Microsoft PowerPoint - Pres_ansoft_elettronica.ppt

Similar documents

ANSYS 在航空航天器电磁兼容、电磁干扰分析中的应



usbintr.PDF



,,: 65,A - 10A, 9, M1A1, 85 %: 148,35 72,1/ 6, 17 % (20 15 %) [1 ] ;1994,, 2 2,;2001, ; , ; ; F - 16 ;2 ;; F - 15 ; ;, :,,,, ,,,, M

Ω Ω 75Ω

untitled

PCB a 2.5mm b 4.0mm A mm W/cm 3 PCB PCB 2.0mm 1.5mm PCB PCB

g g,, IFA [6 ] IFA (7),, H, IPFA, L, ; H, E E 1 IFA [8 ], L S [ 8 ], F ( PIFA), 2 L C, L C d ν H, Z0 [ 7 ], E : L C L C Z0 = ( 0 /

PCB Layout using ADS November 29, 2005 PCB Layout using ADS Dr. B. Frank Department of Electrical and Computer Engineering Queen's University Slide 1

Microsoft PowerPoint L10

Design of Dual-Frequency Microstrip Antennas Using a Shorting-Pin Loading - Antennas and Propagation Society International Symposium, IEEE

CAM350 CAM350 CAM350 CAM350 Export Gerber 274D 274X Fire9000 Barco DPF NC Drill Mill Excellon Sieb Meyer IPC D 350 IPC D A Modification CAM/Ger

The project High Datarate satellite transmission system Design of a space qualifiable transmitter Suited for LEO satellites and other small satellites

Dual-band Dipole Antenna for ISO /ISO Passive RFID Tag Applications

, V m 3,, I p R 1 = ( I p + I 1 ) / R 0 I p, R 1 / 4, R m V d, 1. 1 Doherty MRF6P21190 LDMOS,,, Doherty B Freescale M6P21190 ADS 2 Doherty 3 Doherty,

Yageo Chip Antenna Sum V doc

Design System Designer RF Analog - Designer Ptolemy Simulator System level - Designer E D A - s Modelsim RTL EDGE GSM WLAN Numeric Ptolemy Timed NC-Ve

DATASHEET SEARCH SITE |

6 7 EPCOS S+M 4 = å r =21, 7 GHz Q 7 200, MgTiO 3 -CaTiO 3 å r =38 7 GHz Q (Zr Sn)TiO 4 å r = GHz Q Ba(Zr Zn Ta)O 3 å r

3.1.doc

DSCHA Jun 06

第1讲-电磁兼容导论.ppt

Presentation - Advanced Planar Antenna Designs for Wireless Devices

( ) T arget R ecogn ition),,,,,,, ( IFF, Iden tification F riend o r Foe),,,,,,, ( N CTR, N on2 Cooperative T arget R ecogn ition), (

1262 PIERS Proceedings, Beijing, China, March 23 27, 2009 with the tag IC, the gap width of the capacitive coupling structure was varied to tune the i

RF Balum Transformers integrated circuit is a common application of these devices. Figure 4 shows the first mixer stage and second mixer stage of a re

Title

amp_b3.PDF

Microsoft Word - AN95007.doc

PowerPoint Presentation

Microsoft Word - LAB 2 non-linear LNA.doc

BranchLine Coupler - Quadrature

Microsoft PowerPoint - Lecture-08.ppt

A Miniature GPS Planar Chip Antenna Integrated with Low Noise Amplifier

untitled

Microsoft Word - Lecture 24 notes, 322, v2.doc

Balun Design

Microsoft PowerPoint - seminaari 26_5_04_antenniteknologiat.ppt

APPLI002.DOC

pages.pdf

TB215.doc

A stair-shaped slot antenna for the triple-band WLAN applications

Progress In Electromagnetics Research Symposium 27, Prague, Czech Republic, August W1 H Feed Line Z L2 L1 W2 X Y Radiating Patch L3 I-Shaped Sl

Novel 2-D Photonic Bandgap Structure For Microstrip Lines - IEEE Microwa ve and Guided Wave Letters

HBCU-5710r Dec11

SGS-Apache BQB proposal_04_11_2003

CSTHandOut

Filter Design in Thirty Seconds

Microsoft Word - M3_PB_IPJ_Monza3DuraProductBrief_ _R6.doc

3152 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 52, NO. 11, NOVEMBER 2004 (c) Fig. 2. y z plane radiation patterns ofoma computed using FDTD

HFSS Antenna Design Kit

untitled

Integrated microstrip and rectangular waveguide in planar form - IEEE Microwave and Wireless Components Letters [see also IEEE Microwave and Guided Wave Letters]

AWT6166_Rev_0.3.PMD

書名:

Hybrid of Monopole and Dipole Antennas for Concurrent 2.4- and 5-GHz WLAN Access Point

Special Materials in CST STUDIO SUITE 2012

untitled

Microsoft Word - APMC譛€邨ゆク雁さV2.0.doc

rd 5.7 = = = 1. cm (II-4) fd 9 This is more of what we are looking for. If we would use a frequency of 900 MHz this even reduces to 6.cm (assumed ε r

New compact six-band internal antenna - Antennas and Wireless Propagation Letters

Full Band Waveguide-to-Microstrip Probe Transitions - Microwave Symposium Digest, 1999 IEEE MTT-S International

FSA W Low Voltage Dual DPDT Analog Switch

Combline Cavity Filter Design in HFSS

Microsoft Word - SLVU2.8-4 Rev04.doc

Directional Couplers.doc

Microsoft Word - nAN900-04_rev2_1.doc

192 IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 5, 2006 This method can be applied to all kinds of antennas in any environment and it becomes



A low-profile planar monopole antenna for multiband operation of mobile handsets - Antennas and Propagation, IEEE Transactions on

lumprlc.fm

Triple-band triangular-shaped meander monopole antenna with two coupled lines

3 MIMO 2 l WLAN FIR l0 t l -t l0 l60 l6 T 64 l6 GI 80 0 OFDM 2 64 OFDM OFDM l6 CP CP FFT Viterbi G 2 3 IEEE802.lla CSI ChanneI State Information l GI

Balun Design

Thus, the antenna has the ability to receive both vertically and horizontally polarized electromagnetic waves, which can be proven beneficial in indoo

CBW = Ri BW = - n*gd Table 3. Normalized coupling matrix for filter Wire diameter: 0.075inch I R1 =0.9

4.2 DC Bias

Microsoft Word - Differential Circuit Comparison App note_B.doc

High-Q RF-MEMS Tunable Evanescent-Mode Cavity Filter

A stair-shaped slot antenna for the triple-band WLAN applications

*P Q RSS &T OO!! " #$% "" " "&! "! (! " "! " "! ) " *! +, -."/0! 1 23! )+4 5! * " 6&73 " F M <6&,3 = ; - <,3 => -&A4">3 %<,3B /0C D E? > 1&>">3 6

DDR2 Signal Quality Analysis on VIA PC Board

50 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 16, NO. 1, JANUARY 2006 Fig. 2. Geometry of the three-section PSL power divider. Fig. 5. Schem

A 2.4 GHZ POLARIZATION-DIVERSITY PLANAR PRINTED DIPOLE ANTENNA FOR WLAN AND WIRELESS COMMUNICATION APPLICATIONS

Application Note template form-tc-004f

844 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 17, NO. 12, DECEMBER 2007 Fig. 1. Proposed broadband SIW planar balun. Fig. 2. Electrical fie

ims2001_TUIF_28_1659_CD.PDF

Practical RF Printed Circuit Board Design

ý ý ý ý ý ý ý ý

Microsoft Word - Radar Cross Section.doc

Antenna Matching for the TRF7960 RFID Reader

Vortrag Arpad.ppt

Synopsis The Project Manager Definitions Directories Project Configuration Management The HFSS Executive Level Executive Window HFSS Design Flow Stage

Cross-slot-coupled microstrip antenna and dielectric resonator antenna for circular polarization - Antennas and Propagation, IEEE Transactions on

幻灯片 1

Transcription:

1,5-40 GHz Meander Spiral Antenna Simulation and Design Presenter: Fabrizio Trotta Ansoft Corporation

Application Introduction Design Specification Antenna Topology Numerical Method Approach Design Methodology Balun Lossy Cavity Radiating Circuit Simulation Vs Measurements NF to FF Measurement (STARLAB) 0.8-18 GHz Far Field Measurement 18-40 GHz

Application Electronic Support Measurement (ESM) Radar Warning Receiver (RWR) Antenna and Radome ESM System

Design Specification UWB Frequency Operation f Max : f min Accepted Field Polarization LHCP PO PV Gain Flatness HPBW Stability Return Loss Go db ( f ) ±G HPBW(f)= HPBW 0 ±θ S 11 ( f ) < So db Mechanical Constraints L Max H Max W Max Reproducibility System Requirement Industrialization Target Cost;

Antenna Topology Spiral Antennas are suitable for ESM/RWR System application Typical Electrical Parameter S 0 db < -10 db HPBW 0 80 GLHCP 3 dbi Low Profile W Max < R Max Cross-polarization < -20dB @ Boresight

Numerical Approach Mixed Potential Integral Equation (MPIE) Formulation of Maxwell Equation MoM applied to MPIE (ANSOFT Planar EM) Suitable for Planar Structure Tetrahedrical Mesh

Design Methodology The Antenna Design is divided in two phases: The three substructure Design Feeding Circuit Balun Absorber material filled Cavity Cavity Radiating Circuit Circuit Complete spiral antenna analysis and total radiating element performances evaluation

Feeding Circuit Design (1/2) The feeding circuit must provide a transition from an unbalanced guiding structure to a balanced ones (Balun) In addition it must provide an impedance transformation to match the radiating circuit input impedance over the whole frequency bandwidth. Balun Layout

Feeding Circuit Design (2/2) Balun Material: ARLON AD600 (( r = 6) with thickness t = 0.508mm S-parameter Simulation S 11 ( f ) S 21 ( f ) db Return Loss 0-5 -10-15 -20-25 -30-35 -40-45 -50 0 5 10 15 20 25 30 35 40 Freq [GHz] db Insertion Loss 0-0,5-1 -1,5-2 -2,5-3 0 5 10 15 20 25 30 35 40 Freq [GHz]

Lossy Cavity Design The Backside Cavity is filled with Honeycomb Absorber (HC) to suppress the back radiation The HC Absorber has been modeled with three different uniform lossy dielectric layers. h h

Radiating Circuit Design(1/3) Equiangular Shape Archimedean Shape r φ r φ Self Complementary Structure Lower Losses Stability of phase centre Improved Axial Ratio Wider operating frequency BW with a given antenna diameter

Radiating Circuit Design(2/3) Combined Spiral Antenna r Max r Eq r Max r Eq 1.5

Radiating Circuit Design(3/3) Meander Combined Spiral Antenna Ω = 2 2π / 60

Technology Choice Antenna Dielectric Substrate Analysis Current Density distribution(@2ghz) vs Dielectric substrate permittivity r r a = Radius of active region Current Density distribution (@2GHz) vs Dielectric substrate Thickness H

Size Reduction Gain 10 5 dbi 0-5 -10 Meander combined spiral Combined Spiral -15-20 -25 1,0 1,5 2,0 2,5 3,0 freq [GHz] 15% size reduction with Meandering last spiral wings

3D Antenna Layout Simulated Antenna Realized Antenna

NF to FF Measurement (1/3) Near Field Measurements with STARLAB by SATIMO from 0.8 to 18 GHz Antenna

NF to FF Measurement (2/3) Gain @ 4 GHz Gain @ 5 GHz Gain @ 8 GHz Gain @ 10 GHz Gain @ 13 GHz Gain @ 18 GHz

NF to FF Measurement (3/3) Gain dbi 8 6 4 2 0-2 -4-6 -8-10 Gain_phi Gain_teta Gain_LCPH 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 freq [GHz]

Far Field Measurement (1/2) Far Field Measurements 18-40 GHz with Anechoic Chamber

Far Field Measurement (2/2) Gain @ 26 GHz Gain @ 30 GHz Gain @ 35 GHz Gain @ 40 GHz

Simulation Vs Measurement (1/3) 0 S 11 ( f ) Meas Return Loss Vs S 11 ( f ) Simu Measured RL Simulated RL -10-20 db -30-40 -50 0 10 20 30 40 GHz

Simulation Vs Measurement (2/3) Broadband LHCP Gain @ Boresight Gain dbi 10 8 6 4 2 0-2 -4-6 -8-10 0 5 10 15 20 25 30 35 40 freq [GHz] Measured Simulated

Simulation Vs Measurement (3/3) Gain @ 4 GHz Pattern@4GHz Gain @ 32 GHz Pattern@32GHz 5 measured 5 0 simulated 0 measured simulated -5-5 dbi -10 dbi -10-15 -15-20 -20-25 -200-150 -100-50 0 50 100 150 200-25 -200-150 -100-50 0 50 100 150 200 ang deg ang deg Gain @ 18 GHz Gain @ 40 GHz Pattern@18GHz Pattern@40GHz 5 measured 5 0 simulated 0 measured simulated -5-5 dbi -10 dbi -10-15 -15-20 -20-25 -200-150 -100-50 0 50 100 150 200-25 -200-150 -100-50 0 50 100 150 200 ang deg ang deg

Conclusion The design of 1,5-40 GHz Meander Spiral Antenna has been performed using Planar EM by Ansoft The Antenna Design has been divided in three substructure: Balun The Absorber Filled Cavity Circuit Layout Combining the Equiangular shape and the Archimedean shape we have avoided the drawbacks of each radiating structure. Meandering the last spiral turns we have obtained about 15% size Antenna reduction The simulated results are in good accordance with the measurements in terms of Return Loss, Gain and Pattern

Acknowledgments Design, Simulation and Measure of Broadband Cavity Backed Combined Spiral Antenna Paolo Baldonero*; Marco Bartocci*; Antonio Manna*; Andrea Pantano* and Fabrizio Trotta* *Antenna Department Elettronica S.p.A., Via Tiburtina Valeria km 13.700, Rome, Italy. Tel: +39-064154616; Fax: +39-064154441; E-mail:name.surname@elt.it Optimization of a UWB Vivaldi Antenna Array and Measurements with a Near Fields STARLAB System and Farfield Anechoic Chamber Paolo Baldonero*; Marco Bartocci*; Antonio Manna*; Andrea Pantano* and Fabrizio Trotta* *Antenna Department Elettronica S.p.A., Via Tiburtina Valeria km 13.700, Rome, Italy. Tel: +39-064154616; Fax: +39-064154441; E-mail:name.surname@elt.it

易迪拓培训 专注于微波 射频 天线设计人才的培养网址 :http://www.edatop.com 射频和天线设计培训课程推荐 易迪拓培训 (www.edatop.com) 由数名来自于研发第一线的资深工程师发起成立, 致力并专注于微波 射频 天线设计研发人才的培养 ; 我们于 2006 年整合合并微波 EDA 网 (www.mweda.com), 现已发展成为国内最大的微波射频和天线设计人才培养基地, 成功推出多套微波射频以及天线设计经典培训课程和 ADS HFSS 等专业软件使用培训课程, 广受客户好评 ; 并先后与人民邮电出版社 电子工业出版社合作出版了多本专业图书, 帮助数万名工程师提升了专业技术能力 客户遍布中兴通讯 研通高频 埃威航电 国人通信等多家国内知名公司, 以及台湾工业技术研究院 永业科技 全一电子等多家台湾地区企业 易迪拓培训课程列表 :http://www.edatop.com/peixun/rfe/129.html 射频工程师养成培训课程套装该套装精选了射频专业基础培训课程 射频仿真设计培训课程和射频电路测量培训课程三个类别共 30 门视频培训课程和 3 本图书教材 ; 旨在引领学员全面学习一个射频工程师需要熟悉 理解和掌握的专业知识和研发设计能力 通过套装的学习, 能够让学员完全达到和胜任一个合格的射频工程师的要求 课程网址 :http://www.edatop.com/peixun/rfe/110.html ADS 学习培训课程套装该套装是迄今国内最全面 最权威的 ADS 培训教程, 共包含 10 门 ADS 学习培训课程 课程是由具有多年 ADS 使用经验的微波射频与通信系统设计领域资深专家讲解, 并多结合设计实例, 由浅入深 详细而又全面地讲解了 ADS 在微波射频电路设计 通信系统设计和电磁仿真设计方面的内容 能让您在最短的时间内学会使用 ADS, 迅速提升个人技术能力, 把 ADS 真正应用到实际研发工作中去, 成为 ADS 设计专家... 课程网址 : http://www.edatop.com/peixun/ads/13.html HFSS 学习培训课程套装该套课程套装包含了本站全部 HFSS 培训课程, 是迄今国内最全面 最专业的 HFSS 培训教程套装, 可以帮助您从零开始, 全面深入学习 HFSS 的各项功能和在多个方面的工程应用 购买套装, 更可超值赠送 3 个月免费学习答疑, 随时解答您学习过程中遇到的棘手问题, 让您的 HFSS 学习更加轻松顺畅 课程网址 :http://www.edatop.com/peixun/hfss/11.html `

易迪拓培训 专注于微波 射频 天线设计人才的培养网址 :http://www.edatop.com CST 学习培训课程套装该培训套装由易迪拓培训联合微波 EDA 网共同推出, 是最全面 系统 专业的 CST 微波工作室培训课程套装, 所有课程都由经验丰富的专家授课, 视频教学, 可以帮助您从零开始, 全面系统地学习 CST 微波工作的各项功能及其在微波射频 天线设计等领域的设计应用 且购买该套装, 还可超值赠送 3 个月免费学习答疑 课程网址 :http://www.edatop.com/peixun/cst/24.html HFSS 天线设计培训课程套装套装包含 6 门视频课程和 1 本图书, 课程从基础讲起, 内容由浅入深, 理论介绍和实际操作讲解相结合, 全面系统的讲解了 HFSS 天线设计的全过程 是国内最全面 最专业的 HFSS 天线设计课程, 可以帮助您快速学习掌握如何使用 HFSS 设计天线, 让天线设计不再难 课程网址 :http://www.edatop.com/peixun/hfss/122.html 13.56MHz NFC/RFID 线圈天线设计培训课程套装套装包含 4 门视频培训课程, 培训将 13.56MHz 线圈天线设计原理和仿真设计实践相结合, 全面系统地讲解了 13.56MHz 线圈天线的工作原理 设计方法 设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体操作, 同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试 通过该套课程的学习, 可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹配电路的原理 设计和调试 详情浏览 :http://www.edatop.com/peixun/antenna/116.html 我们的课程优势 : 成立于 2004 年,10 多年丰富的行业经验, 一直致力并专注于微波射频和天线设计工程师的培养, 更了解该行业对人才的要求 经验丰富的一线资深工程师讲授, 结合实际工程案例, 直观 实用 易学 联系我们 : 易迪拓培训官网 :http://www.edatop.com 微波 EDA 网 :http://www.mweda.com 官方淘宝店 :http://shop36920890.taobao.com 专注于微波 射频 天线设计人才的培养易迪拓培训官方网址 :http://www.edatop.com 淘宝网店 :http://shop36920890.taobao.com