CH9750 CH9887 Test UE channel condition 1922.6MHz 1950MHz 1977.4MHz requirements βc = 1, βd = 15-10MHz βc = 12, βd = 15-10MHz βc = 15, βd = 8-10MHz βc = 15, βd = 1-10MHz HTHV UE channel CH9613 CH9750 CH9887 Test 1922.6MHz 1950MHz 1977.4MHz requirements βc = 1, βd = 15-10MHz βc = 12, βd = 15-10MHz βc = 15, βd = 8-10MHz βc = 15, βd = 1-10MHz HTLV UE channel CH9613 CH9750 CH9887 Test 1922.6MHz 1950MHz 1977.4MHz requirements βc = 1, βd = 15-10MHz 12

βc = 12, βd = 15-10MHz βc = 15, βd = 8-10MHz βc = 15, βd = 1-10MHz LTHV UE channel CH9613 CH9750 CH9887 Test 1922.6MHz 1950MHz 1977.4MHz requirements βc = 1, βd = 15-10MHz βc = 12, βd = 15-10MHz βc = 15, βd = 8-10MHz βc = 15, βd = 1-10MHz LTLV UE channel CH9613 CH9750 CH9887 Test 1922.6MHz 1950MHz 1977.4MHz requirements βc = 1, βd = 15-10MHz βc = 12, βd = 15-10MHz βc = 15, βd = 8-10MHz βc = 15, βd = 1-10MHz 13

1.5. Error Vector Magnitude with HS-DPCCH(5.13.1A) 1.5.1 Test Requirements The EVM shall not exceed 17.5 % for the parameters specified in table 5.13.1A. This is applicable for all values of β, β and β as Table C.10.1.4. c d hs Table 5.13.1A: Parameters for EVM Parameter Level / Status Unit Output power 20 dbm Operating conditions Normal conditions Power control step size 1 db Measurement PRACH 3904 period 1 Any DPCH From 1280 to 2560 2 Chips Note 1: Less any 25µs transient periods Note 2: The longest period over which the nominal power remains constant 1.5.2 Initial conditions Test environment: normal Frequencies to be tested: low range, mid range, high range 1.4.3 Setting Item and Values on CMU200 1. Set [Downlink power] to -86dBm. 2. [BS Signal] [Downlink Physical Channels] [DL DPCH Time Offset] set 6. 3. [BS Signal] [HSDPA HS-DSCH] [UE Category] set 1 [Channel Configuration Type] select Fixed Reference Channel [H-Set Selection] select H-Set1 QPSK 4. [BS Signal] [TPC Settings] [Set1 Pattern Type] select ALL 1. 5. [UE Signal] [UE Gain factor] [Packet Data] [HSDPA Test mode] set Beta c to 1, Beta d to 15, delta ACK/delta NACK to 5(default), delta CQI to 2(default). 6. Pressing [Connection] [Connect UE(PS)] 7. [Menu] [Power] [Application] select Overview WCDMA to get EVM test result. 8. [Connect Control] [Disconnect UE(PS)] 9. Repeat step 5~8 for varied Beta c and Beta d. 10. [BS Signal Settings] [TPC Pattern Config.] [Set1 Pattern Type] select Closed loop, [Set1 Target power] set -20dBm, Repeat step 5~9 to get EVM result at Tx output power is -20dBm. 1.3.4 Test Data 14

Max Tx Output power Normal Condition βc = 1, βd = 15 βc = 12, βd = 15 βc = 15, βd = 8 βc = 15, βd = 1 CH 9613 1922.6MHz CH 9750 1950MHz CH 9887 1977.4MHz Test requirements 17.5% Tx output power = -20dBm Normal CH 9613 Condition 1922.6MHz βc = 1, βd = 15 βc = 12, βd = 15 βc = 15, βd = 8 βc = 15, βd = 1 CH 9750 1950MHz CH 9887 1977.4MHz Test requirements 17.5% 15

2. Receiver(6) 2.1. Maximum Input Level for HS-PDSCH Reception (16QAM) (6.3A) 2.1.1 Test Requirements The requirements are specified in terms of a minimum information bit throughput R for the DL reference channel H-Set 1 (16QAM version) specified in Annex C.8.1.1 with the addition of the parameters in Table 6.3A.1 and the downlink physical channel setup according to table E.5.1. Using this configuration the throughput shall meet or exceed the minimum requirements specified in table 6.3A.2. The reference for this requirement is TS 25.101 [1] clause 7.4.2. Table 6.3A.1 Minimum requirement parameters for 16QAM Maximum Input Level Parameter Unit Value Phase reference P-CPICH Î or dbm/3.84 MHz -25 * UE transmitted mean power dbm 20 (for Power class 3) 18 (for Power class 4) DPCH_Ec/Ior db -13 HS-SCCH_1_Ec/Ior db -13 Redundancy and constellation version 6 Maximum number of HARQ 1 transmissions Note: The HS-SCCH and corresponding HS-PDSCH shall be transmitted continuously with constant power but the HS-SCCH shall only use the identity of the UE under test every third TTI. Table 6.3A.2 Minimum throughput requirement HS-PDSCH Ec / I or (db) T-put R (kbps) -3 700 2.1.2 Initial conditions Test environment: normal. Frequencies to be tested: mid range 2.1.3 Setting Item and Values on CMU200 1. Set [Downlink power] to -25dBm. 2. [BS Signal] [HSDPA HS-DSCH] [H-Set Selection] select H-Set1 Max Input 3. [BS Signal] [TPC Settings] [Set1 Pattern type] select closed loop, [UL Target power] set 20dBm. 4. [UE signal] [Packet Data] select default setting. 5. [Connection] [Connect UE(PS)] 6. [Menu] [Receiver Quality] [Application] select HSDPA ACK to get the throughput result. 16

1.3.4 Test Data Normal Condition Throughput CH 9750 1950MHz Test requirements >700kbps 17

3. Annex --- Configuration Table E.5.1 is applicable for the measurements for tests in subclauses 5.2A, 5.7A, 5.9A, 5.10A, 5.13.1A, 6.3A, 9.2.1A to 9.2.1F, 9.3.1 and 9.3.2. Table E.5.1: Downlink physical channels for HSDPA receiver testing for Single Link performance. Physical Parameter Value Note Channel P-CPICH P-CPICH_Ec/Ior -10dB P-CCPCH P-CCPCH_Ec/Ior -12dB Mean power level is shared with SCH. SCH SCH_Ec/Ior -12dB Mean power level is shared with P-CCPCH SCH includes P- and S-SCH, with power split between both. P-SCH code is S_dl,0 as per [14] S-SCH pattern is scrambling code group 0 PICH PICH_Ec/Ior -15dB DPCH DPCH_Ec/Ior Test-specific 12.2 kbps DL reference measurement channel as defined in Annex C.3.1 HS-SCCH-1 HS-SCCH_Ec/Ior Test-specific Specifies fraction of Node-B radiated power transmitted when TTI is active (i.e. due to minimum inter-tti interval). During TTIs, in which the HS-SCCH is not allocated to the UE the HS-SCCH shall be transmitted continuously with constant power. HS-SCCH-2 HS-SCCH_Ec/Ior DTX d No signalling scheduled, or power radiated, on this HS-SCCH, but signalled to the UE as present. HS-SCCH-3 HS-SCCH_Ec/Ior DTX d As HS-SCCH-2. HS-SCCH-4 HS-SCCH_Ec/Ior DTX d As HS-SCCH-2. HS-PDSCH HS-PDSCH_Ec/Ior Test-specific. OCNS Necessary power so that total transmit power spectral density of Node B (Ior) adds to one 1 OCNS interference consists of 6 dedicated data channels as specified in table E.5.5 NOTE 1: For dynamic power correction required to compensate for the presence of transient channels, e.g. control channels, a subset of the OCNS DPCH channels may be used. * Table E.5.10 is applicable for measurements on the Transmitter Characteristics with HSDPA in clauses 5.2A, 5.7A, 5.9A, 5.10A and 5.13.1A. Table E.5.10: Test specific downlink physical channels Parameter Unit Test DPCH DPCH_Ec/Ior (db) -9 HS-SCCH_1 HS-SCCH_Ec/Ior (db) -8 HS-PDSCH HS-PDSCH_Ec/Ior (db) -3 Note: The power levels are selected high enough to keep the DTX reporting ratio very small and to ensure that the radio link is maintained during the test. 18

Table E.5.5: OCNS definition for HSDPA receiver testing Channelization Code at SF=128 Relative Level setting (db) 122 0 123-2 124-2 125-4 126-1 127-3 DPCH Data The DPCH data for each channelization code shall be uncorrelated with each other and with any wanted signal over the period of any measurement. For OCNS with transmit diversity the DPCH data sent to each antenna shall be either STTD encoded or generated from uncorrelated sources. NOTE 1: The relative level setting specified in db refers only to the relationship between the OCNS channels. The level of the OCNS channels relative to the Ior of the complete signal is a function of the power of the other channels in the signal with the intention that the power of the group of OCNS channels is used to make the total signal add up to 1. Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH Sub-test β c β d β d (SF) β c/β d (Note1, Note 2) β HS CM (db) (Note 3) MPR (db) (Note 3) 1 1/15 15/15 64 1/15 2/15 0.0 0.0 2 12/15 15/15 64 12/15 24/15 1.0 0.0 3 15/15 8/15 64 15/8 30/15 1.5 0.5 4 15/15 1/15 64 15/1 30/15 1.5 0.5 ACK, NACK and CQI = 30/15 with β hs = 30/15 * β c. For the HS-DPCCH power mask requirement test in clause 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13A.1, ACK and NACK = 30/15 with β hs = 30/15 * β c, and CQI = 24/15 with β hs = 24/15 * β c. CM = 1 for β c/β d =12/15, β hs/β c=24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases. 19

Contents of TRANSPORT CHANNEL RECONFIGURATION message for test cases with HSDPA in clauses 5.2A, 5.7A, 5.9A, 5.10A and 5.13.1A (Rel-5 and later releases). Information Element Value/remark Version Message Type RRC transaction identifier Arbitrarily selects an integer between 0 and 3 Integrity check info - message authentication code SS calculates the value of MAC-I for this message and writes to this IE. The first/ leftmost bit of the bit string contains the most significant bit of the MAC-I. - RRC message sequence number SS provides the value of this IE, from its internal counter. Integrity protection mode info Ciphering mode info Activation time New U-RNTI New C-RNTI New H-RNTI 1010 1010 1010 1010 RRC State indicator CELL_DCH UTRAN DRX cycle length coefficient CN information info URA identity Downlink counter synchronisation info UL Transport channel information for all transport channels - PRACH TFCS - CHOICE mode FDD - TFC subset - UL DCH TFCS - CHOICE TFCI signalling Normal - TFCI Field 1 information - CHOICE TFCS representation Complete reconfiguration - TFCS complete reconfigure information - CHOICE CTFC Size Same as used in the call set up. - CTFC information This IE is repeated for TFC numbers used in the call set up - CTFC Same as used in the call set up. - Power offset information - CHOICE Gain Factors Computed Gain Factors except for the reference TFC (CTFC = 1) when Signalled Gain Factors is used - Gain factor βc Value used in test ( if the CHOICE Gain Factors is set to Computed Gain Factors) - Gain factor βd Value used in test ( if the CHOICE Gain Factors is set to Computed Gain Factors) - Reference TFC ID 0 - CHOICE mode FDD - Power offset P p-m Added or Reconfigured UL TrCH information list CHOICE mode DL Transport channel information common for all transport channel Added or Reconfigured DL TrCH information list Frequency info Maximum allowed UL TX power CHOICE channel requirement Uplink DPCH info - Uplink DPCH power control info - CHOICE mode FDD - DPCCH power offset -80dB - PC Preamble 1 frame - SRB delay 7 frames - Power Control Algorithm Algorithm1 or as specified in the test - TPC step size 1dB - ACK Value used in test - NACK Value used in test - Ack-Nack repetition factor 3(required for continuous HS-DPCCH signal) - CHOICE mode FDD 20

Information Element Value/remark Version - Scrambling code type Long - Scrambling code number 0 (0 to 16777215) - Number of DPDCH (1) - spreading factor Reference to TS34.121 clause C.2.1 Parameter Set - TFCI existence TRUE - Number of FBI bit (0) - Puncturing Limit 1 CHOICE Mode Not present Downlink HS-PDSCH Information - HS-SCCH Info - Measurement Feedback Info - CHOICE mode FDD - POhsdsch 6 db - CQI Feedback cycle, k 4 ms - CQI repetition factor 2(required for continuous HS-DPCCH signal) - CQI Value used in test - CHOICE mode FDD (no data) Downlink information common for all radio links Downlink information per radio link list Table C.8.1.1: Fixed Reference Channel H-Set 1 Parameter Unit Value Nominal Avg. Inf. Bit Rate kbps 534 777 Inter-TTI Distance TTI s 3 3 Number of HARQ Processes Processes 2 2 Information Bit Payload ( N INF ) Bits 3202 4664 MAC-d PDU size Bits 336 336 Number Code Blocks Blocks 1 1 Binary Channel Bits Per TTI Bits 4800 7680 Total Available SML s in UE SML s 19200 19200 Number of SML s per HARQ Proc. SML s 9600 9600 Coding Rate 0.67 0.61 Number of Physical Channel Codes Codes 5 4 Modulation QPSK 16QAM Note: The HS-DSCH shall be transmitted continuously with constant power but only every third TTI shall be allocated to the UE under test Inf. Bit Payload 3202 CRC Addition 3202 24 CRC Code Block Segm entation 3226 Turbo-Encoding (R=1/3) 9678 12 Tail Bits 1st Rate M atching 9600 RV Selection 4800 Physical Channel Segm entation 960 Figure C.8.1: Coding rate for Fixed reference Channel H-Set 1 (QPSK) 21

Inf. Bit Payload CRC Addition 4664 4664 24 CRC Code Block Segmentation Turbo-Encoding (R=1/3) 4688 14064 12 Tail Bits 1st Rate Matching 9600 RV Selection 7680 Physical Channel Segmentation 1920 Figure C.8.2: Coding rate for Fixed reference Channel H-Set 1 (16 QAM) 22

易迪拓培训 专注于微波 射频 天线设计人才的培养网址 :http://www.edatop.com 射频和天线设计培训课程推荐 易迪拓培训 (www.edatop.com) 由数名来自于研发第一线的资深工程师发起成立, 致力并专注于微波 射频 天线设计研发人才的培养 ; 我们于 2006 年整合合并微波 EDA 网 (www.mweda.com), 现已发展成为国内最大的微波射频和天线设计人才培养基地, 成功推出多套微波射频以及天线设计经典培训课程和 ADS HFSS 等专业软件使用培训课程, 广受客户好评 ; 并先后与人民邮电出版社 电子工业出版社合作出版了多本专业图书, 帮助数万名工程师提升了专业技术能力 客户遍布中兴通讯 研通高频 埃威航电 国人通信等多家国内知名公司, 以及台湾工业技术研究院 永业科技 全一电子等多家台湾地区企业 易迪拓培训课程列表 :http://www.edatop.com/peixun/rfe/129.html 射频工程师养成培训课程套装该套装精选了射频专业基础培训课程 射频仿真设计培训课程和射频电路测量培训课程三个类别共 30 门视频培训课程和 3 本图书教材 ; 旨在引领学员全面学习一个射频工程师需要熟悉 理解和掌握的专业知识和研发设计能力 通过套装的学习, 能够让学员完全达到和胜任一个合格的射频工程师的要求 课程网址 :http://www.edatop.com/peixun/rfe/110.html ADS 学习培训课程套装该套装是迄今国内最全面 最权威的 ADS 培训教程, 共包含 10 门 ADS 学习培训课程 课程是由具有多年 ADS 使用经验的微波射频与通信系统设计领域资深专家讲解, 并多结合设计实例, 由浅入深 详细而又全面地讲解了 ADS 在微波射频电路设计 通信系统设计和电磁仿真设计方面的内容 能让您在最短的时间内学会使用 ADS, 迅速提升个人技术能力, 把 ADS 真正应用到实际研发工作中去, 成为 ADS 设计专家... 课程网址 : http://www.edatop.com/peixun/ads/13.html HFSS 学习培训课程套装该套课程套装包含了本站全部 HFSS 培训课程, 是迄今国内最全面 最专业的 HFSS 培训教程套装, 可以帮助您从零开始, 全面深入学习 HFSS 的各项功能和在多个方面的工程应用 购买套装, 更可超值赠送 3 个月免费学习答疑, 随时解答您学习过程中遇到的棘手问题, 让您的 HFSS 学习更加轻松顺畅 课程网址 :http://www.edatop.com/peixun/hfss/11.html `

易迪拓培训 专注于微波 射频 天线设计人才的培养网址 :http://www.edatop.com CST 学习培训课程套装该培训套装由易迪拓培训联合微波 EDA 网共同推出, 是最全面 系统 专业的 CST 微波工作室培训课程套装, 所有课程都由经验丰富的专家授课, 视频教学, 可以帮助您从零开始, 全面系统地学习 CST 微波工作的各项功能及其在微波射频 天线设计等领域的设计应用 且购买该套装, 还可超值赠送 3 个月免费学习答疑 课程网址 :http://www.edatop.com/peixun/cst/24.html HFSS 天线设计培训课程套装套装包含 6 门视频课程和 1 本图书, 课程从基础讲起, 内容由浅入深, 理论介绍和实际操作讲解相结合, 全面系统的讲解了 HFSS 天线设计的全过程 是国内最全面 最专业的 HFSS 天线设计课程, 可以帮助您快速学习掌握如何使用 HFSS 设计天线, 让天线设计不再难 课程网址 :http://www.edatop.com/peixun/hfss/122.html 13.56MHz NFC/RFID 线圈天线设计培训课程套装套装包含 4 门视频培训课程, 培训将 13.56MHz 线圈天线设计原理和仿真设计实践相结合, 全面系统地讲解了 13.56MHz 线圈天线的工作原理 设计方法 设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体操作, 同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试 通过该套课程的学习, 可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹配电路的原理 设计和调试 详情浏览 :http://www.edatop.com/peixun/antenna/116.html 我们的课程优势 : 成立于 2004 年,10 多年丰富的行业经验, 一直致力并专注于微波射频和天线设计工程师的培养, 更了解该行业对人才的要求 经验丰富的一线资深工程师讲授, 结合实际工程案例, 直观 实用 易学 联系我们 : 易迪拓培训官网 :http://www.edatop.com 微波 EDA 网 :http://www.mweda.com 官方淘宝店 :http://shop36920890.taobao.com 专注于微波 射频 天线设计人才的培养易迪拓培训官方网址 :http://www.edatop.com 淘宝网店 :http://shop36920890.taobao.com