國家圖書館典藏電子全文

Similar documents
Thesis for the Master degree in Engineering Research on Negative Pressure Wave Simulation and Signal Processing of Fluid-Conveying Pipeline Leak Candi

cgn

untitled


江苏宁沪高速公路股份有限公司.PDF

509 (ii) (iii) (iv) (v) 200, , , , C 57

Slide 1

Microsoft Word - MP2018_Report_Chi _12Apr2012_.doc

南華大學數位論文

李天命的思考藝術

皮肤病防治.doc

性病防治

中国南北特色风味名菜 _一)

全唐诗24

(Chi)_.indb

14A 0.1%5% 14A 14A

穨_2_.PDF

I

Microsoft Word - Paper on PA (Chi)_ docx

第一章 前言

「香港中學文言文課程的設計與教學」單元設計範本

全唐诗28

穨學前教育課程指引.PDF

眼病防治

中国南北特色风味名菜 _八)

Labour Department Annual Report

II II

國立中山大學學位論文典藏.PDF

II

國家圖書館典藏電子全文

12. 家 庭 年 平 均 收 支 儲 蓄 表 列 示 如 下 : 消 費 支 出 為 66 萬 元, 利 息 支 出 為 4 萬 元, 經 常 性 移 轉 支 出 為 16 萬 元, 所 得 收 入 總 計 為 109 萬 元, 則 可 支 配 所 得 為 多 少? (1) 43 萬 元 (2)

ii

LQR LQR LQR UniTire μ 10 y UA-Tire μ y 20 UA- Tire 1 CarSim 2 v y LQR 8 9 Simlink UA-Tire 9 UniTire UA-Tire 10 2 UniTire UA-Tire C α

(i) (ii) (iii) (i) (ii) (iii) (iv) 1. 2

第 2 頁 (a) 擔 任 機 場 擴 建 統 籌 辦 總 監 的 首 席 政 府 工 程 師 職 位 第 3 點 ) ; (b) 擔 任 ( 機 場 擴 建 統 籌 辦 ) 的 首 長 級 丙 級 政 務 官 職 位 ; 以 及 (c) 擔 任 總 助 理 ( 機 場 擴 建 統 籌 辦 ) 的


Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip

39898.indb

穨ecr2_c.PDF

電腦相關罪行跨部門工作小組-報告書

i

发展党员工作手册

i

婴幼儿护理(四).doc

中医疗法(上).doc

香 港 舞 蹈 總 會    北 京 舞 蹈 學 院

一、

Microsoft Word - EDB Panel Paper 2016 (Chi)_finalr

(As at 28

untitled

厨房小知识(四)

妇女更年期保健.doc

小儿传染病防治(上)

<4D F736F F D B875B9B5A448ADFBBADEB27AA740B77EA4E2A5555FA95EAED6A641ADD75F2E646F63>

女性青春期保健(下).doc

避孕知识(下).doc

孕妇饮食调养(下).doc

禽畜饲料配制技术(一).doc

中老年保健必读(十一).doc

i

怎样使孩子更加聪明健康(七).doc

i

马太亨利完整圣经注释—雅歌

二零零六年一月二十三日會議

-i-

Microsoft Word - 强迫性活动一览表.docx

審 核 二 O 一 一 至 一 二 年 度 開 支 預 算

cm /s c d 1 /40 1 /4 1 / / / /m /Hz /kn / kn m ~

Microsoft Word - Panel Paper on T&D-Chinese _as at __final_.doc

CFDesign 2 1 CFDesign CFDesign CAD ~ r /min mm 1

伯裘書院

Tanet

Time Estimation of Occurrence of Diabetes-Related Cardiovascular Complications by Ching-Yuan Hu A thesis submitted in partial fulfillment of the requi

Microsoft Word - report final.doc

Chapter 24 DC Battery Sizing

f 2 f 2 f q 1 q 1 q 1 q 2 q 1 q n 2 f 2 f 2 f H = q 2 q 1 q 2 q 2 q 2 q n f 2 f 2 f q n q 1 q n q 2 q n q n H R n n n Hessian

#4 ~ #5 12 m m m 1. 5 m # m mm m Z4 Z5

2. 我 沒 有 說 實 話, 因 為 我 的 鞋 子 其 實 是 [ 黑 色 / 藍 色 / 其 他 顏 色.]. 如 果 我 說 我 現 在 是 坐 著 的, 我 說 的 是 實 話 嗎? [ 我 說 的 對 還 是 不 對 ]? [ 等 對 方 回 答 ] 3. 這 是 [ 實 話 / 對 的

Microsoft Word - Entry-Level Occupational Competencies for TCM in Canada200910_ch _2_.doc

邏輯分析儀的概念與原理-展示版

<4D F736F F D203938BEC7A67EABD7B942B0CAC15AC075B3E6BF57A9DBA5CDC2B2B3B92DA5BFBD542E646F63>

Microsoft Word - A doc

(b) 3 (a) (b) 7 (a) (i) (ii) (iii) (iv) (v) (vi) (vii) 57

热设计网

Page i

捕捉儿童敏感期

绝妙故事

穨33.PDF

三維空間之機械手臂虛擬實境模擬

世界名画及画家介绍(四).doc

2 3. 1,,,.,., CAD,,,. : 1) :, 1,,. ; 2) :,, ; 3) :,; 4) : Fig. 1 Flowchart of generation and application of 3D2digital2building 2 :.. 3 : 1) :,

基 础 实 室 4 计 算 机 网 络 唐 爱 红 专 业 机 房 PROTEL 联 想 同 方 电 脑 180 台 唐 爱 红 MATLAB 计 算 机 网 络 电 工 电 子 技 能 训 练 室 电 子 基 本 技 能 示 波 器 毫 伏 表 雕 刻 机 图 示 仪 电 子 实 训 台 电 工

Microsoft Word - 31空中大學校稿檔.doc

北 京 市 环 境 状 况 公 报 2013 BEIJING ENVIRONMENTAL STATEMENT 根 据 中 华 人 民 共 和 国 环 境 保 护 法 第 十 一 条 国 务 院 和 省 自 治 区 直 辖 市 人 民 政 府 的 环 境 保 护 行 政 主 管 部 门, 应 当 定

尿路感染防治.doc

一學就會,空間醫學實修大全

心理障碍防治(下).doc

<4D F736F F D20CEDECEFDD0C5BDDDB5E7C6F8B9C9B7DDD3D0CFDEB9ABCBBECAD7B4CEB9ABBFAAB7A2D0D0B9C9C6B1D5D0B9C9CBB5C3F7CAE9A3A8C9EAB1A8B8E C4EA36D4C238C8D5B1A8CBCDA3A92E646F63>

ANSYS在高校《材料力学》教学中的应用

樹 木 管 理 專 責 小 組 報 告 人 樹 共 融 綠 滿 家 園

Transcription:

1

Abstract The purpose of the thesis is to develop an automatic control model for the cardiac output monitor and diagnostic unit (COMDU) of the Phoenix-7 total artificial heart. By utilizing the model, operators need only to setup the required heart rate, systolic ratio, cardiac output, while the COMDU will adjust the inlet-air pressure for both the left and right heart spontaneously according to the physical requirements. We establish fuzzy rules for the input parameters of heart rate, systolic ratio, required cardiac output, and the output parameters of inlet-air pressure, inlet timing, exhausting timing with the various conditions of aortic pressures and pulmonary artery pressure. The main work of the research concentrates on developing the control models for increasing cardiac output, decreasing cardiac output, modifying the differential air exhausting period for left / right hearts. To accord with the control model, hardware of the COMDU would be promoted with the function of automatic control for left / right side pressures, air filling period and air exhausting period in the future. Keywords cardiac output monitor and diagnostic unit, fuzzy control. 2

3

iv v vi vii ix 1 1.1 1 1.2 4 1.3 5 1.4 5 6 2.1 6 2.2 7 2.3 8 14 3.1 14 3.1.1 14 3.1.2 19 3.1.3 23 3.2 27 34 4.1 34 4.2 LP RP 35 4.3 LAP RAP 43 4.4 HR 50 59 60 4

1.1 / 3 1.2 3 2.1 8 2.2 8 2.3 x = 0.27 9 2.4 11 3.1 15 3.2 16 3.3 3.4 LAP=120 mmhg LP 140 170 mmhg CO 16 RAP=20 mmhg RP 30 60 mmhg CO 17 3.5 / 17 3.6 19 3.7 19 3.8 3.9 21 21 3.10 SV 22 3.11 LP=157 mmhg RP=46 mmhg CO 23 3.12 HR 24 3.13 24 3.14 25 3.15 LP RP 25 3.16 [18] 27 3.17 FLC2 28 3.18 CO LP=150 mmhg RP=40 mmhg 28 3.19 SR SR 40% 29 3.20 dt 29 3.21 SV SV SV 83.3 30 5

3.22 CO 31 3.23 SR 31 3.24 SR dt 32 3.25 SV 32 4.1 LAP=110 mmhg CO LP 35 4.2 LAP=110 mmhg LP 36 4.3 LAP=120 mmhg CO LP 36 4.4 LAP=120 mmhg LP 37 4.5 LAP=130 mmhg CO LP 37 4.6 LAP=130 mmhg LP 38 4.7 RAP=10 mmhg CO RP 39 4.8 RAP=10 mmhg RP 39 4.9 RAP=20 mmhg CO RP 40 4.10 RAP=20 mmhg RP 40 4.11 RAP=30 mmhg CO RP 41 4.12 RAP=30 mmhg RP 41 4.13 LP=140 mmhg CO L LAP=110 120 130 mmhg 43 4.14 LAP LP 44 4.15 LP=150 mmhg CO L LAP=110 120 130 mmhg 44 4.16 LAP LP 45 4.17 LP=170 mmhg CO L LAP=110 120 130 mmhg 45 4.18 LP 46 4.19 RP=40 mmhg CO R 47 4.20 RP 47 4.21 RP=50 mmhg CO R 48 4.22 RP 48 4.23 HR=40 beat/min 51 4.24 51 4.25 52 6

4.26 SV 52 4.27 HR=60 beat/min 53 4.28 LP RP 53 4.29 SV 54 4.30 HR=80 beat/min 54 4.31 55 4.32 55 4.33 SV 56 4.34 HR=100 beat/min 56 4.35 57 4.36 57 4.37 SV 58 7

1.1 Systemic circulation Pulmonary circulation 1. 2. Cardiac Output CO 5 ~ 6liter min 15 ~ 22liter min 2.5liter min Stroke Volume SV Heart Rate HR CO = HR SV 1 HR beat min SV liter beat 8

Dr. Kolff [8] 1992 35,000 2000 Dacron Graft Quick Connector AO Aorta PA Pulmonary Artery RA Right Atrium LA Left Atrium Polyurethane PU Systole 1.1[19] Diastole PU PU 9

1.1 / 1.2[19] Frank-Starling Law of the Heart 1.2 1 2 Thrombosis Embolisom Hemolysis 3 4 10

1.2 Dr. Kolff [8] 1992 35,000 2000 1969 Dr. Cooley Liotta Heart 64 Barnes [1] 1973 dp dt Levinson et al. [9] 1986 dp dt 4500 mm-hg/s DeVries [10] 1988 dp dt 112 620 Setsuo Takatani [12] Copeland [3] 1989 Jarvik-7 dp dt max 3500 mm-hg/s Kyong-Sik Om [13] 1999 Hsu et al. [5] 2000 / Hsu [6] 2001 trial and error 11

1.3 HR SR CO / 1.4 [18] LP RP LAP RAP SR HR 12

2.1 incomplete ambiguity imprecision randomness fuzziness X A 0,1 membership function µ A A ( x) µ X [0,1] ( ) {( x ( x) ) x X } [ ] A =, µ A 2.1 x X µ x x A x1, x2, x3 K x n A 2.2 ( x ) x1 + µ A ( x2 ) x2 + A ( xn ) xn A = µ A 1 L+ µ 2.2 n ( x ) x = µ ( x ) x = µ A i i x X i= i 1 A i i 2.2 + LP LP = {140,145,150, L, 160, 165,170} {( 140 ) + ( 145) + ( 150) + + ( 160) + ( 165) + ( 170) } LP = L 2.3 LP NB NS ZE PS PB 13

NB = 1 + 0.8 + L+ 0.2 + 140 141 144 0 145 NS = 0 + 0.2 + L+ 1 + L+ 0.2 140 142 145 149 + ZE = 0 + 0.2 + L+ 1 + L+ 0.1 145 146 150 159 + PS = 0 + 0.1 + L+ 1 + L+ 0.1 150 151 160 169 + PB = 0 + 0.2 + L0.8 160 161 169 + 1 170 0 150 0 160 0 170 ( x) = µ ( x) ( x) µ max A B A µ B ( x) = µ ( x) ( x) µ min A B A µ B ( x) = 1 ( x) µ A µ A 2.2 PID FLC Fuzzy Logic Controller FLC 14

2.1 2.3 2.2 2.2 15

fuzzification singleton fuzzy number 1 2 [ 1, + 1] 3 2.3 x = 0.27 16

2.3 0~0.5 ( ) µ 0.27 µ 0.27 1 2 ( ) DML FLC Fuzzy implication composition operators Union R = ( Ai Bi ) i n n U R i i = C = 1 U i = 1 2.5 ' ' ' A B C C ' ' ' ( A B ) o R = 2.6 = = C ' n ' ' U( A B ) o ( Ai Bi Ci ) i= 1 n U i= 1 ' ' [ A o ( A C )] B o ( B C ) i ( w) µ ( u) * µ ( w) U n i= 1 i [ ] [ ] [ µ () v * ( w) ] A i C i i B i i µ = µ 2.7 A ' B ' fuzzy-singleton u = u 0 v = v 0 0 µ C ' [ ] [ µ ( v ) ( w) ] ( w) µ ( u )* µ ( w) U n i= 1 = µ U n i= 1 A i 0 C B 0 * i [( ( u ) µ ( v )) ( w) ] A i 0 B 0 * i i C i C i C = µ µ 2.8 i MIN IF THEN i R i 17

fuzzy relation R i ( Ai Bi ) Ci = min 2.9 min 2.4 2.4 KB Data Base Rule Base IF THEN CO = { NB, NS, ZE, PS, PB} LP { NB, NS, ZE, PS, PB} { NB, NS, ZE, PS PB} CO =, = and control output R1 if R2 if R3 if R4 if R5 if CO is NB and LP is NB then control is NB CO is NB and LP is NS then control is NB CO is NB and LP is ZE then control is NB CO is NB and LP is PS then control is NS CO is NB and LP is PB then control is ZE 18

R21 if CO is PB and LP is NB then control is ZE R22 if R23 if R24 if R25 if CO is PB and LP is NS then control is PS CO is PB and LP is ZE then control is PB CO is PB and LP is PS then control is PB CO is PB and LP is PB then control is PB control rules base FLC completeness consistency interactivity DFI MC MOM COA WAM i. ii. MOM MC 2.10 k C crsip k = i = 1 k C i 2.10 19

iii. COM ( ) 2.11 µ c j c j c n j= µ 1 crisp = n j= 1 j ( c j ) c ( c ) µ j j j j 2.11 iv. singleton 2.12 y w i i y iwi U = 2.12 y i 20

3.1 3.1.1 CO HR SR LP RP LAP RAP CO = HR * SV SV Stroke Volume CO [18] LAP 110 120 130mmHg RAP 10 20 30mmHg CO CO HR Heart Rate 30~120 SR Stroke Volume 30% ~ 80% LP RP / 140~170 mmhg 30~60 mmhg LAP RAP / 110~130 mmhg 10~30 mmhg CO 3~10 liter/min HR=60 beat/min SR=40% CO=5 liter/min LAP=120mmHg SV ( SV = p) * SR * α 21

p LP LAP α CO CO { } set g 2,2 LP LP 150 mmhg 3.1 β SR SV ( SV = p) * SR * β p RP RAP β liter/mmhg 3.1 { 2,2} FLC CO 5,2 g { } CO CO 10 liter/min 3 liter/min CO 5 liter/min 22

3.2 3.3 3.5 10 mmhg LP=170 mmhg LP=140 mmhg 3.3 LAP=120 mmhg LP 140 170 mmhg CO 23

RP=60 mmhg 10 mmhg RP=30 mmhg 3.4 RAP=20 mmhg RP 30 60 mmhg CO 3.5 / 24

3.5 100 [14] 70~90 100 100 SR 80% 80% 40%~50% SR 100 SR=50% CO SR 25

3.1.2 3.6 SR SV SR 50% CO 3.6 FLC2 3.7 26

=75 LP 5 fuzzy sets LAP 5 fuzzy sets SR 3 fuzzy sets Rule1. if LAP=NB and LP=NB and SR=NB then CO=NB Rule2. if LAP=NS and LP=NB and SR=NB then CO=NB Rule21.if LAP=NB and LP=PB and SR=ZE then CO=ZE Rule22.if LAP=NS and LP=PB and SR=ZE then CO=PS Rule74.if LAP=PS and LP=PB and SR=PB then CO=PB Rule75.if LAP=PB and LP=PB and SR=PB then CO=PB LAP SR CO FLC 110 120 130mmHg 1 27

10 mmhg LP=170 mmhg LP=140 mmhg 3.8 10 mmhg RP=60 mmhg RP=30 mmhg 3.9 28

3.10 SV { } SR 0.3,0.8 0.5 3.8 3.9 LP=170 mmhg RP=60 mmhg HR 3 liter/min 10 liter/min 10~30 mmhg 30 mmhg 3.10 29

3.1.3 HR 55~70 beat/min LP=140~170 mmhg RP=30~60 mmhg HR 30~120 beat/min CO LP RP SV CO HR CO 5 liter/min HR CO LP RP HR=60 beat/min SR=40% CO=5 liter/min CO L CO R 3.11 LP=157 mmhg RP=46 mmhg CO 30

HR 76 beat/min 3.12 CO L CO R 3.12 HR LP RP 3.13 31

HR=76 beat/min CO L CO R 3.14 3.15 LP RP 32

LP RP CO 3.12 60 3.13 LP RP 3.14 CO 5.5 liter/min 3.15 LP 140.8 mmhg RP 30.8 mmhg 33

3.2 [18] 3.16 dt dt = t L t R [18] LP=157 mmhg RP=46 mmhg 76 beat/min 52% LAP RAP LP RP LP=157mmHg RP=46mmHg LAP=120mmHg RAP=20mmHg 3.16 [18] 34

60 (1 SR) HR SR FLC2 3.17 FLC2 HR=60 beat/min 3.18 3.21 HR=60 beat/min CO=5 liter/min [18] 3.18 CO LP=150 mmhg RP=40 mmhg 35

3.19 SR SR 40% 3.20 dt 36

3.21 SV SV SV 83.3 3.20 [18] 2~3 mmhg -2 2 3.22~ 3.25 HR=76 beat/min SV 70~100 HR CO 5 liter/min 37

CO L CO R 3.22 CO 3.23 SR 38

3.24 SR dt 3.25 SV 39

3.22~ 3.25 CO 5.9 liter/min SR=35.6% SV 77.6 40

4.1 5~6 liter/min 10 liter/min 5 liter/min COL Left air pressure LP 140~170 mmhg ( ) Aortic pressure LAP 110~130 mmhg LAP 120 mmhg LP 150 mmhg CO 5 liter/min MATLAB Fuzzy Logic Toolbox COR Right air pressure RP 30~60 mmhg Pulmonary aortic pressure RAP 10~30 mmhg CO 5 liter/min RP=40 mmhg RAP=20 mmhg LP RP 41

4.2 LP RP LAP SR LAP RAP LP CO LP CO LP RP 4.1~ 4.6 CO HR=60 beat/min SR=40 % CO=5 liter/min LP 140 170 mmhg 5 mmhg LP=170 mmhg LP=140 mmhg 4.1 LAP=110 mmhg CO LP 42

4.2 LAP=110 mmhg LP LP 140 170 mmhg 5 mmhg LP=170 mmhg LP=140 mmhg 4.3 LAP=120 mmhg CO LP 43

4.4 LAP=120 mmhg LP LP 140 170 mmhg 5 mmhg LP=170 mmhg LP=140 mmhg 4.5 LAP=130 mmhg CO LP 44

4.6 LAP=130 mmhg LP LP=150 mmhg LAP=120 mmhg 5 liter/min 4.1 LP=165 mmhg 170 mmhg 100 SR 50% CO 4.1 4.5 LP 140 mmhg SV 70 4.7~ 4.12 HR=60 beat/min SR=40 % CO=5 liter/min 45

RP 30 60 mmhg 5 mmhg RP=60 mmhg RP=30 mmhg 4.7 RAP=10 mmhg CO RP 4.8 RAP=10 mmhg RP 46

RP 30 60 mmhg 5 mmhg RP=60 mmhg RP=30 mmhg 4.9 RAP=20 mmhg CO RP 4.10 RAP=20 mmhg RP 47

RP 30 60 mmhg 5 mmhg RP=60 mmhg RP=30 mmhg 4.11 RAP=30 mmhg CO RP 4.12 RAP=30 mmhg RP 48

4.8 4.10 4.12 RAP RP 4.7 4.1 4.10 RP=40 mmhg RAP=20 mmhg CO 5 liter/min 49

4.3 LAP RAP LAP LAP RAP HR=60 beat/min SR=40 % CO=5 liter/min LAP 110 130 mmhg 10 mmhg LAP=110 mmhg LAP=130 mmhg 4.13 LP=140 mmhg CO L LAP=110 120 130 mmhg 50

LAP=130 mmhg LAP=110 mmhg 4.14 LAP LP LAP 110 130 mmhg 10 mmhg LAP=110 mmhg LAP=130 mmhg 4.15 LP=150 mmhg CO L LAP=110 120 130 mmhg 51

LAP=130 mmhg LAP=110 mmhg 4.16 LAP LP LAP=110 mmhg LAP 110 130 mmhg 10 mmhg LAP=130 mmhg 4.17 LP=170 mmhg CO L LAP=110 120 130 mmhg 52

LAP=130 mmhg LAP=110 mmhg 4.18 LP 4.13 4.18 LAP CO 53

COR RAP 10 30 mmhg 10 mmhg RAP=10 mmhg RAP=30 mmhg 4.19 RP=40 mmhg CO R RAP=30 mmhg RAP=10 mmhg 4.20 RP 54

RAP 10 30 mmhg 10 mmhg RAP=10 mmhg RAP=30 mmhg 4.21 RP=50 mmhg CO R RAP=30 mmhg RAP=10 mmhg 4.22 RP 55

4.13~4.22 LP RP LAP RAP CO LP RP CO 56

4.4 HR HR 60 beat/min HR LP RP LAP RAP SV 70 ~100 HR CO LP RP 100 CO = HR SV HR 120 beat/min CO 12 liter/min CO 3~10 liter/min 12 liter/min CO CO HR LP=150 mmhg RP=40 mmhg LAP=120 mmhg RAP=20 mmhg SR=40% HR=40 beat/min HR=60 beat/min HR=80 beat/min HR=100 beat/min 4.23~4.26 4.27~4.29 4.30~4.33 4.34~4.37 57

4.23 HR=40 beat/min 4.24 58

4.25 4.26 SV 59

COL COR 4.27 HR=60 beat/min LP RP 4.28 LP RP 60

4.29 SV 4.30 HR=80 beat/min 61

4.31 4.32 62

4.33 SV 4.34 HR=100 beat/min 63

4.35 4.36 64

4.37 SV 4.23 4.37 CO HR LP RP SV HR HR 40 beat/min LP HR 80 beat/min 100 beat/min 1. COs beat/min COs liter/min 40 3.8 MAX 50 4.8 MAX 60 5 70 5.2 MIN 80 5.8 MIN 90 6.5 MIN 100 7.2 MIN 1. COs 65

[18] ( ) 66

1. Barnes GE, Bishop VS, Horwitzl RL and Kaspar RL, The maximum derivatives of left ventricular pressure and transverse internal diameter as indices of the inotropic state of the left ventricle in conscious dogs, J. Physiol., 1973, 235, 271-290. 2. Christie GW, Computer Modeling of Bio-Prosthetic Heart Valves, European J. of Cordio-Thoracic Surgery, 6(Suppl 1), 1992, S95-S101. 3. Copeland JG, Smith RG, Icenogle TB and Ott RA, Early experience with the total artificial heart as a bridge to cardiac transplantation, Springer Verlag Berlin Heidelberg, 1989. 4. David T and Hsu CH, Dynamic Analysis and Geometry Model for the Design of Bi-Leaflet Prosthetic Mechanical Heart Valves, Medical Engineering and Physics, Vol.18(6), 1996, 463-476. 5. Hsu CH, Chou HM and Kao TM, Clinical Analysis and in Vitro Test for the Cardiac Output Monitor and Diagnostic Unit of Phoenix-7 Total Artificial Heart, Biomedical Engineering: Application, Basis & Communications, Vol.12(4), 2000, 205-211. 6. Hsu CH, In Vivo and Clinical Analysis of Phoenix-7 Total Artificial Heart, Biomedical Engineering: Application, Basis & Communications, Vol.13(3), 2001. 7. Kim SH, Chandran KB and Chen CJ, Numerical Simulation of Steady Flow in a Two-Dimensional Total Artificial Heart Model, J. of Bio-mechanical Engineering, 1992, 497-503. 8. Kolff WJ, All is well with the artificial heart, Artificial Organs, 1992, 16:118-122. 67

9. Levinson MM, Copeland JG and Smith RG, Indexes of hemolysis in human recipients of Javik-7 total artificial heart : a cooperative report of fifteen patients, J. Heart Transplant, 1986, 5, 236-248. 10. DeVries WC, The permanent artificial heart: four case reports, JAMA, 1988, 259(6). 11. Akira Tanaka, Makoto Yoshizawa, Simulation of Dynamic Behavior of Heart Rate for TAH Control, [Engineering in Medicine and Biology, 1999. 21st Annual Conf. and the 1999 Annual Fall Meeting of the Biomedical Engineering Soc.] BMES/EMBS Conference, 1999. Proceedings of the First Joint, Volume: 2, 13-16 Oct. 1999 Page(s): 755 vol.2 12. Setsuo Takatani, Hiroyuki Noda, Hisateru Takano, and Tetsuzo Akutsu, Open- Loop Analysis of Circulatory System Dynamics using Artificial Hearts, IEEE Engineering in Medicine & Biology Society 10 th Annual International Conference, 1988 13. Kyong-Sik Om, Jae-Mok Ahn, Young-Ho Jo, Fuzzy Logic and Knowledge based Automatic Control of the Moving-actuator type Totally-implantable Artificial Heart, Fuzzy Systems Conference Proceedings, 1999. FUZZ-IEEE '99. 1999 IEEE International, Volume: 1, 22-25 Aug. 1999 14. 83 15. Fuzzy 89 16. 88 17. Fuzzy 90 18. 85 19., Numerical Study for Flows in Phoenix-7 Total Artificial Heart,2002 68