- 3 University of Bristol 1.1 FLAC 3D 1 FLAC 3D FLAC 3D 1

Similar documents
#4 ~ #5 12 m m m 1. 5 m # m mm m Z4 Z5

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 6 Dec

successful and it testified the validity of the designing and construction of the excavation engineering in soft soil. Key words subway tunnel

m K K K K m Fig. 2 The plan layout of K K segment p

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 5 Oct /35 TU3521 P315.


!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

<534B544C DACFCA8FDB160B3C6B5E B FB8D5BE5C2E706466>

鋼構造論文集第 20 巻第 79 号 (2013 年 9 月 ) AN EVALUATION METHOD FOR ULTIMATE COMPRESSIVE STRENGTH OF STAINLESS STEEL PLATES BASED ON STRESS-STRAIN DIAGRAM * **

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!


PLAXIS 2D m PLAXIS 3D Foundation mm ~ m ~ mm m m 312 m 200 mm 0. 98

cm /s c d 1 /40 1 /4 1 / / / /m /Hz /kn / kn m ~

VLBI2010 [2] 1 mm EOP VLBI VLBI [3 5] VLBI h [6 11] VLBI VLBI VLBI VLBI VLBI GPS GPS ( ) [12] VLBI 10 m VLBI 65 m [13,14] (referen

mm ~

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

08-01.indd

桂医大研〔2015〕10号


,,, ( ). (weak story), ( ).,,., Valmundsson [1] 20%, 100% 200%. 2.3 (setbacks), (soft story).,.,, ; [2].,, ( ) ( 2 ),. Fernandez [3]

11 25 stable state. These conclusions were basically consistent with the analysis results of the multi - stage landslide in loess area with the Monte

增 刊 谢 小 林, 等. 上 海 中 心 裙 房 深 大 基 坑 逆 作 开 挖 设 计 及 实 践 745 类 型, 水 位 埋 深 一 般 为 地 表 下.0~.7 m 场 地 地 表 以 下 27 m 处 分 布 7 层 砂 性 土, 为 第 一 承 压 含 水 层 ; 9 层 砂 性 土

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

doc

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5,

f 2 f 2 f q 1 q 1 q 1 q 2 q 1 q n 2 f 2 f 2 f H = q 2 q 1 q 2 q 2 q 2 q n f 2 f 2 f q n q 1 q n q 2 q n q n H R n n n Hessian

LaDefense Arch Petronas Towers 2009 CCTV MOMA Newmark Hahn Liu 8 Heredia - Zavoni Barranco 9 Heredia - Zavoni Leyva

穨e235.PDF

UDC

<4D F736F F D20B8DFB9B0B0D3B0D3F5E0D3A6C1A6CAB5B2E2D3EBBCC6CBE3BDE1B9FBB2EED2ECD4ADD2F2B7D6CEF62DD5C5B9FAD0C22E646F6378>


!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, )

Probabilities of Default RMI PDs CVI 7-8 KMV 9 KMV KMV KMV 1. KMV KMV DPT DD DD DD DPT Step 1 V E = V A N d 1 - e rt DN d 2 1 d 1 = ln V A

8 : 731 Key words : narrow annular gap ; curvat ure ; critical heat flux ; annular flow,,,,,,,, ( ),, [122 ] kg/ (m 2 s) MPa

m m m ~ mm

UDC

&! +! # ## % & #( ) % % % () ) ( %

<4D F736F F D20C2B2A9F6A74EADE1AAC5BDD5A7DEB34E5FA4545F2E646F63>

水 资 源 与 水 危 机 2 学 分 32 学 时 Water Resources and Water Crisis 水 资 源 是 人 类 耐 以 生 存 的 基 础 自 然 资 源, 同 时 也 是 生 态 环 境 的 控 制 性 因 素 之 一 ; 在 国 民 经 济 中


Mnq 1 1 m ANSYS BEAM44 E0 E18 E0' Y Z E18' X Y Z ANSYS C64K C70C70H C /t /t /t /mm /mm /mm C64K

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

1556 地 理 科 学 进 展 30 卷 他 关 于 农 村 住 房 结 构 与 抗 震 性 能 的 研 究, 则 多 是 从 工 程 抗 灾 的 角 度, 研 究 某 种 构 造 类 型 的 房 屋, 力 图 找 到 传 统 房 屋 的 结 构 失 误 和 新 建 房 屋 中 存 在 的 问 [

附件一 摘要格式範例

[1] Nielsen [2]. Richardson [3] Baldock [4] 0.22 mm 0.32 mm Richardson Zaki. [5-6] mm [7] 1 mm. [8] [9] 5 mm 50 mm [10] [11] [12] -- 40% 50%

untitled

: 29 : n ( ),,. T, T +,. y ij i =, 2,, n, j =, 2,, T, y ij y ij = β + jβ 2 + α i + ɛ ij i =, 2,, n, j =, 2,, T, (.) β, β 2,. jβ 2,. β, β 2, α i i, ɛ i

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

Microsoft Word - 专论综述1.doc

48 Computer Education 课 程 体 系 设 置 2.1 科 学 设 置 培 养 方 案 课 程 模 块, 确 定 培 养 方 向 首 先, 我 们 通 过 对 人 才 市 场 需 求 分 析, 确 定 了 专 业 培 养 目 标 然 后, 根 据 教 育 部 高 等

& & ) ( +( #, # &,! # +., ) # % # # % ( #


Soliman Addenbrooke Potts Chehade Shahrour Fig. 1 Plan view for construction site m 2

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02

Microsoft Word - A doc

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

Ps22Pdf


4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

WL100079ZW.PDF


31 17 www. watergasheat. com km 2 17 km 15 km hm % mm Fig. 1 Technical route of p

: ; # 7 ( 8 7

Ansys /4 Ansys % 9 60% MU10 M m 1 Fig. Actual situation of measured building 1 Fig. 1 First floor plan of typical r

5月15期

untitled

θ 1 = φ n -n 2 2 n AR n φ i = 0 1 = a t - θ θ m a t-m 3 3 m MA m 1. 2 ρ k = R k /R 0 5 Akaike ρ k 1 AIC = n ln δ 2

文 選 五 十


8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &

水资源与水电工程科学国家重点实验室工作简报

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

第 31 卷 Vol. 31 总第 122 期!"#$%&' Z[\ ]^ _` a, :b c $ ' X $, C $ b c! >, O 47 2$b c 1 X, 9?, S, 4b c =>01, ; O 47 ' 0 $ 01 #, 04b c

40 强 度 与 环 境 2010 年 强 烈 的 振 动 和 冲 击 载 荷, 这 就 对 阀 门 管 路 等 部 件 连 接 的 静 密 封 结 构 提 出 了 很 高 的 要 求 某 液 体 火 箭 发 动 机 静 密 封 涉 及 高 压 超 低 温 大 尺 寸 三 个 严 酷 条 件, 具

欢迎参加 《计量基础知识》培训班

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %

# #! ) ( ( +,! %,! ( # # %& % ( ) +! +, +. /


标题

/ -6. PEER ~ 0. 5Hz PGA Peak Ground acceleration 0. 0g Fig. Modeling of relative displacement spectrum Ⅳ 0. 0g PG

第 29 卷第 9 期 Vol. 29 NO. 9 重庆工商大学学报 ( 自然科学版 ) J Chongqing Technol Business Univ. Nat Sci Ed Sept X * ABAQUS 1 2

A VALIDATION STUDY OF THE ACHIEVEMENT TEST OF TEACHING CHINESE AS THE SECOND LANGUAGE by Chen Wei A Thesis Submitted to the Graduate School and Colleg

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

<4D F736F F D20C8EDCDC1B5D8BBF9CDB2BBF9CAD4B2C9C6BDCCA8B5C4CACAD3C3D0D4B7D6CEF6>

第一章 绪论

YS1.mps

<4D F736F F D20AFB4A7C7A555B2D5C2B4A657B3E62E646F63>

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

<4D F736F F D20B8BDBCFE3220BDCCD3FDB2BFD6D8B5E3CAB5D1E9CAD2C4EAB6C8BFBCBACBB1A8B8E6A3A8C4A3B0E5A3A92E646F6378>

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+

UDC Empirical Researches on Pricing of Corporate Bonds with Macro Factors 厦门大学博硕士论文摘要库

PCA+LDA 14 1 PEN mL mL mL 16 DJX-AB DJ X AB DJ2 -YS % PEN

Transcription:

/3 NSC 9-11-E-011-0 9 08 01 93 07 31 aspects of the problem involved, including constitutive modeling, model testing, and numerical simulation. Then, the algorithm developed will be verified with field cases. Finally, recommendations will be made to improve the current method for the damage assessment of the adjacent buildings. The developed constitutive soil model will be rigorous and encompass state-of-the-art knowledge of the soil behavior relevant to excavation. In particular, emphasis will be on the small strain and anisotropic soil behavior. In addition, random and anisotropic nature of the column-type of improved soft clay mass will be studied. It is expected that the results generated from this collaborated project will further upgrade our present understanding of the excavation behavior. The result is also expected to significantly improve our ability to better predict the ground settlement and the adjacent building s response. Key Words: deep excavation, soft clay, ground settlement, ground improvement, building s response Abstract This collaborated project is to develop a rigorous and realistic method for the prediction of ground settlement and adjacent building s response induced by deep excavation in soft clay. This is a three year project consisted of four sub-projects. Studies will be proceeded from different 1

- 3 University of Bristol 1.1 FLAC 3D 1 FLAC 3D 1.1 1 FLAC 3D 1

1 FLAC (3.1) ~4m 15m 5~45m 10 t/ m ~6m 0.6~1.05m 40m 1.8 19 3.1 J. S. G. Jumbo Jet Special Grouting Pile 3.1 003 (A~F)(3.) 3.1.1 330m 0m 3.1. 3

a 16 19 3 SIS1(A J.S.G. 5.0m)SIS(A 5.0m) SIS5(E 3m) (3.3~3.5) SIS1 51.3mm b SIS1 SIS1 A SIS1.7mm 36.9mm 3.6 SIS1 A A SIS1 A 3.mm 1.3mm A SIS1 A 3.8mm A 5.mm SIS1 SIS1 6.3mm C SIS 3.3mm 19mm 3.7 C SIS1 3.5mm C SIS SIS 1.1mm SIS C.4mm SIS.5mm C 1.7mm.6mm E SIS 1.mm 9.8mm SIS E 1.3mm SIS 6.8mm E SIS 1.6mm E 4.1mm 3.8 E 5.3mm A SIS1 SIS C E C E SIS1 A SIS E C 爲 C E C 3m SIS5SIS5 SIS5 3.1.3-14.5mm 4

( AB C ) A RC I r =0% 130 80 16.09 15 B K0 RC 1.5kg/cm 30 0 θ b 1.5m C 41 Ir 0 5.44 A B 6.34 7.3 8.36 3.9 θ 0 0 30 0 60 0 90 0 10 0 150 0 180 0 35 Ir 10.66 13.4 16.09 0 0 180 0 1/1000 6 3.10 1/6803 3. 15 C 3.11 0 0 30 0 60 0 10 0 150 0 1/513 90 0 180 0 3.1 1/053 38 38 C A B 0 0 30 0 60 0 (X) 90 0 10 0 3. 150 0 180 0 (Z Y) 90 0 X Z W/C 1.0 Aw X Y 15 9.5 9.5 10cm 3 5

0 0 30 0 60 0 X 3.16 ) 90 0 10 0 150 0 180 0 Z Y FLAC-3D E ν B G - c s 0.6 kg cm 3-13- = u = φ = 0 c = su = 6kg cm φ = 0 ( S ) = ( S ) I + ( S ) (1 I ) (3-1) u, eq AC u, p AC r u, c AC r ( S ) = ( S ) I + ( S ) (1 I ) (3-) ueq, AE u, p AE r uc, AE r ν = 0.48 E i = 1 kg cm E 375kg cm i = S ueq, K0 S u, p Suc, I r AC 3.3 AE 3.13 6 3-1 3.4 3.14 3- K0 K0 (θ ) b = ( σ σ3) ( σ1 σ3) θ =0 o θ =180 o θ =30 o 90 o 150 o 3.15 3.3 FLAC-3D (1) FLAC-3D 3.17 FLAC-3D 51 10 10 10cm 3 ( () I 5.44%1.57%1.4% r 6

3.17%40.7% K0 (Response Surface ) b (1) θ 3.18 Q X 1 θ 0 X..X n Q=Q(X 1 X..X n ) 180 X i θ = 45 Q θ = 105 Q = Q( µ x1, µ x,... µ xn) + ( xi µ xi)( ) xi (3-4) X i= 1 i µ x 1, µ x,... µ xn X i (3-4) Q 5.44%~40.7% 3.17% µ Q = Q ( µ x1, µ x,... µ xn ) (3-5) I r n n n Q Q Q σ Q = σxi ( ) µ xi + (3-6) COVX i, X j)( ) µ xi( ) µ xj X i X i X i= 1 i= 1 j= 1 j σ (3) xi COV ( X 3.19 i, X j ) X i X j K0 (Covariance) COV ( X b i, X j ) = ρ xi, xjσ xiσ xj ρ xi,xj X i X j Q (3-6) X i I r Ir 3.17% Q Q( µ xi + σ xi ) Q( µ xi σ xi ) = X i σ xi (4) () Rosenblueth(1975) 3.5 N N Harr(1987) (3) ( ) ( ) z=g(x)=g(x 1 X X 3 X n )=0 (3-3) Z=g(X) 3.0 N X 1 X X n (Point Estimated) n 7 n Q

m=n+1 3.6 18.3m 1. 38m 41-44 (003 6. RIDO δhm = 0.005H0 18.3m 33-4 (00) δhm = 91. 5mm 99% 10.61mm 3. µ R = 91. 5mm σ R = 10. 61mm Vol.9NO.5(1981) F.S.=1. 4 4. 3.4 851-854 (003) 5. (000) 6. 133-41 003Lin 003Hsiung (1995) 003 7. 19 1 (000) 8. DiBiagio, E. and Myrvoll F., Full scale field tests of a slurry trench excavation in soft clay, Proceedings of the 5 th European Conference Soil Mechanics FLAC3D and Foundation Engineering, Vol.1, Madrid, Spain, pp.461-471(197). 9. Harr, M. E. Reliability-based Design in 00 Civil Engineering, Mc-Graw-Hill, New 003 8

York(1987). 10. Hsiung B. C. B., Kung H. S. J., Lin H. D., Lin W. B., and Chen C. H., Damage evaluation to adjacent structures from open-cut excavation, Proceedings of the 1 th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Vol.1, pp.789~79 (003). 11. Lin S. C., Lin H. D., Kuo C. J., Lin Y. K. and Kuo P. C., Effects of jet mixing on adjacent soils of an excavation, Proceedings of the 1 th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Vol.1, pp.809~81 (003). 1. Rosenblueth, E., Point estimates for probability moments, Proc., Nat. Acad. of Sci., Vol.7, No.10, pp.381-3814 (1975). 9

10

3.1 σ x,f θ (%) (kg/cm ) 0 30 60 90 10 150 180 3. σ y,f (kg/cm ) σ z,f (kg/cm ) 11 ε x,f (%) ε y,f (%) ε z,f (%) S u (kg/cm ) 0 3.97.79.73 15.00-7.50-7.07 0.6 5.44 4.40.81.80 15.09-6.54-6.1 0.80 6.34 4.58.84.80 15.0-6.30-6.1 0.89 7.3 4.78.80.81 15.03-6.15-6.3 0.99 8.36 4.85.77.75 15.01-5.11-6.59 1.05 10.66 5..81.80 15.00-5.83-4.86 1.1 13.4 5.50.77.75 15.01-3.63-3.97 1.37 16.09 5.91.75.76 15.01 -.15-1.99 1.58 0 4.05.76 3.0 15.00-6.13-3.09 0.64 5.44 4.43.75 3.1 15.00-7.14-3.18 0.84 6.34 4.83.79 3.49 15.04-5.51 -.3 1.0 7.3 5.06.75 3.91 15.01-5.01 -.14 1.15 8.36 5.38.75 3.68 15.05-5.17-1.65 1.31 0 3.95.75 3.18 15.01-6.46 4. 0.60 5.44 4.6.7 3.37 15.03-1.57 6.75 0.77 6.34 4.47.75 3.6 15.01-5.90 3.09 0.86 7.3 4.63.75 3.89 15.01-6.08.70 0.94 8.36 4.83.75 3.83 15.01-4.69.36 1.04 0 3.89.75 3.68 15.0-14.0 4.85 0.57 5.44 4.18.75 4.9 11.11-15.03 8.76 0.77 6.34 4.40.75 4.56 10.51-15.01 9.5 0.90 7.3 4.54.75 4.81 9.7-15.00 11.53 1.03 8.36 4.66.75 5.07 9.14-15.01 1.03 1.16 0 3.50.75 3.83 -.08-1.1 15.04 0.54 5.44 3.65 3.00 4.1-3.9-7.51 15.01 0.60 6.34 3.48.95 4.9 -.11-7.61 15.05 0.67 7.3 3.73.96 4.49-1.19-7.61 15.00 0.76 8.36 3.5.75 4.4 -.04-6.9 15.0 0.83 0 3.51 3.76 4.67-1.18 -.83 15.01 0.58 5.44 3.58 3.5 5.0-9.55-5.3 15.01 0.75 6.34 3.51 3.67 5.11-9.6-4.90 15.01 0.80 7.3 3.49 3.76 5.15-9.14-4.60 15.03 0.83 8.36 3.51 4.01 5.7-11.69-3.09 15.01 0.88 0 3.61 4.67 4.36-15.04 8.83 11.5 0.53 5.44 3.55 4.60 4.69-15.05 10.51 9.37 0.57 6.34 3.51 4.70 4.49-15.03 7.0 6.30 0.60 7.3 3.76 5.00 4.88-15.03 8.93 5.78 0.6 8.36 3.54 4.78 4.8-15.0 5.80 5.96 0.64 10.66 3.58 4.93 4.91-15.04 5.11 5.50 0.67 13.4 3.51 4.93 4.91-15.01 4.3 4.33 0.71 16.09 3.53 5.06 4.98-15.0 3.67 4.17 0.77

3.3 FLAC-3D FLAC-3D 1 10cm 10cm 10cm kg/cm 1.95kg/cm kg/cm ini 1.95kg/cm szz=syy=sxx=kg/cm ini pp=1.95 kg/cm 3 K0 15 step 15 step 0.1 0.1 kg/cm 1 kg/cm ±0.001 ±0.001 4 LVDT LVDT LVDT 5 0.0 kg/cm 10 0.0 kg/cm σ σ b = 3 σ1 σ 3 (θ) 0% σ σ b = 3 fluid off σ σ 1 3 15% 6 3.4 1 β β 1.63 5.16 10-0.40 3.45 10-1.36 8.69 10-0.54.95 10-1 3.1 3. 3.3 SIS1

3.4 SIS 3.6 A 3.7 C 3.5 SIS5 3.8 E 13

3.1 3.9 3 S u,eq (kg/cm) 1 σ vc = kg cm TTSP 1.5 / ( 0) 0 0 4 8 1 16 0 Improvement Ratio (%) 3.10 3.13 1. (S u,eq ) AE (kg/cm) 1.6 0.8 0.4 σ vc = 1.5 kg / cm ( TTSP180) 0 0 4 8 1 16 0 Improvement Ratio (%) 3.14 3.11 14

1.6 S u (kg/cm) I r =0% I r =5.44% I r =6.34% 1. I r =7.3% I r =8.36% 0.8 0.4 0 0 30 60 90 10 150 180 Stress Path ( ) Deviator Stress(kg/cm).80.40.00 1.60 k0 Ir=5.44% Ir=1.57% Ir=1.4% Ir=3.17% Ir=40.7% 1.0 3.15 0.80 0 30 60 90 10 150 180 10 Degree 3.18 K 0 θ Deviator Stress(kg/cm).80.40.00 1.60 Ir=5.44% Ir=1.57% Ir=1.4% Ir=3.17% Ir=40.7% 3.16 1.0 0 30 60 90 10 150 180 10 Degree deviator stress (kg/cm).80.40.00 1.60 1.0 0.80 AC Test True triaxial test FLAC 3.19 θ 0.40 0.00 0 4 8 1 16 0 axial strain(%) 3.0 3.17 FLAC 15