35 1 2016 2 JOURNAL OF OCEAN TECHNOLOGY Vol. 35,No.1 Feb,2016 doi:10.3969/j.issn.1003-2029.2016.01.001,, (, 310014) : 20 60, 50, 20 90 (SWRO),,,,, : ; ; ; ; :P747;TQ028.8 :A :1003-2029(2016)01-0001-14 19 20 50 SWRO 30 14 1954 ED 1960 堦
35 RO 1970 MPa 35 000 mg/l NaCl 1990 RO 99.4%~99.7% 20~30 L/m 2 h [3] SWRO 2.1.2 1963 20 60 0.1~0.2 μm 8 000 m 3 /d 1990 1.32 10 7 m 3 /d 2006 3.75 10 7 m 3 /d 2010 6.52 10 7 m 3 /d 2015 8.64 10 7 m 3 /d 60% SWRO 35 000 mg/l NaCl EDI 99.8% 40 L/m 2 h [4] ph [5-6] 1 100 μm 50 μm SWRO [1] 5.52 MPa [7-8] 2 [9-10] m-pda [2] TMC 2.1.1 Loeb Sourirajan 1960 IPC TPC 5- - CFIC 5- - CA ICIC 3,4,5 BTRC 3,3,5,5 0.1~0.2 mm (BTEC) 0.2 μm PPD 2,4- m-mpda 3 (SMPD) 3,3'- 4-20 70 4- p,p 2 DDM [11-13] CA-CTA 10.2
1,: [26-28] 3 SPES-NH2 PVA PVAm PAA PEG PEMAEMA PSVBP ph MTAC -(CH 2 CH 2 O)N- PAO [14-15] [29-36] 1 / ph CSA / TEA 3 1 3 3-1 3 3-tetramethylguanidine / Toluene sulfonic acid HMPA 2-2- 4-2- [37-38] 2-5 - MPD 1 / TFN TMC 2007 UCLA Hoek [16-17] UCR Yan 2 /, (TBP) (TPP) [18] [39-40] TFN 4 / 1 PVA PEG [41-45] CS [19-24] TFN PEI TiO 2 [25] [46-48] 2 AQPs 3 nm 2 2 [49-50] Zhao TFC NaCl [24] 97% 4 L/m 2 h bar 10 mm NaCl, 5 bar BW30 SW30HR
35 [51] 40%1 4 inch 8 inch 16~18 inch 8 inch 准 203 mm 1 016 mm 35 000 [52] Saeki mg/l 5.5 MPa 25 8%~10% 30 m 3 [55-56] /d 99.8% GA : 0.15 MPa NTR-7450 NaCl 97% 11.08 L/m 2 MPa-1 [57] [53] 20 60 2.2.1 1975 DuPont B-10 1980 Toyobo SWRO 3 kwh/m 3 Hollosep CTA 4 kwh/m 3 2005 SWRO 1.58 kwh/m 3 :, 80% [54] 2.2.2 1964 3 10 20 70 < 80 m 3 h -1 85% 220 m 3 h -1 75%~85% : 80~220 m 3 h -1 65%~80%
1,: < 95 m 3 h -1 70% 10~70 m 3 h -1 50%~75% SWRO 5.0~6.0 MPa 4.8~5.8 MPa 40% 60% MF UF MF UF / RO 20% RO [61-62] ( ) 35%~70% 4.2.1 20 80 RO 99.2% SWRO 90% RO 30%~35% [63] Calder. 4.2.2 AG Pehon Wheel Pump Ginard Francis 50%~70% SWRO 5.5 MPa 8.0 Grundfos 35% 50% BMET PEI Hy- draulic Turbo charger 65%~80% Calder.AG [63] DWEER KSB SalTec 4.2.3 DT SiemagTransplan PES ERI 1997 PX PX 60% [59-60] DWEER SWRO SWRO PX [64] 95% 4.2.4 [47] 20~40 mg/l 4.2.5 [64] 4.2.6 1SWRO 4 NF 20 90 RO NF
35 [67] RO RO RO RO RO 6 RO RO 2SWRO MSF MED SWRO MSF Fujeirah MSF 28.4 10 4 m 3 /d SWRO 17.0 10 4 m 3 /d 3NF SWRO MSF/ LT-MED Young M. Kim, et. al. Ca 2+ Mg 2+ HCO 3-2- 70% SO 4 90% SWRO MSF [68-69] LT-MED NF 60%RO RO 80%MSF MSF [65] NF RO 4SWRO ED 20 50 60,80 200 m 3 /d ED SWRO EDR SWRO EDR 4.3.1 [66] 3 000 mg/l 5 [71] 4.3.2 FO 200~300 mg/l ph ph [72] 4.4.1 1
1,: SWRO SWRO SWRO 3 kwh/m 3 1 t [72] 1 kg 2 kg CO 2 1 SWRO 40%, 60% 2 CO 2 Ca(OH) 2 ) NaHCO 3 ) Na 2 CO 3 CaCl 2 ) [76-80] [72] 2 0.5 mg/l - [82-83] [73-74] 4.4.2 5.2.1 200~500 mg/l [84-86] 5.2.2 [75] 200 g/l 150 EDI kw h 30 [87-88] 1~18 MΩ cm
35 [89] [91-93] [89] 1967-1969 5 863 973 [89] 10 000 t/d 12 500 t/d [94] [90] 500 t U 3 0 8 2006 12 20 60 2007 9 2012 5 3 3L Large Scale : 27 000 m 3 /d Low Energy 4 kwh/m 3 Low Fouling SDI SDI [89] 1.6 In S Kim 4 600 11 HYUSUNG
1,: 4 1 4 (MSF MED VC) 200 (RO) 2 4 200 SWRO SWRO 3 7 150 4 1 16 inch 18 inch 50 [95] RO MED [1] 50 1 m 3 2009-2014 8 640 m 3 0.34 11 18 31 60% 3 [97] 140 SWRO RO 21 RO RO 8 5 [98] PRO 3 SWRO [96] [99-106] 60
35
1,:
35 觟 堦 堦 堦 ü á Posidonia Oceanic 堦 堦 堦
1,: 堦 堦 觡 í 堦 堦
35 Recent Development and Prospect of Seawater Reverse Osmosis Desalination Technology GAO Cong-jie, ZHOU Yong, LIU Li-fen Zhejiang University of Technology, Hangzhou 310014, Zhejiang Province, China Abstract:The reverse osmosis (RO) membrane technology achieved breakthrough progress in the 1960s, resulting in fast development of seawater reverse osmosis desalination over the past half century. The world's desalination capacity has been rapidly increasing since 1990. Seawater reverse osmosis (SWRO) desalination has become a novel process for producing drinking water from seawater with the lowest investments and costs. This paper systematically reviews the development status of SWRO technology, such as improvement in membrane performance and related element structure, efficiency enhancement of high pressure pumps and energy recovery devices (ERD), unceasing development of technical processes including pretreatment and post-treatment, as well as impacts on the environment and related countermeasures. The development of RO technology has also promoted the progress of other membrane separation processes and extended their application fields. In the near future, it can be predicted that the membrane -based technologies will play an increasingly prominent role in seawater desalination and water reuse, augmentation and protection of water resources, cicular economy, clean production, traditional industry updating, energy conservation and emission reduction as well as enhancement of people's living standards. Key words:seawater desalination; reverse osmosis membrane, reverse osmosis technology; energy recovery; environmental impacts