49 22 2013 11 JOURNAL OF MECHANICAL ENGINEERING Vol.49 No.22 Nov. 2013 DOI 10.3901/JME.2013.22.109 - DZ125 * 1 1 1 2 1 (1. 100191 2. 95899 100097) ( γ max )(Theory of critical distance TCD) DZ125 TCD 10 2 V231 Low Cycle Fatigue Life Prediction of Notched DZ125 Component Based on Combined Critical Distance-Critical Plane Approach HUANG Jia 1 YANG Xiaoguang 1 SHI Duoqi 1 WANG Jingke 2 HU Xiaoan 1 (1. School of Energy and Power Engineering, Beihang University, Beijing 100191; 2. The People s Liberation Army Military Unit 95899, Beijing 100097) Abstract Considering the plastic flow and crack initiation mechanism occurred on the slip systems of ni-base directionally solidified (DS) supealloy, the critical plane method with the combination of hot point concept and theory of critical distance(tcd) is conducted on low cycle fatigue (LCF) life prediction of notched DZ125 at 850. The damage parameter on slip planes is the maximum resolved shear strain range γ max. The obtained results exhibits that the prediction ability of the Hot point method is conservative and K t related. Furthermore, TCD is introduced and the analysis results show that the critical distance is not only related to material, failure cycles and stress ratio, but also related to the degree of stress concentration. Using the sharp notch as standard sample or dealing critical distance with statistics average method, the scatter band of predicted life is more than 10. However, based on the K t modified critical distance, the scatter band is increased to 2. Key words Low cycle fatigue Theory of critical distance Critical plane method Slip system Ni-base directionally solidified(ds) superalloy 0 * (Directionally solidified, DS) 20121220 20130603
110 49 22 [1-4] (Low cycle fatigue, LCF) LCF (Theory of critical distance, TCD) LCF [5] TCD [6-10] TCD [11] WAN [12] DD3 YANG [13] (K t ) LCF LEIDERMARK [14-15] LCF DS LCF DZ125 [16] LCF - - DS DZ125 LCF 30 1 [17-18] U 1 ( b s U ) DZ125 K t 1 K t ±2 1 0.1 0.5 Hz 1 1 ( / /mm /mm ) /mm mm K t 0 0 9.98 0 1.00 11 U b 0.60 0.40 1.43 5.96 3.01 7 U s 0.53 0.18 1.45 5.94 4.35 4 1.1 LCF ( 1 80 ) LCF 2a f(n)=an b a b N σ net N f 2b U s U b K t 3.0 4.35 4 DZ125 LCF LCF
2013 11 - DZ125 111 3 LCF 2 LCF 2 DZ125 3 LCF 1.2 / ABAQUS Hill Hill / 2 [17] C3D20R 0.005 mm DZ125 - - - 4 / /GPa /GPa Hill 850 E 1 =E 2 =117 E 3 =91 12=0.295 23= 13=0.595 G 12 =52.5 G 31 =G 23 =89.8 F=G=0.5 H=0.6784 L=M=1.648 N=1.856 8 R 11 =R 22 =0.921 4 / R 33 =1 R 12 =0.898 8 R 13 =R 23 =0.954 U b 600 MPa 0.1 ( 33 ε 33 ) 5a 600 MPa U b U s 5b K t
112 49 22 2.1 DS 5 (1) 1.3 / DZ125 DS 30 / ARAKERE [19] 3 γ max ( 500 MPa) LEIDERMARK [14-15] 6 U b U s γ max γ max 3 γ max 2 LCF 6 γ max b max an f (1) a b N f (1) a b 7 ( γ max = 0.061 04N f 0.137 68, R 2 =0.968 88) U b γ max U s γ max 1 15 0.017 58 1 11 0.021 50 2 24 0.016 14 2 19 0.016 64 3 24 0.014 38 3 19 0.013 98 24 24 0.006 30 26 10 0.006 35 25 24 0.006 22 27 10 0.006 31 26 19 0.006 19 28 24 0.006 27 7 γ max -N f U b U s LCF γ max (1) 8 5
2013 11 - DZ125 113 8 2.2 - U b U s LCF LCF 10 - LCF TCD TCD (2) A B 30 A=0.010 27 B=0.143 43 γ max LCF 11 U s (1) γ max 6 10 U b 9 TCD DZ125 K t 9 SUSMEL [9-10] D(N f ) N f B D( N ) AN (2) f A B A B SUSMEL [10] f U s (2) A=0.003 86 B=0.166 26 (1) (2) γ max 10 100 11 - LCF LCF YANG [13] TCD LCF () K t TCD K t D PM =an b f D PM
114 49 22 9 - LCF K t (3) m b Kt DPM an f (3) 12 2.791 (K 27 0.166 t D PM =0.233 35N 73 f ) 13 TCD 2 3 12 K t 13 - LCF (1) LCF LCF / (2) γ max γ max (3) 5 TCD 10 K t TCD 2 [1]. DZ125 / [J]., 2007, 22(9) 1526-1531. ZHOU Tianpeng, YANG Xiaoguang, HOU Guicang, et al. Experimental analysis of low-cycle and creep fatigue for directionally solidified DZ125 with a hole[j]. Journal of Aerospace Power, 2007, 22(9) 1526-1531. [2]. DZ125 /[J]., 2008, 23(2) 276-280. ZHOU Tianpeng, YANG Xiaoguang, SHI Duoqi, et al. Modeling of low-cycle and creep fatigue life for DZ125 smooth specimens and small hole components[j]. Journal of Aerospace Power, 2008, 23(2) 276-280. [3]. [J]., 2010, 46(22) 65-69. PENG Fan, YAO Yunjian, GU Yongjun. Fatigue assessment of welded joints considering hot spot stress gradient[j]. Journal of Mechanical Engineering, 2010, 46(22) 65-69. [4]. [J]., 2010, 46(2) 40-46. XU Jinquan, GUO Fengming. Mechanism of fatigue damage evolution and the evolution law[j]. Journal of Mechanical Engineering, 2010, 46(2) 40-46. [5]. SWT [J]., 2013, 49(2) 59-66. WU Zhirong, HU Xuteng, SONG Yingdong. Multi-axial fatigue life prediction model based on maximum shear strain amplitude and modified SWT parameter[j]. Journal of Mechanical Engineering, 2013, 49(2) 59-66.
2013 11 - DZ125 115 [6] NEUBER H. Theory of notch stresses Principles for exact stress calculation[m]. Ann Arbor(MI) JW Edwards, 1946. [7] PETERSON R E. Notch sensitivity[m]. New York McGraw Hill, 1959. [8] TAYLOR D. Geometrical effects in fatigue A unifying theoretical model[j]. International Journal of Fatigue, 1999, 21 413-420. [9] SUSMEL L, TAYLOR D. A novel formulation of the theory of critical distances to estimate lifetime of notched components in the medium-cycle fatigue regime[j]. Fatigue and Fracture of Engineering Materials and Structures, 2007, 30(7) 567-581. [10] SUSMEL L, TAYLOR D. On the use of the theory of critical distances to estimate fatigue strength of notched components in the medium-cycle fatigue regime[c/cd]// Proceedings of FATIGUE 2006. Altanta, USA 2006. [11]. [J]., 2007, 28(4) 824-826. LIU Jinlong. Investigation on cast simulation and low ZHANG Li, CHENG Jin, LI Xingang. The fatigue life prediction method of notched specimen based on the critical plane[j]. Journal of Astronautics, 2007, 28(4) 824-826. [12] WAN J S, YUE Z F. A low-cycle fatigue life model of orientation on fatigue failure of single crystal nickel base nickel-based single crystal superalloys under multiaxial stress state[j]. Materials Science and Engineering A, 2005(392) 145-149. [13] YANG Xiaoguang, WANG Jingke, LIU Jinglong. High temperature LCF life prediction of notched DS Ni-based 1987 superalloy using critical distance concept[j]. International Journal of Fatigue, 2011, 33(11) 1470-1476. [14] LEIDERMARK D, MOVERARE J, SIMONSSON K, et al. Fatigue crack initiation in a notched single-crystal superalloy component[j]. Procedia Engineering, 2010, 2 1067-1075. [15] LEIDERMARK D, MOVERARE J, SIMONSSON K, et al. A combined critical plane and critical distance approach for predicting fatigue crack initiation in notched single-crystal superalloy components[j]. International Journal of Fatigue, 2011, 33 1351-1359. [16],,. DZ125 [J]., 2010(12) 47-51. LIU Jinlong, SHI Duoqi, YANG Xiaoguang. Study on influence of strain ratio on low cycle fatigue behavior of directionally solidified superalloy DZ125[J]. Materials Engineering, 2010(12) 47-51. [17]. [D]. 2011. WANG Jingke. Investigation on notch fatigue of Ni-based superalloy and Ti-alloys[D]. Beijing Beihang University, 2011. [18]. / [D]. 2011. cycle fatigue behavior of Ni-based single crystal and directionally solidified turbine blade[d]. Beijing Beihang University, 2011. [19] ARAKERE N K, SWANSON G. Effect of crystal turbine blade superalloys[j]. Journal of Engineering for Gas Turbines and Power Transactions of the ASME, 2002, 124 161-176. E-mail huangjia216@126.com 1962 E-mail yxg@buaa.edu.cn () 1975 E-mail shdq@buaa.edu.cn