微藻能源的研究进展 Advances in the research of Microalgae Bioenergy 张英伟 1 2, 刘炜 (1., 100070; 2., 266101) : TK6 : A : 1000-3096(2012)01-0132-07,,,,, [1],,,, [2] 1 能源微藻的优势与问题 [3], [4,5], [2],, 1 000 hm 2, 1/3, [6] CO 2 N P ( ),, 3 5 d,, [6] 15%~20%, 80% [7], 1 [8] [10], 1, 1 hm 2 172 L, 1 hm 2 446 L, 1 hm 2 1 190 L, 1 hm 2 5 950 L, 1 hm 2 9.5 10 4 L [9] 7 000,, 2014 6 500 /a,, 1, CO 2 40% [11] CO 2, 30 10 8 ~31 10 8 t, 1 t 2.5 t,, [12], CO 2, CO 2, (1 t 2 t CO 2 ),, (Clean development mechanism, CDM) ( 1 t, 表 1 各种生物原料油脂含量的比较 (L/(hm a)) 450.70 582.16 957.75 1896.71 5962.44 9389.67~37558.69 : 2010-11-19; : 2011-02-19 : (KGCXZ-YW-801); (20872075) : (1971-),,,, : 010-63701616-408, E-mail: zhangyw@risun-group.com;,, : 0532-80662766, E-mail: liuwei@qibet.ac.cn 132 / 2012 / 36 / 1
, 3 t, 6 tco 2 ), CO 2 [13],,,, [13], : ; ; ; ;, 2 微藻的种类,, [14-15], 50 000, 30 000 [16],, (University of Coimbra) 4 000 ; (Goettingen University) 77%, 8% ; NIES 2 150 700 [2] 3 高脂微藻的筛选,, : [17] 1978, 3 000, 300 [18],, 2 [2] 2, 75%,, (Botryococcus braunii);, (Chlorella), (Crypthecodinium), (Cylindrotheca), (Dunaliella), (Isochrysis), (Nannochloris), (Nannochloropsis), (Neochloris), (Nitzschia), (Phaeodactylum), (Porphyridium), (Tetraselmis), 20% 50%,, [2] Thomas [19] 7,, 7 C14:0, C16:0, C18:1, C18:2, C18:3 ;, (Ankistrodesmus sp.) C16:4 C18:4, (Isochrysis sp.) C18:4 C22:6, (Nannochloris sp.) C16:2 C16:3 C20: 5,, [20],, [21] 30, [22] Dunstan [23] 14, :14:0 16:0 16:1 20:5(EPA), 22:6(DHA) 4% [24],,,, 4 环境因子对微藻脂类积累的影响 Rao [25] [26], 2 Pyramidomonas sp. Chlorophyeeae L-4,, Marine Sciences / Vol. 36, No. 1 / 2012 133
表 2 不同种类微藻的油脂含量及产率 (%, ) (mg/(l d)) (g/(l d)) (g/(m 2 d)) (Ankistrodesmus sp.) 24.0 31.0 11.5 17.4 (Botryococcus braunii) 25.0 75.0 0.02 3.0 (Chaetoceros muelleri) 33.6 21.8 0.07 (Chaetoceros calcitrans) 14.6 16.4/39.8 17.6 0.04 (Chlorella emersonii) 25.0 63.0 10.3 50.0 0.036 0.041 0.91 0.97 (Chlorella protothecoides) 14.6 57.8 1214 2.00 7.70 (Chlorella sorokiniana) 19.0 22.0 44.7 0.23 1.47 Chlorella vulgaris 5.0 58.0 11.2 40.0 0.02 0.20 0.57 0.95 (Chlorella sp.) 10.0 48.0 42.1 0.02 2.5 1.61 16.47/25 (Chlorella pyrenoidosa) 2.0 2.90 3.64 72.5/130 (Chlorella) 18.0 57.0 18.7 3.50 13.90 (Chlorococcum sp.) 19.3 53.7 0.28 (Crypthecodinium cohnii) 20.0 51.1 10 (Dunaliella salina) 6.0 25.0 116.0 0.22 0.34 1.6 3.5/20 38 (Dunaliella primolecta) 23.1 0.09 14 (Dunaliella tertiolecta) 16.7 71.0 0.12 (Dunaliella sp.) 17.5 67.0 33.5 (Ellipsoidion sp.) 27.4 47.3 0.17 (Euglena gracilis) 14.0 20.0 7.70 (Haematococcus pluvialis) 25.0 0.05 0.06 10.2 36.4 (Isochrysis galbana) 7.0 40.0 0.32 1.60 (Isochrysis sp.) 7.1 33 37.8 0.08 0.17 (Monodus subterraneus) 16.0 30.4 0.19 (Monallanthus salina) 20.0 22.0 0.08 12 (Nannochloris sp.) 20.0 56.0 60.9 76.5 0.17 0.51 (Nannochloropsis oculata) 22.7 29.7 84.0 142.0 0.37 0.48 (Nannochloropsis sp.) 12.0 53.0 37.6 90.0 0.17 1.43 1.9 5.3 (Neochloris oleoabundans) 29.0 65.0 90.0 134.0 (Nitzschia sp.) 16.0 47.0 8.8 21.6 16.0~47.0 8.8 21.6 (Oocystis pusilla) 10.5 40.6 45.8 Pavlova salina 30.9 49.4 0.16 (Pavlova lutheri) 35.5 40.2 0.14 (Phaeodactylum tricornutum) 18.0 57.0 44.8 0.003 1.9 2.4 21 (Porphyridium cruentum) 9.0 18.8/60.7 34.8 0.36 1.50 25 (Scenedesmus obliquus) 11.0 55.0 0.004 0.74 (Scenedesmus quadricauda) 1.9 18.4 35.1 0.19 (Scenedesmus sp.) 19.6 21.1 40.8 53.9 0.03 0.26 2.43 13.52 (Skeletonema sp.) 13.3 31.8 27.3 0.09 (Skeletonema costatum) 13.5 51.3 17.4 0.08 (Spirulina platensis) 4.0 16.6 0.06 4.3 1.5 14.5/24 51 (Spirulina maxima) 4.0 9.0 0.21 0.25 25 (Thalassiosira pseudonana) 20.6 17.4 0.08 (Tetraselmis suecica) 8.5 23.0 27.0 36.4 0.12 0.32 19 (Tetraselmis sp.) 12.6 14.7 43.4 0.30 134 / 2012 / 36 / 1
[27] 40, 100, 40,, [28] [29],,, 10 20 ; 20 Zhu [30] 30 15, Isochrysis galbana (DHA) 18:3(n-3),, Spoehr Milner [31], Chtorella Pyrenoidosa, ( ) Liliana [32],, Nannochloropsis sp. F&M-M24, 60%, 20% Thomas [19], C18:1, (B. braunii) C20:5 Melinda [33], 24% 41% [34] Fe 3+, 56.6%, 3 7 ;, CO Liliana [32], Nannochloropsis sp. F&M-M24 (14:0 16:0) (16:1n7 18:1n9) Chiu [35] 2%CO 2, CO 2 5 工程微藻研究进展,,,,,,, ( 1), A 1 [36] 5.1 乙酰辅酶 A 羧化酶研究进展 A (acetyl-coa carboxylase, ACC, EC 6.4.1.2), [37], A(acetyl-CoA) A(malonyl-CoA), [38], ACC Wakil [39],, ACC [40] ACC,,, [41], ACC, [42] 1993, Cronan ACC acca accd, [43-44] Davis [45] ACC tesa, Marine Sciences / Vol. 36, No. 1 / 2012 135
6 (6.6 nmol), ACC,, 0.08 nmol Lu [46] ACC,,, 5 L 35 h, 2.5 g/l ACC,, ACC [47], ACC, [48] (NREL) 1995 A (ACCase), 60%, 40%, [49] Dunahay [50] ACCase C. cryptica N. saprophila, 5.2 硫脂酶基因研究进展 (thioesterase, EC: 3.1.2),, -CoA -ACP CoASH ACP, [51], [52],, [53] Voelker [51] β- Umbellularia californica - (AtFatA), 4 Liu [54] tesa (U. californica C. hookeriana C. camphorum) TE,, 133 ±12 mg day/l, 50% 6 展望,,,, (EPA) (ARA) (DHA) [55] ; (Haematococcus pluvialis) [56],,,,,,,,, : [1] Chisti Y. Biodiesel from microalgae[j]. Biotechnology Advances, 2007, 25(3): 294-306. [2] Mata T, Martins A, Caetano N. Microalgae for biodiesel production and other applications: A review[j]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 217-232. [3] Canakci M H. Sanli.Biodiesel production from various feedstocks and their effects on the fuel properties[j]. Journal of Industrial Microbiology and Biotechnology, 2008, 35(5): 431-441. [4] Scarlat N, Dallem J F, Pinilla F G. Impact on agricultural land resources of biofuels production and use in the European Union[C] //Bioenergy: challenges and opportunities. International conference and exhibition on bioenergy, 2008. [5] E and RF. Gallagher Review of the indirect effects of biofuels production[c]. Renewable Fuels Agency, 2008. [6]. [J]., 2010, 17(1): 56-57. [7] Metting F. Biodiversity and application of microalgae[j]. Journal of Industrial Microbiology and Biotechnology, 1996, 17(5): 477-489. [8] National algal biofuels technology roadmap[r]. U.S. department of energy, 2009. [9]. : [J]., 2009, 5: 26-28. [10]. [J]., 2010 7 1. [11] Miyamoto K. Renewable biological systems for alternative sustainable energy production (FAO 136 / 2012 / 36 / 1
Agricultural Services Bulletin-128)[M]. Rome: Food and Agriculture Organization of the United Nations, 1997. [12]. [J]., 2010, 34:47-48. [13],,,. [J]., 2010, 26(7): 907-913. [14] Li Y, Horsman M, Wang B, et al. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans[j]. Applied microbiology and Biotechnology, 2008, 81(4): 629-636. [15] Li Y, Horsman M, Wu N, et al. Biofuels from microalgae[j]. Biotechnology Progress, 2008, 24(4): 815-820. [16] Richmond A. Handbook of microalgal culture: biotechnology and applied phycology[j]. Journal of Applied Phycology, 2004, 16: 159-160. [17],,,. [J]., 2010, 22(6): 1221-1232. [18],,. [J]., 2008, 24(3): 341-348. [19] Thomas W, Tornabene T, Weissman J. Screening for lipid yielding microalgae: Activities for 1983. Final Subcontract Report [M].U S A: Solar Energy Research Institute. 1984: 17-38. [20]. [J]., 2008, 35(002): 60-63. [21] Renaud S, Parry D, Thinh L. Microalgae for use in tropical aquaculture I: Gross chemical and fatty acid composition of twelve species of microalgae from the Northern Territory, Australia[J]. Journal of Applied Phycology, 1994, 6(3): 337-345. [22],,,. [J]., 2005, 19(1): 96-100. [23] Dunstan G, Volkman J K, Barrett S M, et al. Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae) [J]. Phytochemistry, 1993, 35(1): 155-161. [24],. [J]., 1999, 30(001): 34-40. [25] Rao A, Dayananda C, Sarada R, et al. Effect of salinity on growth of green alga Botryococcus braunii and its constituents[j]. Bioresource Technology, 2007, 98(3): 560-564. [26],,,. 2 [J]., 2005, 29(1): 4-11. [27],,,. [J]., 2011, 1: 134-136, 139. [28],..[J]., 2004, 25(6): 79-85. [29],,,. [J]., 2005, 26(6): 9-12. [30] Zhu C J, Lee Y K, Chao T M. Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1[J]. Journal of Applied Phycology, 1997, 9(5): 451-457. [31] Spoehr H, Milner H.The chemical composition of Chlorella; effect of environmental conditions[j]. Plant physiology, 1949, 24(1): 120-149. [32] Rodolfi L, Zittelli G C, Bassi N. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor [J]. Biotechnology and Bioengineering, 2008, 102(1): 100-112. [33] Melinda J. Griffiths, Susan T L. Harrison.Lipid productivity as a key characteristic for choosing algal species for biodiesel production [J]. Journal of Applied Phycology, 2009, 21: 493 507. [34]. [D]. :, 2008. [35] Chiu S, Kao C Y, Tsai M T, et al. Lipid accumulation and CO 2 utilization of Nannochloropsis oculata in response to CO 2 aeration[j]. Bioresource Technology, 2009, 100(2): 833-838. [36] Courchesne N, Parisien A, Wang B, et al. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches[j]. Journal of Biotechnology, 2009, 141(1-2): 31-41. [37],. A [J]., 2005, 25(4): 89-95. [38] Rawsthorne S. Carbon flux and fatty acid synthesis in Marine Sciences / Vol. 36, No. 1 / 2012 137
plants[j]. Progress in Lipid Research, 2002, 41(2): 182-196. [39] Wakil S. A malonic acid derivative as an intermediate in fatty acid synthesis[j]. Journal of the American Chemical Society, 1958, 80(23): 6465-6465. [40] Thampy K, Wakil S. Activation of acetyl-coa carboxylase-purification and properties of a Mn 2+ -dependent phosphatase[j]. Journal of Biological Chemistry, 1985, 260(10): 6318-6323. [41] Kurth D, Gago G M, de la Iglesia A, et al. ACCase 6 is the essential acetyl-coa carboxylase involved in fatty acid and mycolic acid biosynthesis in mycobacteria[j]. Microbiology, 2009, 155(8): 2664-2675. [42] Zhang H, Yang Z, Shen Y, et al. Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase[j]. Science, 2003, 299(5615): 2064-2067. [43] Cronan J. Multi-subunit acetyl-coa carboxylases[j]. Progress in Lipid Research, 2002, 41(5): 407-435. [44] Li S J, Cronan J E. Growth rate regulation of escherichia coli acetyl coenzyme a carboxylase, which catalyzes the first committed step of lipid biosynthesis[j]. Journal of Bacteriology, 1993, 175(2): 332-340. [45] Davis M, Solbiati J, Cronan J.Overproduction of acetyl-coa carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli[j]. Journal of Biological Chemistry, 2000, 275(37): 28593-28598. [46] Lu X, Vora H, Khosla C. Overproduction of free fatty acids in E. coli: implications for biodiesel production[j]. Metabolic Engineering, 2008, 10(6): 333-339. [47] Chang M, Keasling J. Production of isoprenoid pharmaceuticals by engineered microbes[j]. Nature Chemical Biology, 2006, 2(12): 674-681. [48] Leonard E, Lim K H, Saw P N, et al. Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli[j]. Applied and Environmental Microbiology, 2007, 73(12): 3877-3886. [49] Sheehan J, Dunahay T, Benemann J, et al. A look back at the U.S. Department of Energy s Aquatic Species program: biodiesel from algae[c]. National Renewable Energy Laboratory, Report, 1998. [50] Dunahay T G, Jarvis E E, Dais S S, et al. Manipulation of microalgal lipid production using genetic engineering[j]. Applied Biochemistry and Biotechnology, 1996, 57: 8223 8231. [51] Voelker T, Davies H. Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase[j]. Journal of Bacteriology, 1994. 176(23): 7320-7327. [52] Hunt M, Alexson S.The role Acyl-CoA thioesterases play in mediating intracellular lipid metabolism[j]. Progress in Lipid Research, 2002, 41(2): 99-130. [53] Voelker T, Jones A, Cranmer A M, et al.broad-range and binary-range acyl-acyl-carrie r-protein thioesterases suggest an alternative mechanism for medium-chain production in seeds[j]. Plant Physiology, 1997, 114(2): 669-677. [54] Liu X, Brune D, Vermaas W, et al. Production and secretion of fatty acids in genetically engineered cyanobacteria[j]. Proceedings of the National Academy of Sciences, 2010, 107: 13189-13194. [55],,,. [J]., 2009, 29(003): 110-116. [56],,,. [J]., 2010, 41: 160-166. ( 本文编辑 : 康亦兼 ) 138 / 2012 / 36 / 1