TO THE POSSIBILITY OF CALCULATION

Similar documents

ANSYS 在航空航天器电磁兼容、电磁干扰分析中的应



usbintr.PDF



,,: 65,A - 10A, 9, M1A1, 85 %: 148,35 72,1/ 6, 17 % (20 15 %) [1 ] ;1994,, 2 2,;2001, ; , ; ; F - 16 ;2 ;; F - 15 ; ;, :,,,, ,,,, M

untitled

Ω Ω 75Ω

PCB Layout using ADS November 29, 2005 PCB Layout using ADS Dr. B. Frank Department of Electrical and Computer Engineering Queen's University Slide 1

Microsoft PowerPoint L10

PCB a 2.5mm b 4.0mm A mm W/cm 3 PCB PCB 2.0mm 1.5mm PCB PCB

g g,, IFA [6 ] IFA (7),, H, IPFA, L, ; H, E E 1 IFA [8 ], L S [ 8 ], F ( PIFA), 2 L C, L C d ν H, Z0 [ 7 ], E : L C L C Z0 = ( 0 /

Design of Dual-Frequency Microstrip Antennas Using a Shorting-Pin Loading - Antennas and Propagation Society International Symposium, IEEE

CAM350 CAM350 CAM350 CAM350 Export Gerber 274D 274X Fire9000 Barco DPF NC Drill Mill Excellon Sieb Meyer IPC D 350 IPC D A Modification CAM/Ger

The project High Datarate satellite transmission system Design of a space qualifiable transmitter Suited for LEO satellites and other small satellites

Dual-band Dipole Antenna for ISO /ISO Passive RFID Tag Applications

Design System Designer RF Analog - Designer Ptolemy Simulator System level - Designer E D A - s Modelsim RTL EDGE GSM WLAN Numeric Ptolemy Timed NC-Ve

, V m 3,, I p R 1 = ( I p + I 1 ) / R 0 I p, R 1 / 4, R m V d, 1. 1 Doherty MRF6P21190 LDMOS,,, Doherty B Freescale M6P21190 ADS 2 Doherty 3 Doherty,

DATASHEET SEARCH SITE |

Microsoft Word - AN95007.doc

6 7 EPCOS S+M 4 = å r =21, 7 GHz Q 7 200, MgTiO 3 -CaTiO 3 å r =38 7 GHz Q (Zr Sn)TiO 4 å r = GHz Q Ba(Zr Zn Ta)O 3 å r

1262 PIERS Proceedings, Beijing, China, March 23 27, 2009 with the tag IC, the gap width of the capacitive coupling structure was varied to tune the i

Yageo Chip Antenna Sum V doc

amp_b3.PDF

3.1.doc

RF Balum Transformers integrated circuit is a common application of these devices. Figure 4 shows the first mixer stage and second mixer stage of a re

Balun Design

DSCHA Jun 06

第1讲-电磁兼容导论.ppt

Microsoft PowerPoint - Pres_ansoft_elettronica.ppt

( ) T arget R ecogn ition),,,,,,, ( IFF, Iden tification F riend o r Foe),,,,,,, ( N CTR, N on2 Cooperative T arget R ecogn ition), (

APPLI002.DOC

Title

PowerPoint Presentation

Microsoft Word - Lecture 24 notes, 322, v2.doc

untitled

HBCU-5710r Dec11

Microsoft PowerPoint - Lecture-08.ppt

pages.pdf

BranchLine Coupler - Quadrature

Microsoft Word - LAB 2 non-linear LNA.doc

Progress In Electromagnetics Research Symposium 27, Prague, Czech Republic, August W1 H Feed Line Z L2 L1 W2 X Y Radiating Patch L3 I-Shaped Sl

Novel 2-D Photonic Bandgap Structure For Microstrip Lines - IEEE Microwa ve and Guided Wave Letters

Presentation - Advanced Planar Antenna Designs for Wireless Devices

A Miniature GPS Planar Chip Antenna Integrated with Low Noise Amplifier

Filter Design in Thirty Seconds

TB215.doc

A stair-shaped slot antenna for the triple-band WLAN applications

Microsoft PowerPoint - seminaari 26_5_04_antenniteknologiat.ppt

Integrated microstrip and rectangular waveguide in planar form - IEEE Microwave and Wireless Components Letters [see also IEEE Microwave and Guided Wave Letters]

SGS-Apache BQB proposal_04_11_2003

untitled

CSTHandOut

FSA W Low Voltage Dual DPDT Analog Switch

Microsoft Word - SLVU2.8-4 Rev04.doc

Full Band Waveguide-to-Microstrip Probe Transitions - Microwave Symposium Digest, 1999 IEEE MTT-S International

書名:

Microsoft Word - nAN900-04_rev2_1.doc

Directional Couplers.doc

lumprlc.fm

AWT6166_Rev_0.3.PMD

DDR2 Signal Quality Analysis on VIA PC Board

Balun Design

Microsoft Word - Differential Circuit Comparison App note_B.doc

Hybrid of Monopole and Dipole Antennas for Concurrent 2.4- and 5-GHz WLAN Access Point

4.2 DC Bias

Microsoft Word - M3_PB_IPJ_Monza3DuraProductBrief_ _R6.doc

3152 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 52, NO. 11, NOVEMBER 2004 (c) Fig. 2. y z plane radiation patterns ofoma computed using FDTD

untitled

HFSS Antenna Design Kit

New compact six-band internal antenna - Antennas and Wireless Propagation Letters

rd 5.7 = = = 1. cm (II-4) fd 9 This is more of what we are looking for. If we would use a frequency of 900 MHz this even reduces to 6.cm (assumed ε r

Microsoft Word - APMC譛€邨ゆク雁さV2.0.doc

Combline Cavity Filter Design in HFSS

50 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 16, NO. 1, JANUARY 2006 Fig. 2. Geometry of the three-section PSL power divider. Fig. 5. Schem

Triple-band triangular-shaped meander monopole antenna with two coupled lines


untitled

192 IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 5, 2006 This method can be applied to all kinds of antennas in any environment and it becomes

Special Materials in CST STUDIO SUITE 2012


A low-profile planar monopole antenna for multiband operation of mobile handsets - Antennas and Propagation, IEEE Transactions on

ims2001_TUIF_28_1659_CD.PDF

High-Q RF-MEMS Tunable Evanescent-Mode Cavity Filter

CBW = Ri BW = - n*gd Table 3. Normalized coupling matrix for filter Wire diameter: 0.075inch I R1 =0.9

APN1013.qxd

Thus, the antenna has the ability to receive both vertically and horizontally polarized electromagnetic waves, which can be proven beneficial in indoo

Practical RF Printed Circuit Board Design

3 MIMO 2 l WLAN FIR l0 t l -t l0 l60 l6 T 64 l6 GI 80 0 OFDM 2 64 OFDM OFDM l6 CP CP FFT Viterbi G 2 3 IEEE802.lla CSI ChanneI State Information l GI

A stair-shaped slot antenna for the triple-band WLAN applications

844 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 17, NO. 12, DECEMBER 2007 Fig. 1. Proposed broadband SIW planar balun. Fig. 2. Electrical fie

Application Note template form-tc-004f

iml v C / 0W EVM - pplication Notes. IC Description The iml8683 is a Three Terminal Current Controller (TTCC) for regulating the current flowin

iml v C / 4W Down-Light EVM - pplication Notes. IC Description The iml8683 is a Three Terminal Current Controller (TTCC) for regulating the cur

*P Q RSS &T OO!! " #$% "" " "&! "! (! " "! " "! ) " *! +, -."/0! 1 23! )+4 5! * " 6&73 " F M <6&,3 = ; - <,3 => -&A4">3 %<,3B /0C D E? > 1&>">3 6

apn1003.qxd

iml88-0v C / 8W T Tube EVM - pplication Notes. IC Description The iml88 is a Three Terminal Current Controller (TTCC) for regulating the current flowi

RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS Qizheng Gu Nokia Mobile Phones, Inc. Q - Springer

Transcription:

74 P. PROTIVA, J. MRKVICA, J. MACHÁČ, UNIVERSAL GENERATOR OF ULTRA-WIDEBAND PULSES Universal Generator of Ultra-Wideband Pulses Pavel PROTIVA 1, Jan MRKVICA 2, Jan MACHÁČ 1 1 Dept. of Electromagnetic Field, Czech Technical University, Technická 2, 166 27 Praha 6, Czech Republic 2 RETIA, a.s., Pražská 341, Zelené Předměstí, 530 02 Pardubice, Czech Republic protip1@fel.cvut.cz, jmrkvica@retia.cz, machac@fel.cvut.cz Abstract. An Ultra-Wideband (UWB) subnanosecond pulse generator is described in this paper. High amplitude Gaussian pulses are generated by a Step Recovery Diode (SRD) included in a novel pulse forming circuit. The proposed circuit solution utilizes the performance of the SRD effectively, without excessive requirements regarding the driver section of the generator. Monocycle pulses are then generated by an additional pulse forming network. A simple transistor driver is also described, which transforms a TTL trigger signal to a driving pulse with the timing and amplitude parameters required by the SRD. Measurement results are presented, which show the proposed generator operating with stable output pulse parameters at arbitrary pulse repetition frequency up to 20 MHz. The generated monocycle pulses are 25 V in amplitude and approximately 500 ps in width. Keywords Ultra-Wideband, pulse generators, short pulses, step recovery diode, pulse shaping. 1. Introduction An Ultra-Wideband (UWB) short pulse generator is the main part of any UWB system. The basis of a conventional UWB pulse generator is usually a pulse sharpener, which converts a slow rise time (or fall time) waveform edge to a faster one. Special solid-state components are utilized as the pulse sharpeners. Avalanche transistors, Step Recovery Diodes (SRD), tunnel diodes [1, 2], FETs [3] or bipolar transistors [4] are used. Avalanche transistors are advantageous as high power sharpeners, but the maximal usable pulse repetition frequency is limited, due to the power dissipation in the transistor. Tunnel diodes offer the fastest transition times at very small amplitudes. Step recovery diodes make it possible to generate approximately 50 100 ps rise or fall times at moderate power levels without additional amplification and with high repetition rates. This makes them most likely to be used in current UWB generators. An SRD works as a charge controlled switch, which can change from a low impedance to a high impedance state very rapidly. This ability of the SRD is used to sharpen the slow waveform edges. The time of the fast impedance change is called the transition rise time, which takes less than 100 ps for fast SRDs currently available on the market. The theory and application of SRDs as pulse sharpening and generating circuits is well described in [5]. After sharpening by the SRD, the step-like waveforms are usually converted to Gaussian, monocycle or some higher-order derivative pulses. Monocycle pulses are of special practical interest, as their spectrum does not contain low frequency components and the pulses are simple to realize. Transmission line pulse forming networks [6] or simple RC differentiators [2] are used to generate monocycle pulses. However, any pulse shaping circuits connected to the SRD sharpener output introduce pulse distortion and ringing into the output waveform. Therefore, additional circuits have to be employed to reduce the ringing [7]. A particular issue concerning SRD pulse generators is the design of driving circuits capable of driving the SRD with sufficient power and speed. SRDs were frequently driven by avalanche pulse generators in the past [8], [9]. The disadvantages of this solution are the low maximal pulse repetition frequency and the short avalanche transistor lifetime. The driver part of the UWB pulse generator is usually underrated in the literature, although the shape and power of the SRD driving waveform is crucial for the whole generator performance and output ringing level. In this paper we present a UWB pulse generator of monocycle waveforms. A novel pulse forming circuit with an SRD is proposed. Compared to the generators described in the literature, this circuit is located in the input section of the SRD sharpener instead of the usual placement in the output. This circuit solution produces reasonably high output amplitudes with a low ringing level. Only a simple transistor switching circuit with a power transistor operating in a saturated mode is required to drive this SRD pulser. While the performance of SRD circuits is relatively independent on the pulse repetition frequency that is used, it is difficult to design a driver capable of providing welldefined driving pulses in a wider pulse repetition frequency range. Our objective was to design a compact UWB pulse generator with a stable performance at an arbitrary pulse repetition frequency from 0 to 20 MHz.

RADIOENGINEERING, VOL. 17, NO. 4, DECEMBER 2008 75 Fig. 1. Block diagram of the UWB pulse generator. 2. Circuit Description and Design 2.1 General Structure A block diagram of the proposed UWB pulse generator is shown in Fig. 1. It consists of three main parts: a driver, an SRD pulser, and a monocycle forming network. The edge-triggered driver generates a well-defined driving pulse, which is independent of the input TTL waveform amplitude, frequency and duty-cycle. The amplitude of the driver output determines the pulse generator output power. The driver output pulse width is set to a few nanoseconds in order to minimize the power loss. The second stage of the pulse generator, the SRD pulser, consists of two main parts. The purpose of an SRD pulse sharpener is to sharpen the leading falling edge of the driving waveform. The sharpened step-like pulse is then processed in a pulse forming circuit to produce a Gaussianlike pulse. When no input driving pulse is present, the SRD is forward biased by an adjustable constant current source. The third part of the generator is a monocycle forming network, which forms an output monocycle pulse. In general, the pulse forming network is a high-pass filter, which transforms the input Gaussian pulse into the monocycle pulse. Attention has to be paid to possible distortion and ringing at the generator output, which may arise as a consequence of repeated reflections in this pulse forming network. 2.2 Driver A circuit diagram of the driver is shown in Fig. 2. An essential part of the driver is the bipolar transistor T 1 connected as a switch. In a steady state, T 1 is closed. After triggering the driver input with a TTL falling edge, the base voltage of T 1 is inverted by a TTL inverter and it rises to a sufficient level to saturate the transistor. The speedup capacitor C 1 (47 pf) effectively accelerates the switching. The output pulse width is controlled by a timing circuit consisting of R 2, C 2 and T 2. Switching of T 2 (BFG410W) is delayed by an integrator (R 2, C 2 ). T 2 turned on shortcircuits the base of T 1, which turns off. The TTL inverter (74HCT04) output current is limited by R 1 (470 Ω) in this state. Fig. 2. Circuit diagram of the driver. The circuit described here was analyzed using the SPICE simulator. The driver provides output pulses with fall times of 800 ps, maximal pulse repetition frequencies of about tens of MHz, and the pulse width is adjustable down to a few nanoseconds. With the wideband transistor BFG235 used as T 1 and 12 V supply voltage, the pulses are -11.5 V high at a 50 Ω load. A simulated output waveform of the driver as the response of a TTL trigger edge provided by the input inverter is shown in Fig. 3. Fig. 3. Simulated output waveforms of the driver (green) as a response of a TTL trigger edge (blue). 2.3 SRD Pulser The main parts of an SRD pulser are the SRD sharpener and the pulse forming circuit. In the conventional SRD pulse generator concept described in the literature [2], the pulse forming circuits are implemented as transmission line networks or simple RC differentiators. These circuits are connected in a cascade at the output of the SRD sharpener. We introduce a different way of Gaussian pulse forming in our design, as shown in Fig. 4. The SRD, connected in parallel with a transmission line, operates as a falling edge sharpener. In a steady state, the diode is forward biased and appears as a low impedance. A driving waveform applied to the pulser input passes through a coupling capacitor and a delay line to the SRD. After the SRD turns off, a fast fall time step waveform propagates in

76 P. PROTIVA, J. MRKVICA, J. MACHÁČ, UNIVERSAL GENERATOR OF ULTRA-WIDEBAND PULSES both directions away from the SRD. The first step propagates to the output, while the second propagates along the delay line back to the input. A shunt-connected Shottky diode (SD) was reverse-biased and did not influence the circuit before the driving waveform was applied. However, this diode is now opened by the negative driving pulse and represents a sufficiently low impedance to effectively short-circuit the transmission line. The step waveform propagating from the SRD to the input is reflected back inverted by this low impedance and propagates to the output again. Finally, the Gaussian-like pulse is formed by adding of the step waveform propagating unchanged from the SRD to the output with the delayed inverted step. Fig. 5. Simulated output waveforms of the driver (blue), SRD sharpener (green), SRD pulser (red) and of the monocycle forming network (cyan). Fig. 4. Circuit diagram of the SRD pulser. The pulse width of the output Gaussian pulse is proportional to the delay line length and can be flexibly adjusted by changing the position of the Schottky diode on the delay line. Another advantage of the pulser configuration described here is the location of the pulse forming circuit in the input section of the SRD sharpener instead of the usual placement in the output section. This makes it possible to maintain a low ringing level. Computer simulation of an SRD is a challenging issue. As the SRD differs considerably from a traditional P- N junction diode, SPICE diode models provide inaccurate results. In most cases, SRD circuits are therefore fine-tuned experimentally. Advanced SRD models [10] are usually not implemented in conventional time domain simulators. Our simulations were performed in the HSPICE transient simulator included in the AWR Microwave Office design suite. We used a basic SRD model provided by AWR in the simulator with the parameters adopted from the datasheet [11] of the selected diode ASRD808D. The simulation results are shown in Fig. 5. The SRD sharpener output waveform corresponds to the circuit in Fig. 4 without the Schottky diode present. The Gaussian pulse that is shown is then generated by the SRD pulser with the Schottky diode (BAT15) connected at the input of the microstrip delay line 8 mm in length with a characteristic impedance of about 90 Ω. The length of the delay line was chosen with respect to the highest possible output amplitude. The generated Gaussian pulses are 25 V in amplitude and approx. 180 ps FWHM (Full-Width at Half- Maximum) in width. 2.4 Monocycle Forming Network A pulse forming network may be connected to the output of the Gaussian pulser in order to form monocycle pulses. It can be implemented as a lumped RC differentiator (Fig. 6a) or as a distributed transmission line pulse forming network (Fig. 6b). Both circuits include a Schottky diode to reduce output ringing, which is a consequence of multiple reflections between the pulser output and the monocycle forming network input. In our design, we prefer the distributed structure, since the simulation showed higher output amplitude, a lower ringing level and lower dependence on the pulse repetition frequency than the lumped differentiator. However, the distributed structure generates wider pulse width monocycles than the lumped differentiator [7]. AWR Microwave Office was used to design a layout of the network. The length of the shortened shunt-stub was optimized to 18 mm in order to generate a symmetrical monocycle with the maximum possible output amplitude. The impedance of all the microstrip lines is 50 Ω. The simulated output waveform of the suggested network as a response of the input Gaussian pulse is shown in Fig. 5. The full width of these monocycles is 500 ps. Fig. 6. Lumped (a) and distributed (b) pulse forming network.

RADIOENGINEERING, VOL. 17, NO. 4, DECEMBER 2008 3. Fabrication and Experiment First, all circuit blocks described above were implemented and tested as separate modules on an FR4 substrate. A crystal oscillator was used as a TTL trigger source. Waveforms were measured using an Agilent 86100C sampling oscilloscope at a 50 Ω load. After measuring the output of the sharpener, the circuit configuration was changed into a Gaussian pulser by soldering a pair of reflecting Schottky diodes. Two of these diodes were connected in parallel in order to enhance the reflection effect. The width of the driving pulse was set to about 6 ns and the bias current was set to 30 ma during all measurements. After testing the separate modules, a complete monocycle pulse generator including a 5 V voltage stabilizer and a bias current source was assembled on a single board into a shielded box. The Arlon AD450 substrate was used. A photograph of the finalized monocycle generator is shown in Fig. 7. 77 approximately 150 ps FWHM for an ASRD808D diode, however, with lower output amplitude. Fig. 8. Measured output waveforms of the separate generator blocks driver (blue), SRD sharpener (green), SRD pulser (red) and monocycle forming network (cyan). monocycle forming network driver pulser Fig. 7. Finalized monocycle generator. 4. Results and Discussion Fig. 8 shows the measured output waveforms of the separate generator blocks. The pulse width and shape of the generated pulses show good agreement with the simulation in Fig. 5, although a simple SRD model was used. The pulse amplitude is lower than in the simulation, due to the loss of module interconnection cables and transitions. An additional source of loss is the series Schottky diode included in the monocycle forming network. Fig. 9 and Fig. 10 show the output waveforms generated by the final circuit shown in Fig. 7, with the pulse repetition frequency as a parameter. The Gaussian pulses (Fig. 9) were measured at the output of the Gaussian pulser, with the monocycle forming network bypassed. Short interconnection paths and a high quality substrate result in an increased pulse amplitude, which reaches 27 V in the case of the Gaussian pulse and 25 V peak-to-peak (Fig. 10) in the case of the monocycle. The pulse width can be changed to some extent by repositioning the Shottky diodes. The minimal achievable Gaussian pulse width is Fig. 9. Measured output waveforms of the Gaussian generator with the pulse repetition frequency as a parameter. Fig. 10. Measured output waveforms of the monocycle generator with the pulse repetition frequency as a parameter.

78 P. PROTIVA, J. MRKVICA, J. MACHÁČ, UNIVERSAL GENERATOR OF ULTRA-WIDEBAND PULSES The influence of the pulse repetition frequency on the shape of the main output pulse is negligible. The overshoot, following the main pulse, is a consequence of the driving pulse trailing edge. This overshoot is removed by the series Schottky diode included in the monocycle forming network. 5. Conclusion In this paper, we have presented a new circuit solution of an ultra-wideband short pulse generator. The main circuit blocks of the pulse generator were described in detail: a simple transistor driver, a novel Gaussian pulser with a step recovery diode and an additional distributed monocycle forming network, which forms an output monocycle. All generator blocks were analyzed by a transient simulator, then implemented and tested as separate modules. Finally, a sample of the monocycle generator was implemented on a single board. Measurements performed by a sampling oscilloscope show good agreement with the simulations. The generated Gaussian pulses are up to 27 V in amplitude and 180 ps FWHM (Full-Width at Half- Maximum) in width. The amplitude of the generated monocycle pulses is up to 25 V, and the total width of the monocycles is about 500 ps. The influence of the pulse repetition frequency on the shape of the output waveforms is negligible up to 20 MHz. Several ultra-wideband pulse generators based on the concept described above have now been successfully used in our ultra-wideband radar experiments, time-domain antenna measurements, and as a part of microwave sampling circuits. Acknowledgements This work has been supported by the Ministry of Industry and Trade of the Czech Republic under project FI- IM5/090 Ultrawideband Radar and Positioning Systems. References [1] MILLER, E. K. Time-Domain Measurements in Electromagnetics. Springer, 1986. [2] REED, J. H. An Introduction to Ultra Wideband Communication Systems. Prentice Hall PTR, 2005. [3] OUSLIMANI, A., VERNET, G., HARDALLAH, H., ADDE, R. Large amplitude picosecond step generation with FETs. Electronics Letters, 1990, vol. 26, no. 19, p. 1563-1564. [4] GERDING, M., MUSCH, T., SCHIEK, B. Generation of short electrical pulses based on bipolar transistors. Advances in Radio Science, 2004, no. 2, p. 7-12. [5] Hewlett-Packard Application Note AN918: Pulse and Waveform Generation with Step Recovery Diodes. Hewlett-Packard, 1984. [6] SMITH, P. W. Transient Electronics: Pulsed Circuit Technology. Wiley, 2002. [7] HAN, J., NGUYEN, C. A new ultra-wideband, ultra-short monocycle pulse generator with reduced ringing. IEEE Microwave and Wireless Components Letters, 2002, vol. 12, no. 6, p. 206-208. [8] TIELERT, R. Subnanosecond-pulse generator employing 2-stage pulse step sharpener. Electronics Letters, 1976, vol. 12, no. 3, p. 84-85. [9] EVANS, S., READER, H. C. An impulse generator for antenna measurements in the time domain. Journal of Physics E: Scientific Instruments, 1988, vol. 21, p. 657-660. [10] ZHANG, J., RAISANEN, A. A new model of step recovery diode for CAD. In Proc. IEEE MTT-S International Microwave Symposium Digest. Orlando (USA), 1995, vol. 3, p. 1459-1462. [11] ASRD 800 Series Surface Mount Step Recovery Diode. Advanced Semiconductor, Inc., 1999. About Authors... Pavel PROTIVA was awarded his Master degree in Radio Electronics from the Czech Technical University in Prague, Czech Republic, in 2007 and is currently working toward a Ph.D. degree at the same university, with the Department of Electromagnetic Field. His research interest is in propagation of ultra-wideband signals. He has been an IEEE Student Member since 2007. Jan MRKVICA received his Master and Ph.D. degrees in Radio Electronics from the Czech Technical University in Prague, Czech Republic, in 2001 and 2004, respectively. Since 2004, he has been an ultra-wideband technology development engineer with RETIA, a.s., Pardubice, Czech Republic. Jan MACHÁČ is with the Faculty of Electrical Engineering, Czech Technical University, Prague. Currently he is an associate professor of electrical engineering. His main research interests are metamaterials, modeling of planar passive elements and subsystems used in millimeter wave techniques, and field theory. He is an author or co-author of more than 170 papers in scientific journals and conferences. He is a Senior Member of the IEEE. He was a member of the Technical Program Committee of the European Microwave Conference in 1995-1997, and was Conference Secretary in 1996. He was a member of the TPC of the 2004 URSI International Symposium on Electromagnetic Theory. He is a member of the IEEE MTT International Microwave Symposium TPC.

易迪拓培训 专注于微波 射频 天线设计人才的培养网址 :http://www.edatop.com 射频和天线设计培训课程推荐 易迪拓培训 (www.edatop.com) 由数名来自于研发第一线的资深工程师发起成立, 致力并专注于微波 射频 天线设计研发人才的培养 ; 我们于 2006 年整合合并微波 EDA 网 (www.mweda.com), 现已发展成为国内最大的微波射频和天线设计人才培养基地, 成功推出多套微波射频以及天线设计经典培训课程和 ADS HFSS 等专业软件使用培训课程, 广受客户好评 ; 并先后与人民邮电出版社 电子工业出版社合作出版了多本专业图书, 帮助数万名工程师提升了专业技术能力 客户遍布中兴通讯 研通高频 埃威航电 国人通信等多家国内知名公司, 以及台湾工业技术研究院 永业科技 全一电子等多家台湾地区企业 易迪拓培训课程列表 :http://www.edatop.com/peixun/rfe/129.html 射频工程师养成培训课程套装该套装精选了射频专业基础培训课程 射频仿真设计培训课程和射频电路测量培训课程三个类别共 30 门视频培训课程和 3 本图书教材 ; 旨在引领学员全面学习一个射频工程师需要熟悉 理解和掌握的专业知识和研发设计能力 通过套装的学习, 能够让学员完全达到和胜任一个合格的射频工程师的要求 课程网址 :http://www.edatop.com/peixun/rfe/110.html ADS 学习培训课程套装该套装是迄今国内最全面 最权威的 ADS 培训教程, 共包含 10 门 ADS 学习培训课程 课程是由具有多年 ADS 使用经验的微波射频与通信系统设计领域资深专家讲解, 并多结合设计实例, 由浅入深 详细而又全面地讲解了 ADS 在微波射频电路设计 通信系统设计和电磁仿真设计方面的内容 能让您在最短的时间内学会使用 ADS, 迅速提升个人技术能力, 把 ADS 真正应用到实际研发工作中去, 成为 ADS 设计专家... 课程网址 : http://www.edatop.com/peixun/ads/13.html HFSS 学习培训课程套装该套课程套装包含了本站全部 HFSS 培训课程, 是迄今国内最全面 最专业的 HFSS 培训教程套装, 可以帮助您从零开始, 全面深入学习 HFSS 的各项功能和在多个方面的工程应用 购买套装, 更可超值赠送 3 个月免费学习答疑, 随时解答您学习过程中遇到的棘手问题, 让您的 HFSS 学习更加轻松顺畅 课程网址 :http://www.edatop.com/peixun/hfss/11.html `

易迪拓培训 专注于微波 射频 天线设计人才的培养网址 :http://www.edatop.com CST 学习培训课程套装该培训套装由易迪拓培训联合微波 EDA 网共同推出, 是最全面 系统 专业的 CST 微波工作室培训课程套装, 所有课程都由经验丰富的专家授课, 视频教学, 可以帮助您从零开始, 全面系统地学习 CST 微波工作的各项功能及其在微波射频 天线设计等领域的设计应用 且购买该套装, 还可超值赠送 3 个月免费学习答疑 课程网址 :http://www.edatop.com/peixun/cst/24.html HFSS 天线设计培训课程套装套装包含 6 门视频课程和 1 本图书, 课程从基础讲起, 内容由浅入深, 理论介绍和实际操作讲解相结合, 全面系统的讲解了 HFSS 天线设计的全过程 是国内最全面 最专业的 HFSS 天线设计课程, 可以帮助您快速学习掌握如何使用 HFSS 设计天线, 让天线设计不再难 课程网址 :http://www.edatop.com/peixun/hfss/122.html 13.56MHz NFC/RFID 线圈天线设计培训课程套装套装包含 4 门视频培训课程, 培训将 13.56MHz 线圈天线设计原理和仿真设计实践相结合, 全面系统地讲解了 13.56MHz 线圈天线的工作原理 设计方法 设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体操作, 同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试 通过该套课程的学习, 可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹配电路的原理 设计和调试 详情浏览 :http://www.edatop.com/peixun/antenna/116.html 我们的课程优势 : 成立于 2004 年,10 多年丰富的行业经验, 一直致力并专注于微波射频和天线设计工程师的培养, 更了解该行业对人才的要求 经验丰富的一线资深工程师讲授, 结合实际工程案例, 直观 实用 易学 联系我们 : 易迪拓培训官网 :http://www.edatop.com 微波 EDA 网 :http://www.mweda.com 官方淘宝店 :http://shop36920890.taobao.com 专注于微波 射频 天线设计人才的培养易迪拓培训官方网址 :http://www.edatop.com 淘宝网店 :http://shop36920890.taobao.com