Microsoft Word - 19-p doc

Similar documents
1 103 to and the salinity varies from % to % NaCleqv. The homogenization temperatures of vaporrich fluid inclusions range from 415.

Mixtions Pin Yin Homepage

年 Fig.1 图 1 [2] 湘 东 北 地 区 黄 金 洞 金 矿 地 质 图 Geological map of Huangjindong gold deposit, Northeastern Hunan Province 1. 白 垩 系 ;2. 二 叠 - 泥 盆 系 ;

(CIP) : /. :, (/ ) ISBN T S H CI P (2006) CH IJIASH EN GXIAN G YINSHI WEN H U A Y U CHENGY U 1

km 5 km Pt 2 x 2 1 Au 65 ~ ~ km 5 km 10 km 2 Au Au

Microsoft Word - Chord_chart_-_Song_of_Spiritual_Warfare_CN.docx

<D2BDC1C6BDA1BFB5CDB6C8DAD7CAB8DFB7E5C2DBCCB3B2CEBBE1C3FBB5A52E786C7378>

Stock Transfer Service Inc. Page No. 1 CENTURY PEAK METALS HOLDINGS CORPORATION (CPM) List of Top 100 Stockholders As of 12/31/2015 Rank Sth. No. Name

诗 经 简介 诗经 是中国第一部诗歌总集 它汇集了从西周初年到春秋中期 五百多年间的诗歌三百零五篇 诗经 在先秦叫做 诗 或者取诗的 数目整数叫 诗三百 本来只是一本诗集 从汉代起 儒家学者把 诗 当作经典 尊称为 诗经 列入 五经 之中 它原来的文学性质就 变成了同政治 道德等密切相连的教化人的教

* CUSUM EWMA PCA TS79 A DOI /j. issn X Incipient Fault Detection in Papermaking Wa

untitled

km BIF km BIF 6 7 BIF MT 14. MT. Fig. 1 1 Geological sketch map of Hanling -P

(CIP) : /. :, (/ ) ISBN T S H CI P (2006) XIANGPIAOWANLI JIUW ENH UA YU CH ENGYU

Microsoft Word - Chord_chart_-_The_Word_of_God_in_Song CN.docx

GLOBAL GEOLOGY Vol. 29 No. 3 Sept P531 A doi /j. issn



t 13-30% 70% % Kolaka 600 m 240 m % % ~ 1. 1% 7. 1 Kolaka Fig. 1 Geolog

ti2 guan4 bo1 bo5 huai4 zheng4 hong1 xi2 luo2 ren4

No. Name College Major 1 Ke Yang Chuan College of Science Chemistry 2 Wang Li Qun College of Science Mathematics



jiàn shí

4 U-Pb 533 related to volcanism of Fulin Formation which happened later than 108 Ma. The mineralization occurred concurrently with the later Mesozoic

lí yòu qi n j n ng

j n yín

I II 2 I 0.35 km 2 E- Pm NE20 W NE SE 40 ~60 Y -SN 10~20m 50 m II NNE [1,3,5] 4 I NE [1] 1 Fig. 1 Simplified geologic map of the Bais

Microsoft Word - 詩經注釋.docx

封面封底.FIT)

píng liú zú

é é

314 50%, (Sorong Fault) (Jason et al., 1995; Xвopoвa, 1990),,,,,,,,, 1 区域成矿背景,,, (, 1998),,, - ( 1),,,,, 图 1 印度尼西亚塔岛区域地质图 ( 右下图据 Akira et al., 2005) F

封面封底.FIT)

<B3ACBDDD>


吉林农业1.FIT)


封面封底.FIT)

KJWJ01 Fig. 1 Geological map of the Kajiwa landslide PDH01 60 ~ 70m 80 ~ 90m 80m 2 930m 556m 641m 598m m m 3 2 Ⅰ m 2


FM

第5期 周 栋等 豫西瑶沟金矿床辉钼矿 Re Os年龄及其地质意义 163 图 1 瑶沟矿区地质图 改自文献 18 Fig 1 GeologicalmapofYaogougolddeposit 向及东西向 瑶沟矿区出露的喷出岩主要为中元古界熊耳群 陆相火山岩区域 内 大 规 模 侵 入 岩 不 太

~ 121 E 40 ~ 41 N MT Fig. 1 1 Location map of geographical exploration

km t 2 4 Fig Tectonic divisions of Siberian platform

現代學術之建立 陳平 美學十五講 淩繼堯 美學 論集 徐複觀 書店出版社 的方位 陳寶生 宣傳 敦煌文藝出版社 論集續篇 徐複觀 書店出版社 莊子哲學 王博 道家 的天方學 沙宗平 伊斯蘭教 周易 經傳十

% km % Nazca 15 8 cm Fig. 1 Schemat


Wu Yi Shan Slalom Open Wu Yi Shan, China, November 2018 Final Ranking Battle Senior Women Rank ID Name Ctry Zapuskalova Nadezhda

Microsoft Word tb 赵宏宇s-高校教改纵横.doc


1 79 Key words Tarim Basin Bachu -Maigati area Silurian growth fault sandy dispersion system Fig. 1 1 Overview of Bachu -Maigaiti regio

<B3ACBDDD>


Case Doc 1062 Filed 11/26/18 Entered 11/26/18 11:08:44 Desc Main Document Page 1 of 8 UNITED STATES BANKRUPTCY COURT DISTRICT OF MASSACHUSETT

QINGDAOLAOGANBUZHIYOU

11 25 stable state. These conclusions were basically consistent with the analysis results of the multi - stage landslide in loess area with the Monte

2019 Chinese Taipei National High School Athletic Game Boxing Championship Junior Men Division Top 8 As of WED 24 APR 2019 Men s Mosquito(38-41Kg) Ran

14 17.,., Fig. 1 Bougeur gravity map of research region 2 Fig. 2 Magnetic map of research region

成 大 中 文 學 報 第 五 十 二 期 Re-examination of the Core Value in Yi Jing Studies of Xun Shuang: Constructing the Confucius Meaning via Phenomenon and Number

bài bì

Ps22Pdf

Microsoft Word - 29-王红星.doc

5 : ( [6] ) Fig.1 GeologicalmapofXitieshanPb-Znminingarea ( ); - 2 [6] - - (Mλπ) ( a-1 b ) (a-2 ) - - ( 2-A) (d ) - ( ) [1123] ; c ( 2-B) [6] [2

1


合肥民商 2013 年第 10 期

~-' 一 ~ U 百 陳 子 展 ( ), 本 名 炳 聾, 字 子 展, 以 字 行 於 世, 湖 南 長 沙 人 幼 時 曾 在 私 塾 求 學, 後 入 長 沙 縣 立 師 範 學 校, 再 入 東 南 大 學 教 育 系, 因 病 輯 學 回 湖 南, 寄 住 長 沙

Microsoft Word - 白話中庸.docx

DELE_MAYO2013.xls

Microsoft Word 方刚_new_.doc

标题

湘 粤 跨 界 水 环 境保护合作座谈会召开 南省政府副秘书长张银桥 湖南省环保厅 国土资源厅 水利厅 湖南郴州市政府相关负责人出席座谈 湘粤跨省界河流主要为发源于郴州临武的武水 河 它是广东省韶关市内重要河流北江上游的一级支 流 近年来 湘粤两省就跨省界河流水环境保护达成 多项共识 通过一系列举措

¹ º»

2016 YOUNG MATHEMATICIAN FORUM Introduction To promote academic communication and cooperation between young staffs from the SMS and the BICMR of Pekin


Fig. 1 Frame calculation model 1 mm Table 1 Joints displacement mm


% GIS / / Fig. 1 Characteristics of flood disaster variation in suburbs of Shang

Ps22Pdf

t o

CONTENTS 目录 县区人武 35 坚持军民融合理念 打造渌湘发展升级版 基地巡礼 38 工农武装割据的星星之火在这里点燃 走访秋收起义文家市会师纪念馆 党管武装 41 强根固本推进国防后备力量建设 株洲县人武部民兵建设纪实 2014 年 2 月 第 2 期 总第 4 期 内部资料准印证号 04

ph ph ph Langmuir mg /g Al 2 O 3 ph 7. 0 ~ 9. 0 ph HCO - 3 CO 2-3 PO mg /L 5 p

United Nations ~ ~ % 2010

书 作 名 : 者 : 出版社 : 中国电影出版社 版权所有 : 烨子工作室 类 别 : 中国传世情爱小说 出版时间 :2005 年 10 月 字 书 数 :150 千字 号 :ISBN /B 0030

Ling Zhoujiu Shi Kuang

GeologicalScienceandTechnologyInformation Vol.37 No.5 Sep doi: /j.cnki.dzkq ,,,. [J].,2018,37(5): , 1, 1, 1

source and secondly from the surrounding rocks. In sum the Jinchanggouliang gold deposit is a shallow orogenic gold deposit formed in the exten



(1) 1 ; 5 ; ; km ~200 :YC( )13-1 YC13-4 YC13-6 m; YC7-4 YC14-1 YC19-1 YC21-1 BD( ) V2 BD13-1 BD13-3 BD13-3S BD

62 戲劇學刊 An Analysis of Cao-xie-gong Zhen in Tainan Abstract Te-yu Shih* Tainan is among the first areas that were developed in Taiwan, and there are a

<B7E2C3E E6169>

48 東華漢學 第20期 2014年12月 後 卿 由三軍將佐取代 此後 中大夫 極可能回歸原本職司 由 於重要性已然不再 故而此後便不見 中大夫 記載於 左傳 及 國 語 關鍵詞 左傳 中大夫 里克 丕鄭 卿

mm ~

农村环境综合整治全省域覆盖工作 电视电话会议召开 8 月 3 日 省政府召开农村环境综合整治全省域 覆盖工作电视电话会议 动员和部署全省域农村环境 综合整治工作 加快推进我省生态文明和 两型 示 范建设 省委常委 常务副省长陈肇雄出席会议并讲 话 会议由省政府副秘书长张银桥主持 湘西自治州 郴州永兴

Landsat -ETM ETM Dennis P. Cox

untitled


successful and it testified the validity of the designing and construction of the excavation engineering in soft soil. Key words subway tunnel

第 23 卷 第 1 期 田 素 贵, 等 : 热 处 理 制 度 对 GH4169G 合 金 微 观 组 织 与 蠕 变 性 能 的 影 响 109 响, 当 δ 相 析 出 量 较 大 时, 将 消 耗 大 量 的 元 素 Nb, 致 使 近 晶 界 区 域 γ 和 γ" 相 贫 化, 降 低

Transcription:

第 26 卷第 12 期中国有色金属学报 2016 年 12 月 Volume 26 Number 12 The Chinese Journal of Nonferrous Metals Dec. 2016 文章编号 :1004-0609(2016)-12-2625-15 湖南双峰县包金山金矿成矿流体与矿床成因 鞠培姣 1, 赖健清 1, 莫青云 1 1,, 石坚 2, 谭辉跃 2, 陶诗龙 (1. 中南大学有色金属成矿预测与地质环境监测教育部重点实验室地球科学与信息物理学院, 长沙 410083; 2. 湖南省有色地质勘查局二总队, 湘潭 411102) 1 摘要 : 包金山金矿位于湖南省双峰金矿带上, 根据矿床地质特征将成矿作用划分为变质热液期 岩浆热液期和热液叠加期等 3 个成矿期, 并将岩浆热液期细分为乳白色石英脉阶段 (A) 烟灰色石英脉阶段(B) 和碳酸盐 石英细脉阶段 (C)3 个矿化阶段 通过流体包裹体显微测温 包裹体成分分析及氢氧同位素组成分析来研究矿床成矿流体特征, 并分析矿床成因 包裹体岩相学研究发现,A B 阶段的石英中发育 3 类包裹体 : 气液两相包裹体 (I 型 ) 水溶液 CO 2 包裹体 (II 型 ) 和纯 CO 2 包裹体 (III 型 ) A 阶段发育大量 I 型包裹体和极少量 II 型包裹体, 均一温度集中于 260~380, 盐度为 3.12%~15.42%;B 阶段发育 I 型包裹体,II 型及 III 型包裹体明显增多, 均一温度集中于 250~370, 盐度为 2.31%~12.29% 群体包裹体气相成分以 H 2 O 和 CO 2 为主, 还含有 N 2 CH 4 H 2 CO 等, 液相成分主要为 Ca 2+ Na + Mg 2+ SO 2 4 Cl 和 NO 3 矿床主成矿期流体属低盐度 中高温 富 CO 2 的 Ca 2+ (Na + Mg 2+ )-SO 2 4 (Cl NO 3 )-H 2 O-CO 2 体系, 估算成矿压力为 70~113 MPa, 估算最大成矿深度为 4.2km 氢氧同位素分析表明主成矿阶段的流体来源于原生岩浆水 矿床成因类型为变质热液叠加中温岩浆热液充填交代型矿床 关键词 : 流体包裹体 ; 氢氧同位素 ; 成矿流体 ; 矿床成因 ; 包金山金矿中图分类号 :P611.1 文献标志码 :A 包金山金矿在区域上位于白马山 龙山东西向构造带与沩山 紫云山北西向复背斜带的复合部位, 紫云山复式岩体北端突起的外接触带中 矿山距双峰县 [1] 城北东 21 km, 属梓门桥镇管辖 周兴良等简要介绍了矿床地质特征, 提出其成因类型为中低温变质 热液型矿床, 工业类型为破碎带蚀变岩型金矿床 至今未有学者对成矿流体的特征进行探讨, 本文作者首次对矿化石英脉中的流体包裹体进行岩相学分析 群体包裹体成分分析 氢氧同位素分析和显微测温, 查明了该矿床主成矿期流体包裹体的基本类型, 分析成矿流体的特征及成矿物理化学条件, 为研究成矿作用过程及矿床成因提供依据 1 成矿地质背景 研究区位于湘中成矿区北东部, 隶属双峰金矿带 其大地构造位置属华夏微板块与扬子微板块的结合部位, 构造复杂, 岩浆活动频繁 区内出露地层包括中 元古界冷家溪群 新元古界板溪群马底驿组, 震旦系, 寒武系, 奥陶系, 泥盆系, 石炭系, 白垩系, 古近系和第四系 ( 见图 1) 其中, 马底驿组为赋矿层位, 岩性有浅变质砂岩 含钙板岩 条带状大理岩和碳质板岩, 分布在紫云山岩体的隆起带核部 区域经历了漫长复杂的构造活动, 至少有四期 : 雪峰运动 加里东运动 印支运动和燕山运动 前两期以褶皱断裂为主, 后两期有广泛的岩浆活动 褶皱构造主要发育近 SN 向紫云山 永福寺复式背斜 [1] 断裂构造主要有 NE 向和 EW 向两组, 其中 EW 向的张扭性断裂有明显的绢云母化 硅化 黄铁矿化, 为主要的导矿和容矿构造 区内岩浆活动频繁, 具多期活动特点 包金山南邻紫云山岩体, 东约 5 km 处出露歇马岩体, 均呈岩基状产出 紫云山复式岩体呈近 SN 向的不规则形态, 出露面积约 280 km 2, 与区内金矿形成关系密切, 为印支期 燕山期侵入, 主要由中粒花岗闪长岩和晚期侵入体中粒黑云母花岗岩组成, 分别分布于岩体的边部和中心部位, 前者为紫云山岩体的主体 [2] 基金项目 : 国家自然科学基金资助项目 (41172297); 中南大学 创新驱动项目 (2015CX008) 收稿日期 :2015-12-04; 修订日期 :2016-06-02 通信作者 : 赖健清, 教授, 博士 ; 电话 :13875983805;E-mail:ljq@csu.edu.cn

2626 图1 2016 年 12 月 中国有色金属学报 湖南省双峰金矿带地质简图(据文献[1]修改) 1 第四系 2 古近系 3 白垩系 4 石炭系 5 泥盆系 6 奥陶 系 7 寒武系 8 震旦系 9 板溪群马底驿组 10 冷家溪群 11 黑云母花岗岩 12 花岗闪长岩 13 地质界线 14 断层 15 金矿床(点) Fig. 1 Sketch geological map of Shuangfeng metallogenic belt in Hunan Province (modified from Ref.[1]): 1 Quaternary; 2 Paleogene; 3 Cretaceous; 4 Carboniferous; 5 Devonian; 6 Ordovician; 7 Cambrian; 8 Sinian; 9 Madiyi Formation of Banxi Group; 10 Lengjiaxi Group; 11 Biotite granite; 12 Granodiorite; 13 Geological boundary; 14 Faults; 15 Gold deposit (occurrence) 矿区出露第 2 岩性段 钙质板岩段(Pt3m2) 为含矿岩系 2 (见图 2) 该岩性段可分为 3 个小层 与赋矿有关的主 矿床地质特征 要是第 2 小层(Pt3m2-2) 地层总体色调是以灰 灰白 灰绿色为主 角砾化发育 有明显的蚀变特征 岩石 2.1 矿区地质 中常见条带状 瘤状和角砾状大理岩 发育绢云母化 矿区地层为新元古界板溪群马底驿组(Pt3m)泥 [3] 质 粉砂质碎屑岩夹碳酸盐岩 可分为 3 个岩性段 硅化和黄铁矿化等蚀变 区内褶皱构造不发育 总体呈一向北倾的单斜构

第 26 卷第 12 期鞠培姣, 等 : 湖南双峰县包金山金矿成矿流体与矿床成因 2627 图 2 包金山矿区地质图 ( 据文献 [3] 修改 ):1 板溪群马底驿组第二段第三层 ;2 板溪群马底驿组第二段第二层 ;3 板溪群马底驿组第二段第一层 ;4 花岗斑岩脉 ;5 蚀变岩 ;6 破碎蚀变带及编号 ;7 矿体 ;8 地质界线 ;9 断层及其编号 Fig. 2 Geological map of Baojinshan gold deposit (modified from Ref.[3]): 1 Third layer of second section in Madiyi Formation; 2 Second layer of second section in Madiyi Formation; 3 First layer of second section in Madiyi Formation; 4 Granitic porphyry dike; 5 Altered rock; 6 Altered fracture zone and its number; 7 Orebody; 8 Geological boundary; 9 Fault and its number 造, 地层产状平缓, 倾角 20 ~30 断裂极为发育, 主要有近 EW 向 NNE 向 层间破碎带和 NW 向断层 4 组 近 EW 向断裂为矿区的主要控矿构造, 控制矿床的空间定位 ; 层间破碎带和 NW 向断层是矿区重要的赋矿构造, 其与近 EW 向断层的组合确定了金钨矿体的空间定位 ;NNE 向断裂是矿区的主要破矿构造 ( 见图 2) 矿区内岩浆岩主要为花岗斑岩 地表见一条岩脉出露, 分布于矿区中部, 走向 310, 倾向 NE, 倾角 46 ~68 坑道还见有 2 条花岗斑岩脉, 走向 NWW-NW, 倾向 NE 花岗斑岩脉在深部形态稳定, 在岩脉弧状拐弯处上 下盘的破碎蚀变带中常发育较富金矿体, 说明岩浆活动提供了部分成矿物质和热源, 与成矿关系较为密切 2.2 矿体特征包金山金矿体主要分布于矿区东部花岗斑岩脉的上 下盘, 呈透镜状 板柱状 管状和似层状赋存于 F 7 F 9 断层破碎带及其上下盘蚀变带内, 于构造结合部位富集 ( 见图 3) 赋矿岩层为马底驿组第二岩性段灰绿色中厚层状含粉砂质钙质板岩 条带状钙质板岩 斑点状板岩 按矿石矿物组合特征, 矿化类型可分为石英脉型和破碎带蚀变岩型 石英脉型金 ( 钨 ) 矿体的含金石英脉赋存于 NW 向断裂带中, 呈不规则短脉状 透镜状 围岩褪色化 硅化 黄铁矿化 磁黄铁矿化强烈 在构造结合部位的石英脉内和石英脉与围岩接触带上可见明金, 并伴有铅锌矿化 黄铜矿化 局部可见白钨矿呈团块状 细脉状充填于石英脉中部 破碎带蚀变岩型金矿体主要发育于 F 9 断层破碎带及其上下盘的层间破碎带中, 呈脉状 似层状产出, 矿体及围岩硅化 黄铁矿化 磁黄铁矿化 绢云化 绿泥石化强烈, 石英脉和石英块体较发育 原生矿石矿物成分比较简单, 除自然金外 还有白钨矿, 金属硫化物主要有黄铁矿 磁黄铁矿, 次为黄铜矿 辉锑矿 方铅矿 闪锌矿 毒砂等, 脉石矿物主要为石英 方解石 铁白云石 绢云母和绿泥石 表生矿物主要有褐铁矿 孔雀石等 矿石结构主要为它形粒状结构 充填交代结构和压碎结构 矿石构造以浸染状为主, 次为角砾状 细脉状和条带状构造等 围岩蚀变主要有碳酸盐化 硅化 黄铁矿化 绿

2628 中国有色金属学报 2016 年 12 月 图 3 包金山矿区 I-I 剖面图 ( 据文献 [3] 修改 ):1 花岗斑岩 ;2 石英脉 ;3 断层破碎带 ;4 金矿体 ;5 推测金矿体 ;6 采空区 ;7 实测及推测地质界线 ;8 断层及编号 Fig. 3 I-I sectional drawing of Baojinshan deposit (modified from Ref. [3]): 1 Granite porphyry; 2 Quartz vein; 3 Fault zone; 4 Gold orebody; 5 Speculated gold orebody; 6 Worked-out section; 7 Measured and inferred geological boundary; 8 Fault and its number 泥石化和绢云母化, 其中以碳酸盐化 硅化 黄铁矿化与金和钨矿化关系最为密切 在破碎蚀变带内, 当三者叠加且强烈时, 往往形成较富的矿体 2.3 成矿期和矿化阶段根据野外穿插关系和镜下特征, 将矿床成矿作用划分为 3 个成矿期, 分别为变质热液期 岩浆热液期和热液叠加期 1) 变质热液期早期白云质灰岩和泥灰岩经区域变质形成钙质板岩 斑点板岩等, 普遍发育绢云母化和绿泥石化 ; 经过变质作用, 板岩中黄铁矿和磁黄铁矿发育, 黄铁矿自形程度较高, 呈稀疏浸染状分布 ; 少量黄铁矿被交代形成磁黄铁矿, 磁黄铁矿呈黄铁矿假象 区域变质形成的板岩常被后期的构造破坏出现揉皱现象, 并且常充填乳白 烟灰相间的石英脉 成矿作用发生在条带状 瘤状大理岩及钙质板岩中, 主要交代变质岩, 有强烈的绢云母化 碳酸盐化 绿泥石化和硅化等, 常见角砾岩化现象, 星点状出现毒砂 黄铁矿 黄铁矿假象的磁黄铁矿等金属矿物, 未见明金 2) 岩浆热液期与印支期中酸性岩浆有关的热液活动形成 NW 向含金石英脉, 充填于 NW 向张性断裂中 该期是矿区主成矿期, 不仅形成含金石英脉, 还对前期的含金蚀变岩有强烈的改造作用, 使石英脉附近的金品位明显提高, 可见粗粒自然金 成矿作用可分为 3 个阶段 A 阶段, 即乳白色石英脉阶段 以乳白色石英和分布于脉两侧的对称带状白钨矿为特征, 沿 NW 向裂隙充填, 含极少量硫化物, 有金矿化 该阶段乳白色石英被构造破坏, 形成角砾状并被后期烟灰色石英充填交代 ( 见图 4(a)); 白钨矿与乳白色石英关系密切, 多见白钨矿呈对称梳状构造分布于石英脉两侧 ( 见图 4(c) 和 (d)), 或呈角砾状生长于乳白色石英中, 显微镜下可见白钨矿被后期辉锑矿沿裂隙充填交代 ; 乳白色石英中局部可见明金, 不与其他金属矿物伴生 ( 见图 4(b)) B 阶段, 即烟灰色石英脉阶段 A 阶段石英脉受构造作用发生碎裂及局部角砾岩化, 扩容空间中的热液充填交代作用沉淀烟灰色石英及细粒黄铁矿等, 局部见有细粒白钨矿呈细脉状, 也有团块状白钨矿在脉中部发育 该阶段金进一步富集, 成为粗粒明金 ( 见图

第 26 卷第 12 期 图4 鞠培姣 等 湖南双峰县包金山金矿成矿流体与矿床成因 2629 包金山金矿床岩浆热液期不同阶段特征(Qtz 石英 Gl 自然金 Gn 方铅矿 Po 磁黄铁矿 Sh 白钨矿) (a) 乳 白色石英角砾被后期烟灰色石英充填胶结 (b) 乳白色石英中的明金 (c) 石英脉两侧发育呈对称梳状的白钨矿 (d) 紫外线 灯下白钨矿特征(视域同图 4(c)) (e) 乳白色石英经过烟灰色石英的叠加改造使自然金富集 (f) 石英裂隙中充填自然金和方 铅矿 (g) 方铅矿中包裹着颗粒粗大的自然金 (h) 方铅矿与石英脉接触带处自然金和磁黄铁矿发育 Fig. 4 Characteristics of different stages of magmatic hydrothermal episode in Baojinshan gold deposit (Qtz Quartz; Gl Gold; Gn Galena; Po Pyrrhotite; Sh Scheelite): (a) Milky quartz breccia filled and cemented by late smoky quartz; (b) Visible gold in milky quartz; (c) Symmetrical comb scheelite developed on both sides of quartz vein; (d) Characteristics of scheelite under ultraviolet light, with Fig. 4(c) map view; (e) Superposition of smoky quartz on milky quartz results in enrichment of natural gold; (f) Natural gold and galena filling in quartz fractures; (g) Coarse grain of natural gold wrapped in Galena; (h) Natural gold and pyrrhotite developed in contact zone between galena and quartz vein

2630 中国有色金属学报 2016 年 12 月 4(e)) 伴生的金属矿物主要为方铅矿, 次为黄铁矿和磁黄铁矿 自然金有三种赋存状态 : 裂隙金 ( 见图 4(f)) 包裹金 ( 见图 4(g)) 和接触金 ( 见图 4(h)) C 阶段, 即碳酸盐 石英脉阶段 该阶段可见微细脉状绢云母 黄铁矿, 有时可见裂隙状充填的明金细脉, 是热液进一步活动的结果 碳酸盐矿物主要为方解石, 穿插自然金和方铅矿 3) 热液叠加期发育于花岗闪长斑岩与钙质板岩接触带两侧, 以含石英 辉锑矿细脉为特色, 宽度不大 晚期形成的辉锑矿 石英细脉穿插岩浆热液期形成的石英脉 岩体和围岩 显微镜下辉锑矿呈针状, 与石英形成石英 辉锑矿脉充填于围岩裂隙中 3 分析方法 3.1 包裹体显微测温分析本研究中样品采自包金山金矿床的矿化石英脉, 包括乳白色石英脉和烟灰色石英脉, 挑选不同成矿阶段 不同标高 透明矿物相对发育且具代表性的样品制成包裹体光薄片 对各阶段石英中的流体包裹体进行了镜下岩相学研究, 最终挑选出 11 件样品进行显微测温, 涵盖了岩浆热液期的 2 个主成矿阶段 (A 阶段和 B 阶段 ) 显微测温工作在中南大学地球科学与信息物理学院流体包裹体实验室完成, 仪器为 Linkam THMS 600 型地质用冷热台, 可操作温度范围为 196~600, 经校准, 在温度为 196~30 时, 设备精度为 0.1 ; 温度为 30~600 时, 精度为 1 测定包裹体的完全冷冻温度 t f, 完全均一温度 t h, 固态 CO 2 的熔化温度 t m(co2 ),CO 2 相部分均一温度 t h(co2 ), 笼合物的最终熔化温度 t m(cla), 以及冰的最终熔化温度 t m(ice) 利用冰的最终熔化温度 t m(ice) ( 水溶液包裹体 ) 或笼合物的最终熔化温度 t m(cla) ( 水溶液 -CO 2 包裹体 ), 通过 BROWN [4] [5] 的 FLINCOR 程序, 采用 BROWN 等的等式计算了流体包裹体的盐度 3.2 群体包裹体成分分析本研究中选用 5 件样品 (BJJ-346-2 BJJ-346-3 BJJ-346-4 BJJ-346-5 和 BJJ-346-6) 进行测试 先将样品粉碎, 经筛分 清洗晾干 磁选后, 在双目镜下挑选, 得到纯度大于 99% 的石英单矿物样品, 用于气 液相成分分析 [6] 流体包裹体的无机气相及离子色谱分析在核工业北京地质研究院分析测试研究中心完 成, 测试仪器为 PE.Clarus600 型气相色谱仪和 DIONEX 500 型离子色谱仪 3.3 氢氧同位素分析用于氢氧同位素测试的样品为采自包金山矿区 B 阶段的 5 件含金黄铁矿石英脉 (BJJ346-2,BJJ346-3, BJJ346-4,BJJ346-5,BJJ346-6), 将样品粉碎, 选出纯度达 99% 的石英单矿物, 送至核工业北京地质研究院分析测试研究中心进行测试 所用仪器为 MAT 253 型稳定同位素质谱仪, 氢同位素分析精度为 ±0.2%, 氧同位素分析精度为 ±0.02% 氧同位素的测试采用 BrF 5 法 [7] : 在真空 550~700 条件下, 石英样品与纯 BrF 5 反应得到 O 2, 经纯化后的 O 2 在 700 条件下, 经由铂的催化作用与碳棒反应, 生成 CO 2 气体, 再送质谱测试, 获得氧同位素组成 ; 氢同位素的分析采用热爆裂法 : 在真空条件下采用热爆法打开包裹体, 提取其中的 H 2 O, 获得的 H 2 O 与锌反应, 获得 H 2, 经质谱测试, 得到氢同位素组成, 以平均海洋水为标准 4 测试结果 4.1 流体包裹体显微测温 4.1.1 流体包裹体类型包裹体的岩相学研究表明, 矿区石英中原生包裹体发育 ( 见图 5), 根据其在室温 (20 ) 下的相态特征可分为如下 3 类 1) I 型包裹体 : 室温下呈气液两相产出, 由盐水溶液及气泡组成, 气相体积分数为 10%~70%, 根据最终均一相态, 又划分为 Ia 及 Ib 两个亚类型,Ia 型包裹体气相体积分数低于 50%, 最终均一为水溶液相 ( 见图 5(a));Ib 型包裹体气相体积分数大于 50%, 最终均一为气相 ( 见图 5(b)) 该类包裹体直径约 3~13 μm, 多呈椭圆 长条及不规则状分布在石英中 2) II 型包裹体 : 室温下呈水溶液相 气相 CO 2 及液相 CO 2 三相产出, 可见其与 I 型及 III 型包裹体共生 根据 CO 2 相占包裹体总体积的比例, 可进一步分为 IIa 和 IIb 两个亚类型 前者 CO 2 相所占体积分数低于 50%, 二氧化碳部分均一为液相, 最终完全均一为水溶液相 ; 后者 CO 2 相所占体积分数大于 50%, 二氧化碳大多部分均一为液相, 最终以碳质相膨胀达到完全均一 该类包裹体的形态以椭圆 长条及不规则状为主, 直径约为 2~4 μm( 见图 5(c)) 3) III 型包裹体 : 在室温下呈液相 CO 2 气相 CO 2

第 26 卷第 12 期鞠培姣, 等 : 湖南双峰县包金山金矿成矿流体与矿床成因 2631 图 5 流体包裹体镜下显微特征 (Aq 水溶液相 ;V 气相 ;Cl CO 2 液相 ;Cv CO 2 气相 ):(a) Ia 型包裹体群生 ;(b) Ib 型包裹体 ;(c) IIa 型包裹体与 I 型包裹体共生 ;(d) IIb 型包裹体与 I 型,III 型包裹体共生 Fig. 5 Microphotographs of fluid inclusions in Baojinshan gold deposit (Aq Aqueous solution; V Vapor; Cl CO 2 liquid; Cv CO 2 vapor): (a) Type Ia inclusions in group; (b) Type Ib inclusions; (c) Type IIa inclusions coexist with Type I inclusions; (d) Type IIb inclusions coexist with type I and type III inclusions 两相产出 ( 见图 5(d)) 包裹体大小为 2~4 μm, 气相体积分数为 10%~25%, 以椭圆形为主, 与 I 型 II 型包裹体共生 4.1.2 显微测温结果本研究中共测得 191 个包裹体, 测温结果如表 1 所列 不同成矿阶段 (A 和 B 阶段 ) 的均一温度及盐度如图 6 所示 1) A 阶段包裹体显微测温特征本阶段中包裹体较发育, 共测得 68 个, 以 I 型水溶液包裹体最为发育, 占该阶段包裹体总数的 97%, 其中测得 4 个包裹体最终均一为气相, 为 Ib 型包裹体 ; 其次为 II 型水溶液 -CO 2 三相包裹体, 占 3% I 型包裹体 :Ia 和 Ib 型包裹体共生, 冻结温度为 35~ 65, 冰的最终融化温度范围为 1.9~ 10.7, 盐度为 3.12%~14.67%( 等价 NaCl 质量分数, 下同 [8] ) ( 见图 6(b)) 均一温度变化较大,Ia 型包裹体均一温度范围为 218~387, 集中于 260~380 ( 见图 6(a)), 最终均一为液相 ; 测得 4 个 Ib 型包裹体的最终均一温 度在 320~370 之间 II 型包裹体 : 该阶段仅见发育 IIa 型包裹体, 碳质相的体积比例变化范围为 10%~25% 包裹体冻结温度为 97~ 108, 固态 CO 2 熔化温度为 58.2~ 59.9, 笼合物的最终熔化温度为 0.1~0.7, 相应盐度为 14.76%~15.42%( 见图 6(b)),CO 2 相部分均一为液相, 其部分均一温度为 13.7~20.8, 升温过程中最终完全均一为水溶液相, 均一温度范围 363~379 ( 见图 6(a)) 2) B 阶段包裹体显微测温特征本阶段包裹体很发育, 共测得 123 个包裹体,3 种包裹体均可见, 直径较大, 且 II 型包裹体 III 型包裹体明显增多 I 型包裹体 : 该阶段大量发育 Ia 型包裹体, 冻结温度为 32~ 68, 冰的最终熔化温度为 1.4~ 8.4, 盐度为 2.31%~12.17%( 见图 6(d)) 均一温度变化较大, 范围为 199~391, 集中于 250~370 ( 见图 6(c)), 最终均一为液相

2632 中国有色金属学报 2016 年 12 月 II 型包裹体 : 发育 IIa 型和 IIb 型包裹体, 碳质相的体积比例变化范围较大, 为 30%~80% 冻结温度范 CO 2, 可含有少量的 N 2 CH 4 H 2 CO 等气体, 液相阳离子以 Ca 2+ 为主, 并含有 Na +,Mg 2+,K +, 阴离子 围 95~ 108, 固态 CO 2 的熔化温度为 2 以 SO 4 为主, 另含有部分 Cl,F,NO 3 58.6~ 61.6,CO 2 笼合物的熔化温度为 2.7~8.7, 对应盐度为 2.58%~12.29%( 见图 6(d)),CO 2 相部分均一温度为 12.1~21.7, 大多部分均一为碳质液相, 4.3 氢氧同位素特征 5 件样品的氢氧同位素分析结果见表 4 石英的 最终均一温度为 320~392, 集中于 340~390 ( 见图 δ 18 O V-SMOW 值为 17.6 10 3 ~19.8 10 3, 流体的 6(c)), 大部分最终以碳质相膨胀达到均一 δ 18 D V-SMOW 值为 69.5 10 3 ~ 79.3 10 3 石英和流体 III 型包裹体 : 纯 CO 2 两相包裹体冻结温度范围为 的氧同位素分馏计算公式采用 1000lnα= 100.1~ 101.2, 在升温过程中, 固态 CO 2 的熔化温度为 58.7~ 61.7, 均一温度为 11.8~13.1, 最终均一为碳质液相 3.38 10 6 /T 2 2.9 [9], 其中 :α 为石英和水之间的氧同位素分馏系数, 由于所测包裹体具有不均一捕获特征, 温度 T 采用各样品显微测温获得的 I 型包裹体的最低 4.2 群体包裹体成分特征 5 个样品的气相 液相成分分析如表 2 和 3 所列, 成矿流体具有以下特征 : 气相成分以 H 2 O 为主, 次为 温度作为估算的成矿温度 计算得到流体的 δ 18 O H2 O 值为 6.4 10 3 ~8.8 10 3 将石英包裹体中流体的 δ 18 D 和计算获得的 δ 18 O H2 O 投到氢氧同位素组成图解 ( 见图 7) 由图 7 可 表 1 包金山金矿流体包裹体测温结果统计 Table 1 Microthermometric data of fluid inclusions in Baojinshan gold deposit Sample No. Stage Type Frequency Size/ μm φ V /% 1) t m(co2 )/ t m(ice) / t m(cla) / t hc / t h / Salinity/% Density/ (g cm 3 ) BJJ-76 A Ia 20 2 5 15 40 2.4 7.3 258 387 3.92 10.86 0.64 0.84 BJJ-84 B Ia 19 2 7 15 70 1.8 6.7 199 387 2.96 10.10 0.69 0.91 BJJ-337 B Ia 20 2 5 20 60 2.6 6.9 256 381 4.23 10.36 0.59 0.86 BJJ-346-2 BJJ-346-3 B B Ia 20 2 6 15 60 1.4 6.6 221 391 2.31 9.97 0.59 0.88 IIa 1 5 50 59.4 7.6 23.8 391 4.62 0.86 Ia 6 2 4 20 40 4.4 8.3 218 363 6.96 12.06 0.70 0.84 IIb 4 2 4 50 80 60.2 61.6 5.4 9.3 12.1 18.6 350 389(C) 2.77 8.35 0.59 0.95 III 2 2 4 10 25 58.7 61.7 23.6 25.6 0.70 0.73 BJJ-346-4 B Ia 15 3 7 15 35 1.5 6.8 238 375 2.47 10.23 0.63 0.93 BJJ-346-5 BJJ-346-6 B B Ia 12 2 5 15 35 2.1 6.2 211 369 3.44 9.45 0.63 0.90 IIb 3 3 4 50 80 58.2 60.7 5.3 8.6 16.5 20.8 357 392(C) 2.77 8.51 0.60 0.90 Ia 12 3 5 15 40 2.1 8.4 200 391 3.44 12.17 0.52 0.94 IIa IIb 3 6 3 4 3 4 30 50 50 80 58.8 59.7 58.6 60.5 6.8 8.7 12.5 20.3 333 381 2.58 6.03 0.90 0.93 2.7 8.1 12.1 21.7 320 385 (C) 3.71 12.29 0.90 0.97 BKD-06 A Ia 15 2 6 10 40 2.7 10.7 241 338 4.39 14.67 0.70 0.90 BKD-07 A Ia 13 2 7 10 40 3.6 7.5 243 365 5.78 11.1 0.73 0.86 BKD-13 A Ia 14 3 13 10 35 1.9 8.9 218 373 3.12 12.74 0.81 0.89 Ib 4 2 5 50 70 5.2 6.1 320 370(V) 8.10 9.32 0.67 0.78 IIa 2 5 7 25 30 58.8 59.9 0.1 0.7 19.9 21.8 363 379 14.80 15.40 0.93 0.94 Main minerals are all quartz. 1) 20 ; φ V Gas phase volume fraction of typeⅠ inclusions, CO 2 phase volume fraction of type Ⅱ inclusions. t m(co2 ) Melting temperature of CO 2 ; t m(ice) Final melting temperature of ice; t m(cla) Melting temperature of CO 2 ; t hc Partial homogenization temperature of CO 2, inclusions marked (V) homogenize to gas phase, non-marked homogenize to liquid phase; t h Total homogenization temperature, inclusions marked (C) homogenize to carbonic phase, non-marked ones homogenize to liquid phase.

第 26 卷第 12 期鞠培姣, 等 : 湖南双峰县包金山金矿成矿流体与矿床成因 2633 图 6 包金山金矿流体包裹体均一温度和盐度直方图 :(a) 乳白色石英脉阶段均一温度直方图 ;(b) 乳白色石英脉阶段盐度直 方图 ;(c) 烟灰色石英脉阶段均一温度直方图 ;(d) 烟灰色石英脉阶段盐度直方图 Fig. 6 Histograms of homogenization temperatures and salinities of fluid inclusions in different stages: (a) Milky quartz vein stage homogenization temperatures; (b) Milky quartz vein stage stage salinities; (c) Smoky quartz vein stage stage homogenization temperatures; (d) Smoky quartz vein stage salinities 表 2 包金山金矿床流体包裹体气相成分分析结果 Table 2 Vapor component analysis of fluid inclusions in Baojinshan gold deposit Sample No. Mineral Vapor component/10 6 R, H 2 N 2 CO CH 4 CO 2 H 2 O(Gas) [n(ch 4 )+n(co)+n(h 2 )]/n(co 2 ) BJJ-346-2 Quartz 0.155 0.848 0.048 0.177 2.830 8.309 10 3 0.134 BJJ-346-3 Quartz 0.264 0.421 0.040 0.317 1.269 9.236 10 3 0.489 BJJ-346-4 Quartz 0.163 2.156 0.076 0.168 3.770 1.553 10 4 0.108 BJJ-346-5 Quartz 0.088 1.039 0.046 0.266 3.837 3.062 10 4 0.104 BJJ-346-6 Quartz 0.157 1.526 0.047 0.353 2.997 1.062 10 4 0.186 表 3 包金山金矿床包裹体液相阴 阳离子成分分析结果 Table 3 Anion and cation component analysis of fluid inclusions in Baojinshan gold deposit Sample No. Mineral F Cl NO 3 Liquid component/10 6 SO 4 2 Na + K + Mg 2+ Ca 2+ BJJ-346-2 Quartz 0.299 2.397 0.229 98.72 6.262 0.519 1.855 35.25 BJJ-346-3 Quartz 0.270 2.646 0.152 67.65 7.798 0.546 1.529 20.40 BJJ-346-4 Quartz 0.088 3.109 0.146 13.98 5.729 0.367 11.15 BJJ-346-5 Quartz 0.261 2.990 0.190 42.92 5.241 0.482 1.211 20.19 BJJ-346-6 Quartz 0.092 2.867 0.176 6.94 4.208 0.291 0.204 7.77

2634 中国有色金属学报 2016 年 12 月 表 4 包金山金矿床氢氧同位素组成 Table 4 Hydrogen, oxygen isotope compositions of Baojinshan gold deposit Sample No. Mineral δ 18 D V-SMOW /% δ 18 O V-SMOW /% δ 18 O H2O /% t h / BJJ-346-2 Quartz 7.93 1.97 0.88 221 BJJ-346-3 Quartz 7.38 1.98 0.87 218 BJJ-346-4 Quartz 6.95 1.76 0.76 238 BJJ-346-5 Quartz 7.10 1.88 0.73 211 BJJ-346-6 Quartz 7.33 1.86 0.64 200 图 7 包金山金矿床氢氧同位素组成图解 ( 底图据文献 [10]) Fig. 7 δ D δ 18 O H2 O diagram of ore-forming fluids in Baojinshan deposit (According to Ref.[10]) 见, 投影点落入原生岩浆水区域内, 说明主成矿阶段的流体来源于原生岩浆水 5 讨论 5.1 成矿流体特征包裹体岩相学研究表明, 矿床主成矿期矿化石英脉中发育 3 种类型的原生包裹体 : 水溶液包裹体 含 CO 2 水溶液包裹体和纯 CO 2 包裹体 金矿的成矿流体应为富 CO 2 的流体 [11 13], 且金的成矿作用与 NaCl-H 2 O-CO 2 流体的不混溶有重大的关系 [14 17] 包金山金矿矿石中同时存在 I 型 II 型和 III 型原生流体包裹体, 其气液比变化较大, 可见出现于同一个石英颗粒中, 表明捕获时成矿流体处于一种不均匀的热液体系状态 [18 19] 固相 CO 2 熔化温度为 58.2~ 61.7, 略低于 CO 2 的三相点温度, 表明 II 型 III 型包裹体的气相成分除 CO 2 外, 还含有少量杂质, 群体包裹体成分分析证实这些组分为 N 2 CH 4 H 2 CO 丰富 CO 2 的出现可能与深部地壳甚至地幔流体的参与有关 [20 21] 在流体的搬运过程中,CO 2 起缓冲剂的作用, 使流体的 ph 值保持在金硫络合物可稳定存在的范围 而 CH 4 的出现则表明流体为还原条件, 有利于金的溶解 根据包 [22] 裹体的气相成分计算流体的还原参数 R=(n(H 2 )+n(co)+n(ch 4 ))/n(co 2 )( 见表 2) 可知, 在整个成矿作用过程中, 流体的还原参数为 0.104~0.489, 表明该区成矿流体具有较强的还原性, 有利于金矿质在主成矿阶段由 Au + 还原为 Au 0, 也有利于大量的硫化物以低价态矿物的形式沉淀 [23], 这与主成矿阶段出现多金属硫化物的地质事实相印证 在包裹体中还发现了 N 2, 可能预示着流体并非单源, 有其他来源流体的混入 [24] 群体包裹体液相成分分析表明, 包金山成矿流体属于偏碱性的富硫流体,w(Na + )>w(k + ), 具有富 Ca 2+ 贫 Mg 2+ 的特征 [25] w(cl )/w(f ) 值可作为判断流体来源的依据, 本研究中 w(cl )/w(f )>1, 说明成矿流体有地下水或天水的混入 [26] 2 溶液中的 SO 4 代表流体包裹体中的所有含硫物相, 如 S 2 HS 2 和 SO 4 等 [27] 2, 成矿流体中高的 SO 4 浓度是岩浆水存在的有效证据 [28], 与氢氧同位素组成图解 ( 见图 7) 的投影点落入原生岩浆水区域相吻合 从图 8 可见, 由 A 阶段到 B 阶段, 盐度没有随着 图 8 不同成矿阶段流体包裹体均一温度 盐度散点图 Fig. 8 Diagrams of homogenization temperatures versus salinities of fluid inclusions in different stages

第 26 卷第 12 期鞠培姣, 等 : 湖南双峰县包金山金矿成矿流体与矿床成因 2635 温度的降低发生明显的变化, 但矿区包裹体盐度分布范围较广, 为 2.31%~15.40%, 多集中于 3%~11%, 以低盐度为主, 可能说明在成矿过程中有低盐度流体的混入 综上, 包金山金矿主成矿期流体属于富 CO 2 低盐度的 Ca 2+ (Na + Mg 2+ )-SO 2 4 (Cl F )-H 2 O -CO 2 体系, 可能为岩浆期后热液, 来源于矿区酸性岩浆热液, 在成矿过程中成矿流体发生不混溶相分离作用, 原始的 H 2 O-NaCl-CO 2 流体分离为富 NaCl-H 2 O( 少量 CO 2 ) 的流体和富 CO 2 的流体, 并在后期混入低盐度的外来流体 5.2 成矿温度及压力条件显微测温结果表明 ( 见图 6), 矿床的均一温度范围较大, 不同成矿阶段的流体盐度没有明显变化, 为低盐度 A 阶段大量发育 I 型水溶液包裹体且多成群分布, 见有 Ia 型和 Ib 型包裹体共生, 仅发育极少量 II 型含 CO 2 包裹体, 具不均一捕获特征, 按照 Ia 型包裹体的最低均一温度估算成矿温度, 范围为 218~258 ; B 阶段除发育 Ia 型包裹体外,II 型包裹体含量大大增多, 并见有 III 型纯 CO 2 包裹体, 具不均一捕获特征, Ia 型包裹体的最低均一温度为 199~256, 可能代表该阶段的成矿温度范围 相比之下, 从 A 阶段到 B 阶段, 成矿温度的范围相近 研究认为若在薄片中见到同时捕获的纯 H 2 O 包裹体和纯 CO 2 包裹体, 则可以通过测得纯水包裹体和纯 CO 2 包裹体的均一温度, 在 H 2 O 和 CO 2 体系联合 p-t 图解上获得包裹体的捕获压力 [29] 本文作者利用岩浆热液成矿期包裹体捕获的两个端元组分进行等容线相交法估算压力, 其中水端元密度由 I 型包裹体计算得出,CO 2 密度由 III 型包裹体计算得出 因此, 矿区不混溶流体中水端元组分的密度 0.832~0.903 g/cm 3,CO 2 端元的密度 0.702~0.731 g/cm 3, 将两端元流体密度投影 p t 图上, 如图 9 所示, 捕获压力范围为 70~113 MPa 高压部分按照静岩压力估算成矿深度, 计算公式为 :H=p/(ρg)(ρ 取用大陆岩石平均密度, 为 2.70 g/cm 3 ) 用最高压力 113 MPa 估算得出深度 4.2 km, 为深度的上限 5.3 矿床成因分析包金山金矿所处的双峰地区经历了复杂漫长的构造演化过程, 其中印支 燕山期为金属成矿高峰期, 区内发生强烈的构造与岩浆活动, 岩浆作用为成矿提供动力和物质来源,NE 向和 EW 向断裂构造为矿质的运移和沉淀提供空间 氢氧同位素分析说明矿床主 图 9 H 2 O 和 CO 2 体系联合 p t 图解 ( 图中数据为密度, g/cm 3, 据文献 [30]) Fig. 9 p t diagrams of H 2 O-CO 2 system (Data on line is density, g/cm 3, modified from Ref.[30]) 成矿期流体来源于岩浆热液 金矿体类型包括石英脉型和破碎带蚀变岩型, 以脉状与透镜状为主 包金山金矿的成矿机制大致如下 : 加里东期, 研究区经历区域变质和动力变质, 锑 金等成矿元素在变质溶液的影响下处于易溶状态, 并与某些组分形成易溶络合物, 在压力梯度作用下, 在扩容减压带沉淀 印支 燕山期发生大规模的岩浆上侵, 区内基底构造层上隆, 形成大量脆性破裂体系, 为流体提供运移通道 深部含矿流体温度高,Cl 含量较高, H 2 S 多呈气体状态, 金主要以氯络合物的形式存在, 只有少量以硫络合物的形式迁移 [31] 含矿热液沿着断裂上升迁移, 与围岩发生物质交换, 使围岩遭受不同程度的蚀变, 如硅化 黄铁矿化 绢云母化等 流体内的 H + 被大量消耗, 酸性减弱, 温度下降, 在这种弱酸性 还原环境的热液中,Au 多以 Au-S 络合物的形式迁移 [32], 流体中的 Au-Cl 络合物向 Au-S 络合物转变, 部分 Au + 被还原析出 当富含金络合物的流体与氧化系统中的流体相混合时, 混合成矿热液由封闭体系变为开放体系 [33], 流体的温度 压力突然下降,H 2 O CO 2 等气相组分迅速降低, 氧逸度迅速增高, 金络合物发生分解 氧化, 成矿热液中的 S 2 与蚀变过程中析出的 Fe 2+ Pb 2+ 等阳离子结合形成硫化物而沉淀,S 2 被氧化成为 (S 2 ) 2 或 S, 极有利于 Au 的还原沉淀, 另有部分 HS 被氧化成 H 2 SO 4 后与围岩中的钙质反应, 降低了溶液酸度, 使得部分 HS - 以 H 2 S 形式逸出, 金被还原析出 [34], 于韧脆性断裂 劈理 片理密集带及层间剥离空间和层内裂隙中充填 交代成矿 [35], 并与石英 金属硫化物密切共生 矿区内早期断裂为张性, 破碎带中充填乳白色含

2636 中国有色金属学报 2016 年 12 月 钨金石英脉, 在石英脉中局部见棱角状角砾, 并在围岩中发育较大规模与断层平行的条带状的硅化 绢云母化和绿泥石化的物质, 硅质物和绿泥石蚀变条带相间发育 主成矿期含金石英脉沿早期断裂旁侧派生羽状裂隙充填, 局部沿裂隙充填于破碎蚀变带中 该期热液带来成矿元素, 并对前期的富集矿化蚀变岩进行改造和再富集, 使微细粒金集中形成粗粒金, 局部可见明金, 形成金的富矿体 成矿后因挤压应力作用, 使断层破碎带产生挤压, 破坏了部分金矿脉 花岗斑岩脉沿 NW 向断层侵入, 受岩浆热液活动影响, 金再次活化富集, 沿花岗斑岩脉旁侧特别是岩脉转折部位, 热液活动较强, 形成富金锑细脉状矿体 综上, 包金山金矿床成矿物质主要为深源, 主成矿期流体以岩浆热液为主, 矿体多产于石英脉及破碎蚀变带中, 矿床成因类型为变质热液叠加中温岩浆热液充填交代型矿床 6 结论 1) 包金山金矿体主要赋存于马底驿组第二岩性段钙质板岩 斑点状板岩中, 产于矿区东部花岗斑岩脉的上 下盘, F 7 F 9 断层破碎带及其上下盘蚀变带内, 于构造结合部位富集 成矿作用可以划分为 3 个成矿期, 变质热液期 岩浆热液期和热液叠加期, 岩浆热液期为主成矿期, 可分为乳白色石英脉阶段 (A) 烟灰色石英脉阶段 (B) 和碳酸盐 石英脉阶段 (C) 2) 岩浆热液期矿化石英脉 (A 和 B 阶段 ) 中发育原生流体包裹体, 主要类型有 :I 型水溶液包裹体 II 型水溶液 -CO 2 包裹体和 III 型纯 CO 2 包裹体 群体包裹体成分分析显示成矿流体气相成分主要为 H 2 O, 次为 CO 2, 并含有少量 N 2 CH 4 H 2 CO, 液相成分主要为 Ca 2+, Na +, SO 2 4, Cl, 成矿溶液属于 CO 2 -CH 4 -Ca 2+ (Na + Mg 2+ )-SO 2 4 (Cl F )-H 2 O 体系 3) 显微测温研究表明, 乳白色石英脉阶段 (A) 包裹体捕获温度集中于 260~380, 盐度为 3.12%~15.42%;B 阶段均一温度集中于 250~370, 盐度为 2.31%~12.29% 氢氧同位素分析表明, 主成矿阶段流体来源于原生岩浆水 矿区主成矿期成矿流体为一套中高温 低盐度的流体, 推测为岩浆期后热液, 来源于矿区酸性岩浆热液 盐度变化范围较大, 反映了流体来源较广, 可能混入了低盐度的外来流体 包裹体 H 2 O 和 CO 2 联合体系图显示矿床的成矿压力范围 70~113 MPa, 估算最大深度为 4.2 km 矿床成因类型为变质热液叠加中温岩浆热液充填交代型矿床 REFERENCES [1] 周兴良, 毛卫红, 胡世明. 湖南双峰金矿带成矿地质特征及控矿因素 [J]. 广西质量监督导报, 2008(91): 190 196. ZHOU Xing-liang, MAO Wei-hong, HU Shi-ming. Geological characteristics and ore-controlling factors of Shuangfeng metallogenic belt in Hunan Province[J]. Guangxi Quality Supervision Guide Periodical, 2008(91): 190 196. [2] 曾认宇, 赖健清, 张利军, 鞠培姣. 湘中紫云山岩体暗色微粒包体的成因 : 岩相学 全岩及矿物地球化学证据 [J]. 地球科学, 2016, 41(9): 1461 1478. ZENG Ren-yu, LAI Jian-qing, ZHANG Li-jun, JU Pei-jiao. The petrogenesis of the mafic microgranular enclaves: Evidence from petrography, whole-rock and mineral chemistry of Ziyunshan pluton, central Hunan[J]. Earth Science, 2016, 41(9): 1461 1478. [3] 湖南省有色地质勘查局二总队. 湖南省双峰县包金山金矿地质简介 [R]. 2013: 1 28. No.2 Team of Hunan Bureau of Nonferrous Metals Geological Exploration. Geological profile of Baojinshan gold deposit in Shuangfeng County, Hunan Province[R]. 2013: 1 28. [4] BROWN P E. FLINCOR: A microcomputer program for the reduction and investigation of fluid inclusion data[j]. American Mineralogist, 1989, 74(11/12): 1390 1393. [5] BROWN P E, LAMB W M. P-V-T properties of fluids in the system H 2 O±CO 2 ±NaCl: New graphical presentation and implications for fluid inclusion studies[j]. Geochimica et Cosmochimica Acta, 1989, 53(6): 1209 1221. [6] 钟世华, 申萍, 潘鸿迪, 郑国平, 鄢瑜宏, 李晶. 新疆西准噶尔苏云河钼矿床成矿流体和成矿年代 [J]. 岩石学报, 2015, 31(2): 449 464. ZHONG Shi-hua, SHEN Ping, PAN Hong-di, ZHENG Guo-ping, YAN Yu-hong, LI Jing. The ore-forming fluid and geochronology of the Suyunhe Mo deposit, West Junggar, Xinjiang[J]. Acta Petrologica Sinica, 2015, 31(2): 449 464. [7] CLAYTON R N, MAYEDA T K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis[j]. Geochimica et Cosmochimica Acta, 1963, 27(1): 43 52. [8] STEELE-MACINNIS M, BODNAR R J, NADEN J. Numerical model to determine the composition of H 2 O-NaCl-CaCl 2 fluid inclusions based on microthermometric and microanalytical data[j]. Geochemica et Cosmochimica Acta, 2011, 75: 21 40. [9] 郑永飞, 陈江峰. 稳定同位素地球化学 [M]. 合肥 : 科学出版社, 2000: 114 142. ZHENG Yong-fei, CHEN Jiang-feng. Stable isotope geochemistry[m]. Hefei: Science Press, 2000: 114 142. [10] SHEPPARD S M F. Characterization and isotopic variations in natural water[j]. Reviews in Minoralogy, 1986, 16: 165 183.

第 26 卷第 12 期鞠培姣, 等 : 湖南双峰县包金山金矿成矿流体与矿床成因 2637 [11] 朱江, 吕新彪, 彭三国, 龚银杰, 曹晓峰. 甘肃花牛山金矿床成矿年代 流体包裹体及稳定同位素研究 [J]. 大地构造与成矿学, 2013, 37(4): 641 652. ZHU Jiang, LÜ Xin-iao, PENG San-guo, GONG Yin-jie, CAO Xiao-feng. Re-Os dating, fluid inclusion and H-O-S isotope studies of the Huaniushan gold deposit, NW China: implications for ore genesis[j]. Geotectonica et Metallogenia, 2013, 37(4): 641 652. [12] 邓碧平, 刘显凡, 张民, 赵甫峰, 徐窑窑, 田晓敏, 李慧, 胡琳. 云南老王寨金矿床深部地质过程中的流体包裹体与稀有气体同位素示踪 [J]. 成都理工大学学报 ( 自然科学版 ), 2014, 41(2): 203 216. DENG Bi-ping, LIU Xian-fan, ZHANG Min, ZHAO Fu-feng, XU Yao-yao, TIAN Xiao-min, LI Hui, HU Lin. Fluid inclusions and noble gas isotopes tracers from deep geological processes of Laowangzhai gold deposit in Yunnan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(2): 203 216. [13] 王力, 潘忠翠, 孙丽伟. 山东莱州新城金矿床流体包裹体 [J]. 吉林大学学报 ( 地球科学版 ), 2014, 44(4): 1166 1176. WANG Li, PAN Zhong-cui, SUN Li-wei. Fluid inclusions of the Xincheng gold deposit of Laizhou city in Shandong Province[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(4): 1166 1176. [14] GUHA J, LU H Z, DUBE B. Fluid characteristics of vein and altered wall rock in Archean mesothermal gold deposits[j]. Economic Geology, 1991, 86(3): 667 684. [15] CRAW D. Fluid inclusion, fluid immiscibility and gold deposition during Cretaceous-recent tectonics and uplift of the Otago and Alpine schist, New Zealand[J]. Chemical Geology, 1992, 98(3/4): 221 236. [16] 李葆华, 顾雪祥, 付绍洪, 徐仕海, 陈翠华, 董树义. 贵州水银洞金矿床成矿流体不混溶的包裹体证据 [J]. 地学前缘, 2010, 17(2): 286 295. LI Bao-hua, GU Xue-xiang, FU Shao-hong, XU Shi-hai, CHEN Cui-hua, DONG Shu-yi. The evidence from fluid inclusions for the immiscibility of the ore-forming fluids in the Shuiyindong gold deposit, Guizhou Province[J]. Earth Science Frontiers, 2010, 17(2): 286 295. [17] 卢焕章. 流体不混溶性和流体包裹体 [J]. 岩石学报, 2011, 27(5): 1253 1261. LU Huang-zhang. Fluids immiscibility and fluid inclusions[j]. Acta Petrologica Sinica, 2011, 27(5): 1253 1261. [18] XU G, POLLARD P J. Origin of CO 2 rich fluid inclusions in synorogenic veins from the Eastern Mount Isa Fold Belt, NW Queensland, and their implications for mineralization[j]. Mineralium Deposita, 1999, 34: 395 444. [19] WILKINSON J J. Fluid inclusions in hydrothermal ore deposits[j]. Lithos, 2011, 55: 229 272. [20] 孙晓明, 韦慧晓, 翟伟, 石贵勇, 梁业恒, 莫儒伟, 韩墨香, 张相国. 藏南邦布大型造山型金矿成矿流体地球化学和成矿机制 [J]. 岩石学报, 2010, 26(6): 1672 1684. SUN Xiao-ming, WEI Hui-xiao, ZHAI Wei, SHI Gui-yong, LIANG Ye-heng, MO Ru-wei, HAN Mo-xiang, ZHANG Xiang-guo. Ore-forming fluid geochemistry and metallogenic mechanism of Bangbu large-scale orogenic gold deposit in southern Tibet, China[J]. Acta Petrologica Sinica, 2010, 26(6): 1672 1684. [21] 李永胜, 赵财胜, 吕志成, 严光生, 甄世民. 西藏甲玛铜多金属矿床流体包裹体特征及地质意义 [J]. 吉林大学学报 ( 地球科学版 ), 2011, 41(1): 123 136. LI Yong-sheng, ZHAO Cai-sheng, LÜ Zhi-cheng, YAN Guang-sheng, ZHEN Shi-min. Characteristics of fluid inclusions in Jiama copper polymetallic ore deposit, Tibet and its geological significance[j]. Journal of Jilin University (Earth Science Edition), 2011, 41(1): 123 136. [22] 李秉伦, 石岗. 矿物中包裹体气体成分的物理化学参数图解 [J]. 地球化学, 1986(2): 126 137. LI Bing-lun, SHI Gang. Diagrams of physico-chemical parameters for gas compositions of inclusions in minerals[j]. Geochimica, 1986(2): 126 137. [23] 李晶, 陈衍景, 李强之, 赖勇, 杨荣生, 毛世东. 甘肃阳山金矿流体包裹体地球化学和矿床成因类型 [J]. 岩石学报, 2007, 23(9): 2144 2154. LI Jing, CHEN Yan-jing, LI Qiang-zhi, LAI Yong, YANG Rong-sheng, MAO Shi-dong. Fluid inclusion geochemistry and genetic type of the Yangshan gold deposit, Gansu, China[J]. Acta Petrologica Sinica, 2007, 23(9): 2144 2154. [24] 罗小平, 薛春纪, 李建全, 王伟, 李天虎, 彭桥梁, 田海. 新疆西天山查汗萨拉金矿床流体包裹体特征及稳定同位素研究 [J]. 地质学报, 2011, 85(4): 505 515. LUO Xiao-ping, XUE Chun-ji, LI Jian-quan, WANG Wei, LI Tian-hu, PENG Qiao-liang, TIAN Hai. Fluid inclusion characteristics and stable isotope composition of the Chahansala gold deposit, Western Tianshan, Xinjiang, China[J]. Acta Geologica Sinica, 2011, 85(4): 505 515. [25] 肖晔, 丰成友, 李大新, 刘建楠. 青海省果洛龙洼金矿区年代学研究与流体包裹体特征 [J]. 地质学报, 2014, 88(5): 895 902. XIAO Ye, FENG Cheng-you, LI Da-xin, LIU Jian-nan. Chronology and fluid inclusions of the Guoluolongwa gold deposit in Qinghai Province[J]. Acta Geologica Sinica, 2014, 88(5): 895 902. [26] HUANG M, LAI J Q, MO Q Y. Fluid inclusions and mineralization of the Kendekeke polymetallic deposit in Qinghai Province, China[J]. Acta Geologica Sinica (English Edition), 2014, 88(2): 570 583. [27] 陈衍景, 李晶, PIRAJNO F, 林治家, 王海华. 东秦岭上宫金矿流体成矿作用 : 矿床地质和包裹体研究 [J]. 矿物岩石, 2004, 24(3): 1 12.

2638 中国有色金属学报 2016 年 12 月 CHEN Yan-jing, LI Jing, PIRAJNO F, LIN Zhi-jia, WANG Hai-hua. Hydrothermal metallogeny of the Shanggong gold deposit, East Qinling: studies on ore geology and fluid inclusion geochemistry[j]. J Mineral Petrol, 2004, 24(3): 1 12. [28] 姜耀辉, 陈鹤年, 巫全淮, 陈世忠. 福建周宁芹溪官司银铅锌矿化地质特征 成因及进一步找矿方向 [J]. 地质与勘探, 1994, 30(4): 21 25. JIANG Yao-hui, CHEN He-nian, WU Quan-huai, CHEN Shi-zhong. Geological characteristics, genesis and further prospection direction of Ag-Pb-Zn mineralization of Qinxi-Guansi, Zhouning, Fujian[J]. Geology and Prospecting, 1994, 30(4): 21 25. [29] 卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 流体包裹体 [M]. 北京 : 科学出版社, 2004: l 492. LU Huan-zhang, FAN Hong-rui, NI Pei, OU Guang-xi, SHEN Kun, ZHANG Wen-huai. Fluid inclusions[m]. Beijing: Science Press, 2004: 1 492. [30] ROEDDER E, BODNAR R J. Geologic pressure determinations from fluid inclusion studies[j]. Annual Review of Earth and Planetary Sciences, 1980, 8: 263 301. [31] GLEB S P, BORIS R T, JACQUUES S. An in situ X-ray absorption spectroscopy study of gold-chloride complexing in hydrothermal fluids[j]. Chemical Geology, 2009, 25: 917 929. [32] 侯林, 邓军, 丁俊, 汪雄武, 彭惠娟. 四川丹巴燕子沟造山型金矿床成矿流体特征研究 [J]. 地质学报, 2012, 86(12): 1957 1971. HOU Lin, DENG Jun, DING Jun, WANG Xiong-wu, PENG Hui-juan. Ore-forming fluids features of the Yanzigou orogenic gold deposit, Danba County, Sichuan Province, China[J]. Acta Geologica Sinica, 2012, 86(12): 1957 1971. [33] 彭建堂. 湖南雪峰地区金成矿演化机理探讨 [J]. 大地构造与成矿学, 1999, 23(2): 144 151. PENG J T. Gold mineralization and its evolution in the Xuefeng district, Hunan[J]. Geological et Metallogenia, 1999, 23(2): 144 151. [34] 戚学祥. 湖南双峰紫云山隆起区金矿成矿机制探讨 [J]. 黄金地质, 1998, 4(1): 50 56. QI Xue-xiang. Discussion on the mechanism of gold metallogeny in the uplift of Ziyunshan, Shuangfeng County, Hunan[J]. Gold Geology, 1998, 4(1): 50 56. [35] 彭小军, 廖秋明, 吴跃升, 魏道芳, 刘学通. 雪峰金矿田矿床地质特征及成矿模式 [J]. 国土资源导刊, 2008, 5(4): 35 39. PENG Xiao-jun, LIAO Qiu-ming, WU Yue-sheng, WEI Dao-fang, LIU Xue-tong. Geological characteristics and metallogenic model of Xuefeng gold field[j]. Land & Resources Herald, 2008, 5(4): 35 39.

第 26 卷第 12 期鞠培姣, 等 : 湖南双峰县包金山金矿成矿流体与矿床成因 2639 Ore-forming fluid characteristics and genesis of Baojinshan gold deposit in Shuangfeng County, Hunan Province, China JU Pei-jiao 1, LAI Jian-qing 1, MO Qing-yun 1, SHI Jian 1, 2, TAN Hui-yue 2, TAO Shi-long 1 (1. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China; 2. No.2 Team, Hunan Bureau of Nonferrous Metals Geological Exploration, Xiangtan 411102, China) Abstract: The Baojinshan gold deposit is located in Shuangfeng gold metallogenic belt of Hunan Province. According to geological characteristics of the deposit, three mineralization episodes were identified: metamorphic hydrothermal episode, magmatic hydrothermal episode and hydrothermal superposition episode, and 3 stages were subdivided from magmatic hydrothermal episode, namely milky quartz vein stage (A), smoky quartz vein stage (B) and carbonate-quartz veinlet stage (C). The characteristics of ore-forming fluid and ore genesis were discussed by using the fluid inclusion micro-thermometry, group inclusion composition analysis and H O isotope analysis. Based on fluid inclusion petrography, three types of fluid inclusions are developed in stages A and B: aqueous inclusion (type I), CO 2 -aqueous inclusion (type II) and pure CO 2 inclusion (type III). Mainly type I and few type II inclusions are present in stage A, having homogenization temperatures at 260 380, and the salinities ranging from 3.12% to 15.42%. In addition to development of type I inclusions, type II and III inclusions increase significantly in stage B, with homogenization temperatures ranging from 250 to 370, salinities are in the range of 2.31% 12.29%. High density of H 2 O and CO 2, followed by N 2, CH 4, H 2 and CO were found as gas compositions in the inclusions. Liquid phase of fluid mainly comprise Ca 2+, Na +, Mg 2+, SO 2 4, Cl and NO 3. Ore-forming fluid of main mineralization episode in Baojinshan gold deposit belongs to low salinity, medium-high temperature, CO 2 -rich Ca 2+ (Na +, Mg 2+ )-SO 2 4 (Cl, NO 3 )-H 2 O-CO 2 system. The calculated metallogenic pressures are in the range of 70 113 MPa, and the maximum estimated mineralization depth is 4.2 km. The result of hydrogen and oxygen isotope analysis shows that ore-forming fluid of main mineralization stage is mainly derived from magmatic fluid. Baojinshan deposit belongs to medium-temperature magmatic hydrothermal filling and metasomatic deposit along with superimposition of metamorphic hydrothermal. Key words: fluid inclusion; hydrogen and oxygen isotope; ore-forming fluid; genesis; Baojinshan gold deposit Foundation item: Project(41172297) supported by the Natural Science Foundation of China; Project(2015CX008) supported by Innovation- driven Plan in Central South University, China Received date: 2015-12-04; Accepted date: 2016-06-02 Corresponding author: LAI Jian-qing; Tel: +86-13875983805; E-mail: ljq@csu.edu.cn ( 编辑龙怀中 )