Cauchy Duhamel Cauchy Cauchy Poisson Cauchy 1. Cauchy Cauchy ( Duhamel ) u 1 (t, x) u tt c 2 u xx = f 1 (t, x) u 2 u tt c 2 u xx = f 2 (

Similar documents
DS Ω(1.1)t 1 t 2 Q = t2 t 1 { S k(x, y, z) u } n ds dt, (1.2) u us n n (t 1, t 2 )u(t 1, x, y, z) u(t 2, x, y, z) Ω ν(x, y, z)ρ(x, y, z)[u(t 2, x, y,

lim f(x) lim g(x) 0, lim f(x) g(x),


微积分 授课讲义


> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

&! +! # ## % & #( ) % % % () ) ( %

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

WL100014ZW.PDF

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε


) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &

1. PDE u(x, y, ) PDE F (x, y,, u, u x, u y,, u xx, u xy, ) = 0 (1) F x, y,,uu (solution) u (1) u(x, y, )(1)x, y, Ω (1) x, y, u (1) u Ω x, y, Ωx, y, (P

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P.

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

PowerPoint Presentation


# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %

8 8 Β Β : ; Χ; ; ; 8 : && Δ Ε 3 4Φ 3 4Φ Ε Δ Ε > Β & Γ 3 Γ 3 Ε3Δ 3 3 3? Ε Δ Δ Δ Δ > Δ # Χ 3 Η Ι Ι ϑ 3 Γ 6! # # % % # ( % ( ) + ( # ( %, & ( #,.

5 (Green) δ

10-03.indd

untitled

! # Χ Η Ι 8 ϑ 8 5 Χ ΚΗ /8 Η/. 6 / Λ. /. Η /. Α Α + Α 0. Η 56 + Α : Α Μ / Η +9 Δ /. : Α : ϑ. Η. /5 % Χ


E = B B = B = µ J + µ ε E B A A E B = B = A E = B E + A ϕ E? = ϕ E + A = E + A = E + A = ϕ E = ϕ A E E B J A f T = f L =.2 A = B A Aϕ A A = A + ψ ϕ ϕ


7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ;

( ) (! +)! #! () % + + %, +,!#! # # % + +!

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ

例15

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ

➀ ➁ ➂ ➃ Lecture on Stochastic Processes (by Lijun Bo) 2

9 : : ; 7 % 8

; < 5 6 => 6 % = 5

% % %/ + ) &,. ) ) (!

08-01.indd

Β Χ + Δ Ε /4 10 ) > : > 8 / 332 > 2 / 4 + Φ + Γ 0 4 Η / 8 / 332 / 2 / 4 + # + Ι + ϑ /) 5 >8 /3 2>2 / 4 + ( )( + 8 ; 8 / 8. 8 :

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ

第9章 排队论

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9

; 9 : ; ; 4 9 : > ; : = ; ; :4 ; : ; 9: ; 9 : 9 : 54 =? = ; ; ; : ;

1 <9= <?/:Χ 9 /% Α 9 Δ Ε Α : 9 Δ 1 8: ; Δ : ; Α Δ : Β Α Α Α 9 : Β Α Δ Α Δ : / Ε /? Δ 1 Δ ; Δ Α Δ : /6Φ 6 Δ

Ⅰ Ⅱ 1 2 Ⅲ Ⅳ

!? > 7 > 7 > 7 Ε ! Α Φ Φ Γ Η Ι Γ / 2 ; Γ / 4 Δ : 4 ϑ / 4 # Η Γ Κ 2 Η 4 Δ 4 Α 5 Α 8 Λ Ηϑ Μ Α Α 4!! Ο. /3 :/Π : Θ Γ 2 ; Γ / 4 Ρ Α

Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3 Ε Φ Γ ΕΙΙ 3 Χ 3 Φ 4 Κ? 4 3 Χ Λ Μ 3 Γ Ε Φ ) Μ Ε Φ? 5 : < 6 5 % Λ < 6 5< > 6! 8 8 8! 9 9 9! 9 =! = 9!

untitled

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

1#

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, )


! Χ Δ? Η Δ? Β Ι Β? ϑ Κ 1 Ε?? Λ Μ Ν Ο Π Β? Δ? Β Ι ΘΗ Κ 1 Ε? Β? ϑ Ν Η Η Δ?? Ρ? Ι Β Χ Τ Τ Ο ς Ι Δ Ω Χ Β [ Υ Ψ? [ Η Β? Β Υ? Ι Δ? Δ? Ο Ξ Ψ Ι Π Β Υ?????? Ι?

3?! ΑΑΑΑ 7 ) 7 3

8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, ; > 8? : 5 4 +? Α > 6 + > 3, > 5 <? 9 5 < =, Β >5

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

< = = Β = :?? Β Χ? < = 3 = Β = :? 3? <? 3 =? & =3? & & 6 8 & = Δ =3?3 Ε Φ Γ? = 6Β8 &3 =3?? =? = Η = Φ Η = > Φ Η = Φ Η Φ Η? > Φ Η? Φ Η Η 68 &! # % & (%

= Β Χ Δ

Gauss div E = 1 ε 0 ρ(x, y, z), (1.3) E (x, y, z)ε 0 ρ(x, y, z) E = 0 (curl E = 0), (1.4) E = u(x, y, z), (1.5) u ( )(1.5) (1.3) u(x, y, z) = 1 ε 0 ρ(

: ; 8 Β < : Β Δ Ο Λ Δ!! Μ Ν : ; < 8 Λ Δ Π Θ 9 : Θ = < : ; Δ < 46 < Λ Ρ 0Σ < Λ 0 Σ % Θ : ;? : : ; < < <Δ Θ Ν Τ Μ Ν? Λ Λ< Θ Ν Τ Μ Ν : ; ; 6 < Λ 0Σ 0Σ >

07-3.indd

3 4 Ψ Ζ Ζ [, Β 7 7>, Θ0 >8 : Β0 >, 4 Ε2 Ε;, ] Ε 0, 7; :3 7;,.2.;, _ & αε Θ:. 3 8:,, ), β & Φ Η Δ?.. 0?. χ 7 9 Ε >, Δ? Β7 >7 0, Τ 0 ΚΚ 0 χ 79 Ε >, Α Ε

9. =?! > = 9.= 9.= > > Η 9 > = 9 > 7 = >!! 7 9 = 9 = Σ >!?? Υ./ 9! = 9 Σ 7 = Σ Σ? Ε Ψ.Γ > > 7? >??? Σ 9

3 = 4 8 = > 8? = 6 + Α Β Χ Δ Ε Φ Γ Φ 6 Η 0 Ι ϑ ϑ 1 Χ Δ Χ ΦΚ Δ 6 Ε Χ 1 6 Φ 0 Γ Φ Γ 6 Δ Χ Γ 0 Ε 6 Δ 0 Ι Λ Χ ΦΔ Χ & Φ Μ Χ Ε ΝΓ 0 Γ Κ 6 Δ Χ 1 0

ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν Α Γ Β 1 Α Ο Α : Α 3. / Π Ο 3 Π Θ

Β Χ Χ Α Β Φ Φ ; < # 9 Φ ; < # < % Γ & (,,,, Η Ι + / > ϑ Κ ( < % & Λ Μ # ΝΟ 3 = Ν3 Ο Μ ΠΟ Θ Ρ Μ 0 Π ( % ; % > 3 Κ ( < % >ϑ Κ ( ; 7

stexb08.dvi

! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ! 7 7 Δ Δ 2! Χ Δ = Χ! Δ!! =! ; 9 7 Χ Χ Χ <? < Χ 8! Ε (9 Φ Γ 9 7! 9 Δ 99 Φ Γ Χ 9 Δ 9 9 Φ Γ = Δ 9 2

Γ Ν Ν, 1 Ο ( Π > Π Θ 5?, ΔΓ 2 ( ΜΡ > Σ 6 = Η 1 Β Δ 1 = Δ Ι Δ 1 4 Χ ΓΗ 5 # Θ Γ Τ Δ Β 4 Δ 4. > 1 Δ 4 Φ? < Ο 9! 9 :; ;! : 9!! Υ9 9 9 ; = 8; = ; =

2 6 (A, s) = (P u 1 u 2 u n ) x t (s((u 1 ) x t ), s((u 2 ) x t ),, s((u n ) x t )) P A (s x s(t) (u 1), s x s(t) (u 2),, s x s(t) (u n)) P A (A, s x

Φ2,.. + Φ5Β( 31 (+ 4, 2 (+, Η, 8 ( (2 3.,7,Χ,) 3 :9, 4 (. 3 9 (+, 52, 2 (1 7 8 ΙΜ 12 (5 4 5? ), 7, Χ, ) 3 :9, 4( > (+,,3, ( 1 Η 34 3 )7 1 )? 54

Τ Δ Δ ΝΔ Ο Π 1 # % #! 3 Η Μ.! 1 / 5 6 Ρ 3 Γ Η 1 Κ 6 ; Σ 5 8! Μ? Μ! # % Δ Μ 1 # %! = 47 > 47 ; 1 # %! 4Υ #! # Η# # %! 4 =7 =? Ν

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2

. Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )? : Β Ν :) Ε Ν & Ν? ς Ε % ) Ω > % Τ 7 Υ Ν Ν? Π 7 Υ )? Ο 1 Χ Χ Β 9 Ξ Ψ 8 Ψ # #! Ξ ; Ξ > # 8! Ζ! #!! Θ Ξ #!! 8 Θ!


!,! = Α ΒΑ 9 9 : 9 Α ) Χ Α : < ΒΑ # < # Χ 8 Δ Α 6 Φ Ε Φ Ε Γ 9 % : Η < 9Χ : Ι # 8 9Χ :Ι 9:Ι Δ 9: Φ 7 : Δ = = 7! Δ ; Χ ΒΑ! < # ; % > Χ = Η 9: ϑ Α ϑ Η! 9

9! >: Ε Φ Ε Ε Φ 6 Φ 8! & (, ( ) ( & & 4 %! # +! ; Γ / : ; : < =. ; > = >?.>? < Α. = =.> Β Α > Χ. = > / Δ = 9 5.

= > : ; < ) ; < ; < ; : < ; < = = Α > : Β ; < ; 6 < > ;: < Χ ;< : ; 6 < = 14 Δ Δ = 7 ; < Ε 7 ; < ; : <, 6 Φ 0 ; < +14 ;< ; < ; 1 < ; <!7 7

PowerPoint 演示文稿

?.! #! % 66! & () 6 98: +,. / / 0 & & < > = +5 <. ( < Α. 1

工程硕士网络辅导第一讲

%? = Β 2Β 2 2 <Χ Φ Α Γ 7Δ 8 3 Ε & % # %& Η! % & &, &), 1 & % & +&,,. & / 0, & 2 %. % 3 % / % 4 %

untitled

untitled

,, ( Δ! # % & % ) % & )% % +, % &. + / +% % % +,. / )% )%. + /. /. 0 / +% )0 )1 2) 20 )1 % 4 0 % % 0 5 % % )) % %6 ) % 6 ) % % % ) % 6. 4 /. 2 %, 78 9

= 6 = 9 >> = Φ > =9 > Κ Λ ΘΠΗ Ρ Λ 9 = Ρ > Ν 6 Κ = 6 > Ρ Κ = > Ρ Σ Ρ = Δ5 Τ > Τ Η 6 9 > Υ Λ Β =? Η Λ 9 > Η ς? 6 = 9 > Ρ Κ Φ 9 Κ = > Φ Φ Ψ = 9 > Ψ = Φ?

) ) ) Ο ΛΑ >. & Β 9Α Π Ν6 Γ2 Π6 Φ 2 Μ 5 ΝΒ 8 3 Β 8 Η 5 Φ6 Β 8 Η 5 ΝΒ 8 Φ 9 Α Β 3 6 ΝΒ 8 # # Ε Ο ( & & % ( % ) % & +,. &

% & ( ) +, (

Transcription:

Cauchy Duhamel Cauchy CauchyPoisson Cauchy 1. Cauchy Cauchy ( Duhamel) 1.1.......... u 1 (t, x) u tt c 2 u xx = f 1 (t, x) u 2 u tt c 2 u xx = f 2 (t, x) 1

C 1 C 2 u(t, x) = C 1 u 1 (t, x) + C 2 u 2 (t, x) u tt c 2 u xx = C 1 f 1 (t, x) + C 2 f 2 (t, x) Bernoulli Fourier 1.2 Cauchy u tt c 2 u xx = f(t, x), (1.1) t = : u =, u t =, (1.2) c > f(t, x) t x (1.1) Cauchy(1.1)-(1.2) w tt c 2 w xx =, (1.3) t = τ : w =, w t = f(τ, x). (1.4) Cauchy(1.3)-(1.4) w = w(t, x; τ), (1.5) 1.1 w = w(t, x; τ) Cauchy(1.3)-(1.4) τcauchy (1.1)-(1.2) u(t, x) = w(t, x; τ)dτ. (1.6) 1.1 Duhamel (1.6)u(t, x)(1.2) 2

(1.6) u(, x) =. (1.7) (1.6) u t (t, x) = w(t, x; t) + w t (t, x; τ)dτ, (1.4) u t t= = w(, x; ) =. (1.8) (1.7) (1.8)(1.2) (1.6)u = u(t, x)(1.1) (1.6) (1.4) u t (t, x) = w(t, x; t) + u tt = w t (t, x; t) + u tt c 2 u xx = = w t (t, x; τ)dτ = w tt (t, x; τ)dτ = u xx = w t (t, x; τ)dτ. w tt (t, x; τ)dτ + f(t, x). (1.9) w xx (t, x; τ)dτ. (1.1) w tt (t, x; τ)dτ + f(t, x) c 2 w xx (t, x; τ)dτ [ wtt (t, x; τ) c 2 w xx (t, x; τ) ] dτ + f(t, x) (1.11) = f(t, x). (1.3) (1.11)u(t, x)(1.1) 1.1 f(t, x) t x u t [, t] t i = t i+1 t i (i = 1, 2,, n), t i f(t, x) t f(t i, x) f(t i, x) = F (t i, x) (F (t i, x)ρ ) t i ρ f(t i, x) t i t i 3

Cauchy w tt c 2 w xx =, (1.12) t = t i : w =, w t = f(t i, x) t i. (1.13) Cauchy(1.12)-(1.13) w = w(t, x; t i, t i )f(t, x) Cauchy(1.1) - (1.2)u = u(t, x) u(t, x) = lim t i n w(t, x; t i, t i ). (1.14) i=1 (1.12) w t i w(t, x; τ) Cauchy w tt c 2 w xx = (t > τ), t = τ : w =, w t = f(τ, x) Cauchy(1.1)-(1.2) u(t, x) = lim t i n i=1 (1.15) w(t, x; t i, t i ) = t i w(t, x; t i ). (1.16) w(t, x; t i, t i ) = lim t i 1.1 n w(t, x; t i ) t i = i=1 w(t, x; τ)dτ. w(t, x; τ) Cauchy(1.15) t = t τ (1.15) w t t c2 w xx = ( t > ), t = : w =, w t = f(τ, x) (1.17) D Alembert (4.13) Cauchy(1.17) w(t, x; τ) = 1 2c x+c t x c t f(τ, ξ)dξ = 1 2c (1.6) Cauchy(1.1)-(1.2) u(t, x) = 1 2c x+c(t τ) x c(t τ) f(τ, ξ)dξdτ = 1 2c 4 x+c(t τ) x c(t τ) Ω f(τ, ξ)dξ. (1.18) f(τ, ξ)dξdτ, (1.19)

Ω (τ, ξ) (t, x)ξ ( 1.1) τ (t, x) ξ x = c(τ t) Ω ξ x = c(τ t) ξ 1.1. Ω Cauchy(1.1)-(1.2)(1.19) Cauchy(1.1)-(1.2) f C 1 (1.19) u t = 1 2 [f(τ, x + c(t τ)) + f(τ, x c(t τ))] dτ, (1.2) u tt = f(t, x) + c 2 u x = 1 2c u xx = 1 2c [f x (τ, x + c(t τ)) f x (τ, x c(t τ))] dτ, (1.21) [f(τ, x + c(t τ)) f(τ, x c(t τ))] dτ, (1.22) [f x (τ, x + c(t τ)) f x (τ, x c(t τ))] dτ. (1.23) u tt c 2 u xx = f(t, x), u(t, x)(1.1) (1.19)(1.2) u t= =, u t t= =, u(t, x)(1.2)(1.19)u(t, x) Cauchy (1.1)-(1.2) 5

1.1.... Cauchy u tt c 2 u xx = f(t, x) (t >, x R), t = : u = ϕ(x), u t = ψ(x) (x R) (1.24) 1.2 Cauchy 1. [ (1 x ] u )2 = 1 x h x a (1 x 2 u 2 h )2 t 2 (h > ) u = F (x at) + G(x + at), h x F, G t = : u = ϕ(x), u t = ψ(x). 2. ϕ(x) ψ(x) 3. (Goursat) 2 u t = 2 u 2 a2 x, 2 u x at= = ϕ(x), u x+at= = ψ(x) (ϕ() = ψ()). 4. (1.24) f(x, t) 1x[x 1, x 2 ] [x 1, x 2 ] 2x [x 1, x 2 ] [x 1, x 2 ] 6

5. u tt a 2 u xx =, x >, t >, u t= = ϕ(x), u t t= =, u x ku t x= =, k 6. u tt u xx =, < t < kx, k > 1, u t= = ϕ (x), x, u t t= = ϕ 1 (x), x, u t t=kx = ψ(x), ϕ () = ψ() 7. u tt u xx =, < t < f(x), u t=x = ϕ(x), u t=f(x) = ψ(x), ϕ() = ψ(), t = f(x) x = t x = t x f (x) 1 8. 2 u t 2 u = t sin x, 2 x2 u u t= =, t = sin x. t= 9. u tt = a 2 u xx + u t= =, u t t= = 1 1 + x. 2 tx (1 + x 2 ) 2, 7

2. 2.1 u tt c 2 u xx = f(t, x) (2.1) u(t, x) u(t, x). ( ) ( ).... (2.1) u(t, x) x = x = L u(t, ) = u(t, L) =. (2.2) (2.2)(2.1) t = u(t, x) u(, x) = ϕ(x), t = ψ(x) (x [, L]), (2.3) t= (2.3) (2.1) (2.3) (2.1) (2.2)- u tt c 2 u xx = f(t, x) (t >, x (, L)), (2.4) t = : u = ϕ(x), u t = ψ(x) (x [, L]), (2.5) x = : u = (t > ), (2.6) 8

(2.1) x = L : u = (t > ). (2.7) U = {(t, x) t, x L} (2.8) (2.4)-(2.7)u = u(t, x) {(t, x) t >, < x < L} (2.4) x [, L] (2.5) x =, L (2.6) (2.7) (2.2) Dirichlet x = x T (x) xx = T () u x = x u x =. (2.9) x= u x = γ(t), (2.1) x= γ(t) t Neumann (2.9)Neumann(2.1) Neumann Hooke u = u x = T u x Hooke T u x = ku x=, x= k ( σu) u x x= + =, (2.11) 9

σ = k/t ( σu) u x x= + = µ(t), (2.12) µ(t) t (2.1)(4.1) (2.1)u f(t, x) f(t, x) (2.6)-(2.7) u x= = α(t), u x=l = β(t) (2.3) ϕ ψ (2.3) (1) (2) (3)...... 1

2.2 Cauchy u tt c 2 u xx = f(t, x), t = : u = ϕ(x), u t = ψ(x), (2.13) x = : u =, x = L : u =. (2.13) v tt c 2 v xx =, t = : v = ϕ(x), v t = ψ(x), x = : v =, x = L : v = (2.14) w tt c 2 w xx = f(t, x), t = : w =, w t =, x = : w =, x = L : w =. 11 (2.15)

u = v + w. (2.16) (2.13)(2.14)(2.15) (2.14) (2.14)(2.15) (2.14) u(t, x) = T (t)x(x) (2.17).. (2.14) u tt c 2 u xx =, (2.18) t = : u = ϕ(x), u t = ψ(x), (2.19) x = : u =, (2.2) x = L : u =. (2.21) (2.18) (2.2)-(2.21) u(t, x) = T (t)x(x), (2.22) T (t), X(x) t x (2.22)(2.18) X(x)T (t) c 2 X (x)t (t) =, T (t) c 2 T (t) = X (x) X(x). (2.23) 12

(2.23) t x λ T (t) + c 2 λt (t) = (2.24) X (x) + λx(x) =. (2.25) (2.23)(2.24) (2.25) (2.24) t (2.25) x (2.24) (2.25) (2.22) (2.22)(2.2) (2.21) (2.25)X(x) X() =, X(L) =. (2.26) X = X(x)(2.25)-(2.26) λ 1 λ < λ < (2.25) X(x) = C 1 e λx + C 2 e λx. (2.27) (2.26) C 1 + C 2 =, C 1 e λl + C 2 e λl =. (2.28) (2.28) C 1 C 2 1 1 e λl e λl, C 1 = C 2 =, λ < 2 λ = (2.25) X(x) = C 1 + C 2 x. (2.29) (2.26) X(x) 13

3 λ > λ > (2.25) X(x) = C 1 cos λx + C 2 sin λx. (2.3) X() = C 1 =. (2.31) X(L) = C 2 sin λl =. C 2 sin λl =. λ = λ k = k2 π 2 L 2 (k = 1, 2, ). (2.32) X k (x) = C k sin( kπ x) L (k = 1, 2, ). (2.33) (2.33) sin( kπ L x) (2.25)(2.26) λ k = k 2 π 2 /L 2 λ k (2.24) A k, B k T k (t) = A k cos kπc L t + B k sin kπc t (k = 1, 2, ), (2.34) L (2.18)(2.2)-(2.21) u k (t, x) = T k (t)x k (x) = ( A k cos kπc L t + B k sin kπc ) L t sin kπ x (k = 1, 2, ). L (2.18)-(2.21) u(t, x) = u k (t, x) = (2.19)A k B k. ( A k cos kπc L t + B k sin kπc ) L t sin kπ x, (2.35) L 14

u(t, x) ( kπc = A k sin kπc t L L t + B k cos kπc ) L t sin kπ L x. (2.19) ϕ(x) = ψ(x) = A k sin kπ L x, B k kπc L sin kπ L x. A k kπc L B k ϕ(x) ψ(x) [, L]Fourier A k = 2 L ϕ(η) sin kπη L L dη, B k = 2 kπc L ψ(η) sin kπη L dη. (2.36) (2.35)(2.18)-(2.21) (2.36) ϕ(x) ψ(x) (2.35) (2.35) (2.18) ϕ(x) ψ(x) (2.35) (2.35) (2.18) (2.19)-(2.21) Fourier 2.1 f(x) [, l] m m + 1 f (i) () = f (i) (l) = (i =, 2,, 2[ m 2 ]). f(x) [, l]fourier f(x) a k sin kπx, l a k km a k f(x) m + 1f (m+1) (x) [, l] m f (m+1) (x) 15 a (m+1) k sin kπx, l

m f (m+1) (x) a(m+1) 2 + a (m+1) k cos kπx. l Parseval (a (m+1) ) 2 + 2 (a (m+1) k ) 2 = 2 l l [ f (m+1) (x) ] 2 dx <. a (m+1) k. m a (m+1) k l = 2 f (m+1) (ξ) sin kπξ dξ l l [ ] = 2 l f (m) (ξ) sin kπξ l 2 kπ l f (m) (ξ) cos kπξ dξ l l l l [ ] = 2 kπ l l f (m 1) (ξ) cos kπξ l 2( kπ l l l )2 l f (m 1) (ξ) sin kπξ dξ l = 2( kπ l l )2 l f (m 1) (ξ) sin kπξ dξ, l f (m 1) (x) x = x = l m a (m+1) k = ( 1) m+1 2 ( kπ l )m+1 a k. a (m+1) k = ( 1) m 2 ( kπ l )m+1 a k. (a (m+1) k ) 2 <, k 2m+2 a 2 k <. Cauchy k m a k k 2m+2 a k 2 1 k 2 <. 2.1 16

2.1 ϕ(x) C 3, ψ(x) C 2 ϕ() = ϕ(l) = ϕ () = ϕ (L) = ψ() = ψ(l) =, (2.37) A k, B k (2.36) k 2 A k k 2 B k 2.1 (2.35) x t u(2.35) u 2.1 ϕ(x) C 3, ψ(x) C 2 (2.37) (2.18)-(2.21) (2.35)A k B k (2.36) (2.37) (2.22)(2.18)-(2.21) Fourier Fourier Fourier ϕ(x) ψ(x) 2.1 ϕ(x) ψ(x) ϕ(x) ψ(x) ϕ n (x) = n A k sin kπ L x, ψ n(x) = n B k kπc L sin kπ L x ϕ n (x) ψ n (x) (2.18) u n (t, x) = n ( A k cos kπc L t + B k sin kπc ) L t sin kπ x. (2.38) L n u n (t, x) (2.35) u(t, x) {u n }u n (t, x) ϕ(x) ψ(x) n u n (t, x)... 17

u(t, x) u n (t, x)....... (2.35)(2.18)-(2.21) ( u k (t, x) = A k cos kπc L t + B k sin kπc ) L t sin kπ L x = N k cos(ω k t + Q k ) sin kπ L x (2.39) N k = A 2 k + B2 k, ω k = kπc L, sin Q k = B k N k, cos Q k = A k N k. N k ω k Q k c kω k u k (t, x) = N k sin kπ L x cos(ω kt + Q k ) N k sin kπ L x xx = ml/k (m =, 1,, k) (2.35) ω 1 = πc L ω k ω 1 x x = x = 1x = a a (, 1) h h 1 u(t, x)(2.18)-(2.21) h ϕ(x) = a x, x [, a], h (2.4) 1 a (1 x), x [a, 1], ψ(x). (2.41) 18

u(t, x) (2.35) (2.41) B k. (2.4) A k = 2 1 ϕ(η) sin(kπη)dη = 2 a h η sin(kπη)dη + 2 1 a a = 2h π 2 a(1 a)k 2 sin(kπa). h (1 η) sin(kπη)dη 1 a u(t, x) = 2h π 2 a(1 a) 1 sin(kπa) sin(kπx) cos(kπct). k 2 2.3 u tt c 2 u xx = f(t, x), (2.42) t = : u =, u t =, (2.43) x = : u =, (2.44) x = L : u =. (2.45) Cauchy w = w(t, x; τ) w tt c 2 w xx = (t > τ), t = τ : w =, w t = f(τ, x), x = : w =, x = L : w = (2.46) τ u(t, x) = w(t, x; τ)dτ (2.47) (2.42)-(2.45) 19

s = t τ, (2.46) w ss c 2 w xx = (s > ), s = : w =, w s = f(τ, x), x = : w =, x = L : w =. (2.48) (2.35)-(2.36) w = w(s, x; τ) = B k (τ) sin kπc L s sin kπ L x = B k (τ) sin kπc L (t τ) sin kπ x, (2.49) L B k (τ) = 2 kπc L f(τ, ξ) sin kπ ξdξ. (2.5) L (2.49)(2.47)(2.42)-(2.45) u(t, x) = w(t, x; τ)dτ = sin kπ L x 2.1 f(t, x) C 2 B k (τ) sin kπc (t τ)dτ. (2.51) L f(t, ) = f(t, L) = (2.51)(2.42)-(2.45) 2.4 u tt c 2 u xx = f(t, x), (2.52) t = : u = ϕ(x), u t = ψ(x), (2.53) x = : u = γ 1 (t), (2.54) x = L : u = γ 2 (t). (2.55) 2

ϕ(x), ψ(x), f(x) γ 1 (t), γ 2 (t) γ 1 () = γ 2 () =. (2.52)-(2.55) (2.14) (2.15) z tt c 2 z xx =, (2.56) t = : z =, z t =, (2.57) x = : z = γ 1 (t), (2.58) x = L : z = γ 2 (t). (2.59) (2.52)-(2.55) u = v + w + z. (2.56)-(2.59) (2.56)-(2.59) (2.14) (2.15) Z(t, x) = γ 1 (t) + x L (γ 2(t) γ 1 (t)). (2.6) Z = Z(t, x) (2.58) (2.59) U U = U(t, x) U(t, x) = z(t, x) Z(t, x) (2.61) U tt c 2 U xx = γ 1 (t) x L (γ 2 (t) γ 1 (t)) (2.62) t = : U = z(, x) Z(, x) = γ 1 () x L (γ 2() γ 1 ()), U t = z t (, x) Z t (, x) = γ 1() x L (γ 2() γ 1()). (2.63) UU (2.61)(2.56) -(2.59) z(t, x) = U(t, x) + Z(t, x). (2.64) 21

1. 2 u t 2 u 2 c2 x =, 2 (1) u t= = sin 3πx L, u t t= = x(l x), x = : u =, x = L : u = ; 2 u t 2 u 2 c2 x =, 2 u u(, t) =, (L, t) =, (2) x u(x, ) = h L x, u (x, ) =. t 2. 2 u t = 2 u 2 c2 x 2 u(, t) =, u(l, t) = A sin ωt, u(x, ) = u (x, ) =. t 3. (1) u x= = u x x=l = u tt c 2 u xx =, < x < l, t > u t= = sin 3 2l πx, u t t= = sin 5 2l πx. (2) u x x= = u x x=l =, u t= = x, u t t= =. 4. u tt c 2 u xx = g, < x < l, t >, u x= = u x x=l =, u t= =, u t t= = sin πx 2l, 22

g 5. 2 u t = 2 u 2 c2 x + bshx, 2 u t= = u t =, t= u x= = u x=l =. 6. 2 u t + 2b u 2 t = 2 u c2 (b > ), x 2 u x= = u x=l =, u t= = h l x, u t =. t= 23