[15 17],,. [18 20], ESO, ESO,, ESO,,.,,,,.,, ;,,. 2 (Spacecraft attitude dynamics),, I, ω I b, T d, u, I ω I b + (ωb) I Iω I b = u + T d, (1)

Similar documents
(L d L q ). i d = 0,, [8].,,,,, / (maximum torque per ampere, MTPA) [9],. MTPA [9] [10],,,. MTPA, MTPA.,,,. MTPA,,,.,. 2 (Model of PMSM) d-q, :

28 31,,., [11] ; [12 14],,,,.,,,..,,,,., :,,, (extended state observer, ESO),,.,,,,.,, ;,,., Lyapunov,. 2 (Problem description) 1,,. ( ) θ L (t) = ω L

48 30,, []. [],,,..,,,. (The preliminaries and model of spacecraft). (Definitions and lemmas of finite-time stabilization), [3 5]. : ẋ = f(x, u), () :

[9] R Ã : (1) x 0 R A(x 0 ) = 1; (2) α [0 1] Ã α = {x A(x) α} = [A α A α ]. A(x) Ã. R R. Ã 1 m x m α x m α > 0; α A(x) = 1 x m m x m +

/MPa / kg m - 3 /MPa /MPa 2. 1E ~ 56 ANSYS 6 Hz (a) 一阶垂向弯曲 (b) 一阶侧向弯曲 (c) 一阶扭转 (d) 二阶侧向弯曲 (e) 二阶垂向弯曲 (f) 弯扭组合 2 6 Hz

y 1 = 槡 P 1 1h T 1 1f 1 s 1 + 槡 P 1 2g T 1 2 interference 2f 2 s y 2 = 槡 P 2 2h T 2 2f 2 s 2 + 槡 P 2 1g T 2 1 interference 1f 1 s + n n

* CUSUM EWMA PCA TS79 A DOI /j. issn X Incipient Fault Detection in Papermaking Wa

untitled

u d = R s i d - ωl q i q u q = R s i q + ωl d i d + ωψ 1 u d u q d-q i d i q d q L d L q d q ψ f R s ω i 1 i 5th i th 5 θ 1 θ θ 3 5 5

; 3/2, Buck-Boost, 3 Buck-Boost DC-DC ; Y, Fig. 1 1 BBMC The topology of three phase-three phase BBMC 3 BBMC (Study on the control strategy of

Mnq 1 1 m ANSYS BEAM44 E0 E18 E0' Y Z E18' X Y Z ANSYS C64K C70C70H C /t /t /t /mm /mm /mm C64K

Vol. 36 ( 2016 ) No. 6 J. of Math. (PRC) HS, (, ) :. HS,. HS. : ; HS ; ; Nesterov MR(2010) : 90C05; 65K05 : O221.1 : A : (2016)

f 2 f 2 f q 1 q 1 q 1 q 2 q 1 q n 2 f 2 f 2 f H = q 2 q 1 q 2 q 2 q 2 q n f 2 f 2 f q n q 1 q n q 2 q n q n H R n n n Hessian

698 39,., [6].,,,, : 1) ; 2) ,, 14,, [7].,,,,, : 1) :,. 2) :,,, 3) :,,,., [8].,. 1.,,,, ,,,. : 1) :,, 2) :,, 200, s, ) :,.

PCA+LDA 14 1 PEN mL mL mL 16 DJX-AB DJ X AB DJ2 -YS % PEN

MHz 10 MHz Mbps 1 C 2(a) 4 GHz MHz 56 Msps 70 MHz 70 MHz 23 MHz 14 MHz 23 MHz 2(b)

<D2BDC1C6BDA1BFB5CDB6C8DAD7CAB8DFB7E5C2DBCCB3B2CEBBE1C3FBB5A52E786C7378>

2 ( 自 然 科 学 版 ) 第 20 卷 波 ). 这 种 压 缩 波 空 气 必 然 有 一 部 分 要 绕 流 到 车 身 两 端 的 环 状 空 间 中, 形 成 与 列 车 运 行 方 向 相 反 的 空 气 流 动. 在 列 车 尾 部, 会 产 生 低 于 大 气 压 的 空 气 流

Microsoft Word - 刘 慧 板.doc

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip

[1-3] (Smile) [4] 808 nm (CW) W 1 50% 1 W 1 W Fig.1 Thermal design of semiconductor laser vertical stack ; Ansys 20 bar ; bar 2 25 Fig

KUKA W. Polini L. Sorrentino Aized Shirinzadeh 6 7 MF Tech Pitbull Fox Taniq Scorpo Scorpo Compositum Windows KUKA 1 P 1 P 2 KU

[1] Nielsen [2]. Richardson [3] Baldock [4] 0.22 mm 0.32 mm Richardson Zaki. [5-6] mm [7] 1 mm. [8] [9] 5 mm 50 mm [10] [11] [12] -- 40% 50%

#4 ~ #5 12 m m m 1. 5 m # m mm m Z4 Z5

LaDefense Arch Petronas Towers 2009 CCTV MOMA Newmark Hahn Liu 8 Heredia - Zavoni Barranco 9 Heredia - Zavoni Leyva

34 22 f t = f 0 w t + f r t f w θ t = F cos p - ω 0 t - φ 1 2 f r θ t = F cos p - ω 0 t - φ 2 3 p ω 0 F F φ 1 φ 2 t A B s Fig. 1

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 5 Oct /35 TU3521 P315.

Vol. 15 No. 1 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb O21 A

85% NCEP CFS 10 CFS CFS BP BP BP ~ 15 d CFS BP r - 1 r CFS 2. 1 CFS 10% 50% 3 d CFS Cli

小论文草稿2_邓瀚

Microsoft Word - 19王建华.doc

Microsoft Word 定版

km km mm km m /s hpa 500 hpa E N 41 N 37 N 121

Y m G C I IMC C II IMC R Y = + C I IMC F f G - G^ + - F f G^ C I IMC D + C I IMC F f G - G^ 9 D() R() C IMC() Ⅱ CIMC() U() Ⅰ G() Y() Y m() - G

P mech = 1 2 C P λ β Aρv 3 1 P mech λ β A ρ v C P λ β β λ β C P λ β λ 1 maximum power point tracking MPPT C pmax

VLBI2010 [2] 1 mm EOP VLBI VLBI [3 5] VLBI h [6 11] VLBI VLBI VLBI VLBI VLBI GPS GPS ( ) [12] VLBI 10 m VLBI 65 m [13,14] (referen

,2(1) 基 礎 上, 各 種 數 據 均 以 圖 形 化 方 式 表 達, 因 此 各 級 分 析 結 果 均 可 以 隨 時 檢 驗 另 外, 由 於 系 統 是 以 網 站 形 式 發 佈, 任 何 用 戶 均 可 通 過 網 絡 查 詢 瀏 覽 系 統 中 的 數 據, 因

g 100mv /g 0. 5 ~ 5kHz 1 YSV8116 DASP 1 N 2. 2 [ M] { x } + [ C] { x } + [ K]{ x } = { f t } 1 M C K 3 M C K f t x t 1 [ H( ω )] = - ω 2

p 3 p 4 p 5 p 6 p 7 p 8 p 9 p 10 p 11 θ 1 θ 2 θ 3 θ 4 θ 5 θ 6 θ 7 θ 8 θ 9 θ d 1 = 0 X c 0 p 1 p 2 X c 0 d pi p j p i p j 0 δ 90

11 25 stable state. These conclusions were basically consistent with the analysis results of the multi - stage landslide in loess area with the Monte

1 引言

标题

Microsoft Word tb 赵宏宇s-高校教改纵横.doc

1602 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS TQ A Prospect of the structure of oxygen generating

θ 1 = φ n -n 2 2 n AR n φ i = 0 1 = a t - θ θ m a t-m 3 3 m MA m 1. 2 ρ k = R k /R 0 5 Akaike ρ k 1 AIC = n ln δ 2

~ 4 mm h 8 60 min 1 10 min N min 8. 7% min 2 9 Tab. 1 1 Test result of modified

[11].. [12 13] (anti-windup control AWC) [14]. AWC.. L 2. 2 (6 DOF model of SFF) 2.1 (Relative position dynamic) : C ECI C L 1 [15]. (1)m f /m

专 技 能 1. 精 通 Matlab/Simulink 平 台 下 的 海 洋 运 载 器 运 动 控 制 系 统 与 仿 真 建 模 设 计 ; 2. 精 通 51 单 片 机 AVR 单 片 机 Arduino 开 源 板 的 开 发 和 设 计 ; 3. 精 通 基 于 Arduino 板

Microsoft Word - 专论综述1.doc

第 31 卷 Vol. 31 总第 122 期!"#$%&' Z[\ ]^ _` a, :b c $ ' X $, C $ b c! >, O 47 2$b c 1 X, 9?, S, 4b c =>01, ; O 47 ' 0 $ 01 #, 04b c

Microsoft Word (du)(改2)

~ 10 2 P Y i t = my i t W Y i t 1000 PY i t Y t i W Y i t t i m Y i t t i 15 ~ 49 1 Y Y Y 15 ~ j j t j t = j P i t i = 15 P n i t n Y


Technical Acoustics Vol.27, No.4 Aug., 2008,,, (, ) :,,,,,, : ; ; : TB535;U : A : (2008) Noise and vibr

[1] Liu Hongwei,2013, Study on Comprehensive Evaluation of Iron and Steel Enterprises Production System s Basic Capacities, International Asia Confere

現代學術之建立 陳平 美學十五講 淩繼堯 美學 論集 徐複觀 書店出版社 的方位 陳寶生 宣傳 敦煌文藝出版社 論集續篇 徐複觀 書店出版社 莊子哲學 王博 道家 的天方學 沙宗平 伊斯蘭教 周易 經傳十

TGF-β AngⅡ B SD ~ 220g SPF. SCXK No SYXK ~ 25 40% ~ 70% OR37G-C

2 3. 1,,,.,., CAD,,,. : 1) :, 1,,. ; 2) :,, ; 3) :,; 4) : Fig. 1 Flowchart of generation and application of 3D2digital2building 2 :.. 3 : 1) :,

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 6 Dec

1

Microsoft Word - netcontr.doc

第16卷 第2期 邯郸学院学报 年6月

: 29 : n ( ),,. T, T +,. y ij i =, 2,, n, j =, 2,, T, y ij y ij = β + jβ 2 + α i + ɛ ij i =, 2,, n, j =, 2,, T, (.) β, β 2,. jβ 2,. β, β 2, α i i, ɛ i

z = 0. [8] z = 0. R.. 1 [7]. ( λ o oxyz 1 ox ( oy ( oz SN ω ω = iω cos λ + kω sin λ ω = rad/s (24. 1 m ν 0 o f = mkv k mẍ = 2mωẏ s

标题

9 RVM 69 / 6 x t = f x t + g x t u t + δ a x u t y t = h x t + δ h x t } x t R n u t R m f x t g x t 6 δ a x u t δ h x h x t RVM least square su

31

2011第1期第二部分


标题

untitled

CARDSM 3 1 CARDSM 1. 1 CARDSM 9 /6 1 CARDSM CARDSM axial coil assisted reluctance doubly salient motor CARDSM CARD

Dan Buettner / /

8 DEA min θ - ε( ^e T S - + e T S ) [ + ] GDP n X 4 j λ j + S - = θx 0 j = 1 n Y j λ j - S + = Y 0 j = 1 5 λ J 0 j = 1 n S - 0 S + 0 ^e = ( 1 1

Microsoft Word - A doc

H 2 SO ml ml 1. 0 ml C 4. 0 ml - 30 min 490 nm 0 ~ 100 μg /ml Zhao = VρN 100% 1 m V ml ρ g

a b

SWAN min TITAN Thunder Identification Tracking Analysis SWAN TITAN and Nowcasting 19 TREC Tracking Radar Echo by Correlaction T

18-陈亚莉.FIT)

高等学校教师职务申报表(高级职务)

2011_1_核红.indd

Mechanical Science and Technology for Aerospace Engineering October Vol No. 10 Web SaaS B /S Web2. 0 Web2. 0 TP315 A

4

/3 CAD JPG GIS CAD GIS GIS 1 a CAD CAD CAD GIS GIS ArcGIS 9. x 10 1 b 1112 CAD GIS 1 c R2VArcscan CAD MapGIS CAD 1 d CAD U

Revit Revit Revit BIM BIM 7-9 3D 1 BIM BIM 6 Revit 0 4D 1 2 Revit Revit 2. 1 Revit Revit Revit Revit 2 2 Autodesk Revit Aut

~ ~ ~ ~ ~ ~ ~ % % ~ 20% 50% ~ 60%

% 5 CPI CPI PPI Benjamin et al Taylor 1993 Cukierman and Gerlach 2003 Ikeda 2013 Jonas and Mishkin

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

标题

mm ~

1.0 % 0.25 % 85μm % U416 Sulfate expansion deformation law and mechanism of cement stabilized macadam base of saline areas in Xinjiang Song

30-1-Cover_1

: (2012) Control Theory & Applications Vol. 29 No. 1 Jan Dezert-Smarandache 1,2, 2,3, 2 (1., ; 2., ;

CFDesign 2 1 CFDesign CFDesign CAD ~ r /min mm 1

2172 4, [6] FPGA PLL. MEMS, [7]., Park [8] MEMS,,,, MEMS ( Park ). [9] Lyapunov,. [1 13], MEMS,. [14] MEMS,. [15 16], /. Park :, ( ) ( ).,, ( [17] [18

电力信息化2013年第1期.indb

相 对 校 正 因 子 的 相 关 方 法 1.1 内 标 多 控 法 研 究 发 现, 在 中 药 各 成 分 间 存 在 着 一 定 的 比 例 关 系, 只 要 各 成 分 的 量 符 合 该 比 例 关 系, 中 药 的 多 [6] 指 标 质 量 控 制 可 以 依 此 法

Scoones World Bank DFID Sussex IDS UNDP CARE DFID DFID DFID 1997 IDS

Microsoft Word - KSAE06-S0262.doc

:1949, 1936, 1713 %, 63 % (, 1957, 5 ), :?,,,,,, (,1999, 329 ),,,,,,,,,, ( ) ; ( ), 1945,,,,,,,,, 100, 1952,,,,,, ,, :,,, 1928,,,,, (,1984, 109

Transcription:

30 12 2013 12 DOI: 10.7641/CTA.2013.31034 Control Theory & Applications Vol. 30 No. 12 Dec. 2013,,, (, 100191) :,. (ADRC) (TD) (ESO) (AFC)3.,. (ESO),. ESO,.,,.,.,. : ; ; ; ; : V448.22 : A Active disturbance rejection control of attitude for spacecraft WU Zhong, HUANG Li-ya, WEI Kong-ming, GUO Lei (School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China) Abstract: In order to attenuate the effects of the parameter variations and disturbances of the spacecrafts on attitude control accuracy and stability, an active disturbance rejection controller (ADRC) is designed. ADRC consists of three parts: tracking differentiator (TD), extended state observer (ESO) and attitude feedback controller (AFC). TD smoothes the process of attitude maneuver and provides differential signal of the attitude; ESO estimates the attitude and the disturbances acting on the spacecraft by taking full advantage of the information of the gyros and the attitude sensors; AFC realizes the attitude control of the spacecraft by compensating the disturbances from the ESO. Compared with the relative results, ESO has better performance by adopting the composite measurement information to correct the estimate, and ADRC has simpler structure by adopting only one loop to realize attitude control and disturbance compensation. Simulation results of a certain spacecraft demonstrate that the ADRC of this paper is feasible. Key words: spacecraft; attitude control; active disturbance rejection controller; attitude sensors; rate gyros 1 (Introduction),,.,,,,,., (active disturbance rejection controller, ADRC),,, [1 4],.,,, [5 10]. (tracking differentiator, TD) (extended state observer, ESO) (nonlinear state error feedback, NLSEF)3.,,,., [11] [12],. [13 14],.,,. : 2013 09 30; : 2013 11 07.. E-mail: wuzhong@buaa.edu.cn; Tel.: +86 10-82339703. : ( 973 (2012CB720003); (10772011).

1618 30 [15 17],,. [18 20], ESO, ESO,, ESO,,.,,,,.,, ;,,. 2 (Spacecraft attitude dynamics),, I, ω I b, T d, u, I ω I b + (ωb) I Iω I b = u + T d, (1) 0 ω 3 ω 2 ω 1 : (ωb) I = ω 3 0 ω 1, ωb I = ω 2. ω 2 ω 1 0 ω 3 (single gimbal control moment gyroscopes, SGCMG), SGCMG h, ḣ + (ωb) I h = u. (2) (modified Rodrigues parameters, MRP), p, ω o b, ṗ = G (p) ω o b, (3) : G(p) = 1 2 {E + p + pp T [ 1 2 (1 + pt p)]e}, E. 3 (ESO design) 3.1 (ESO based on attitude sensors and rate gyros) x 1 = p, x 2 = ṗ, (1) (2), {ẋ1 = x 2, (4) ẋ 2 = f (x 1, x 2 ) + Bτ, : f(x 1, x 2 ) = 4 (1 + p T p) 2 GT (ω I b C b o ω I o) + GI 1 [ (ω I b) (Iω I b + h) + T d ] G(C b o ω I o + Ċb o ω I o), ; B = G(p)I 1, ωo I, τ = ḣ SGCMG. x 3 = f(x 1, x 2 ), ẋ 3 = a(t), (4) ẋ 1 = x 2, ẋ 2 = x 3 + Bτ, (5) ẋ 3 = a.,., y p, y p = p + n p, (6) n p. y ω, n ω. y ω = ω I b + n ω, (7) ω I b = ω o b + C b o ω I o. (8) (2),, ṗ : ṗ = G(y p )(y ω C b o ω I o), (9) C b o., (5), (6) (7). x 1 z 1, x 2 z 2, x 3 z 3, e=α(y p z 1 )+β[g(y p )(y ω C b o ω I o) z 2 ], (10) : ż 1 = z 2 + K 1 e, ż 2 = z 3 + K 2 e + Bτ, ż 3 = K 3 e, (11) : K 1, K 2 K 3, α, β 0. 3.2 (ESO analysis),, e 1 = x 1 z 1, e 2 = x 2 z 2, e 3 = x 3 z 3, e e = αe 1 + βe 2. (12)

12 : 1619 (5)(11) (12), : ė 1 K 1 α 1 K 1 β 0 e 1 0 ė 2 = K 2 α K 2 β 1 e 2 + 0. (13) ė 3 K 3 α K 3 β 0 e 3 a 3,., K 1, K 2 K 3,,. : K 1 = diag{k 11, K 12, K 13 }, K 2 = diag{k 21, K 22, K 23 }, K 3 = diag{k 31, K 32, K 33 }, e 1 = [e 11 e 12 e 13 ] T, e 2 = [e 21 e 22 e 23 ] T, e 3 = [e 31 e 32 e 33 ] T, a = [a 1 a 2 a 3 ] T, (13) : ė 11 = K 11 αe 11 + (1 K 11 β)e 21, ė 12 = K 12 αe 12 + (1 K 12 β)e 22, ė 13 = K 13 αe 13 + (1 K 13 β)e 23, ė 21 = K 21 αe 11 K 21 βe 21 + e 31, ė 22 = K 22 αe 12 K 22 βe 22 + e 32, ė 23 = K 23 αe 13 K 23 βe 23 + e 33, ė 31 = K 31 αe 11 K 31 βe 21 + a 1, ė 32 = K 32 αe 12 K 32 βe 22 + a 2, ė 33 = K 33 αe 13 K 33 βe 23 + a 3. (14) (14), 3, 2. (14), 2 ė 12 K 12 α 1 K 12 β 0 ė 22 = K 22 α K 22 β 1 ė 32 K 32 α K 32 β 0 e 12 e 22 e 32 (15), s 3 + (K 12 α + K 22 β) s 2 + + 0 0 a 2. (15) (K 22 α + K 32 β) s + K 32 α = 0. (16), α, β, K 12, K 22 K 32 0, (K 12 α + K 22 β)(k 22 α + K 32 β) > K 32 α,,., a 2,, [13 14].,. 3.3 (ESO parameter tuning) 3.2,. 2, λ 1, λ 2, λ 3, (s + λ 1 )(s + λ 2 )(s + λ 3 ) = 0. (17), (16), : λ 1 + λ 2 + λ 3 = K 12 α + K 22 β, λ 1 λ 2 + λ 1 λ 3 + λ 2 λ 3 = K 22 α + K 32 β, (18) λ 1 λ 2 λ 3 = K 32 α.,., α, β, 3 3 K 12, K 22 K 32. α = 1, β = 0, (11), ; α=1, β =1, (11),, ; 0 < α < 1, 0 < β < 1, (11),,,.,,. 4 (ADRC design) 3,,., (TD) (attitude feedback controller, AFC),, 1. 1 Fig. 1 Schematics of ADRC for spacecraft attitude

1620 30 1, TD, SGCMG. AFC ESO, TD ESO. 4.1 (TD design) p d, SGCMG,., TD,,., TD, : { v 1 = v 2, v 2 = 2rv 2 r 2 (19) (v 1 p d ), : r TD ; v 2, p d,, SGCMG. 4.2 (AFC design), { τ 0 = k 1 (v 1 z 1 ) + k 2 (v 2 z 2 ), τ = B 1 (20) (τ 0 z 3 ), k 1 k 2. 5 (Simulation and analysis), MATLAB/Simulink., 4 SGCMG. n = 0.0011 rad/s, 15053 3000 1000 I = 3000 6510 2000 kg m 2. 1000 2000 11122 SGCMG, σ 0 = [45 45 45 45 ] T, SGCMG 300Nms, 0.02 + 0.02 sin(nt) + 0.01 sin(2nt) T d = 0.08 + 0.04 sin(nt) + 0.01 sin(2nt) N m. 0.02 + 0.02 sin(nt) + 0.01 sin(2nt), ω(t 0 ) = [0 0 0] T ( )/s, [φ 0 θ 0 ψ 0 ] T = [0 0 0 ] T. ω d = [0 0 0] T ( )/s, [φ d θ d ψ d ] T = [0 0 0 ] T. ESO K 1 =diag{20, 20, 20}, K 2 =diag{100, 100, 100}, K 3 = diag{800, 800, 800}. k 1 =0.3, k 2 =10. TD r =0.02. 1) ESO. ESO, ESO. ESO, (11) α=1, β =0. ESO, (11) α =1, β =0.5., ESO 2 5. 2 5, ESO., ESO,. 2 ESO Fig. 2 Attitude of ESO based on attitude sensors 3 ESO Fig. 3 Attitude rate of ESO based on attitude sensors 4 ESO Fig. 4 Attitude of ESO based on composite measurement information

12 : 1621 5 ESO Fig. 5 Attitude velocity of ESO based on composite measurement information 2)., ESO, 6 11. 6 7,,,,. 8 SGCMG,. 9 SGCMG, 0.02 rad/s,. 11 SGCMG, SGCMG,.,,,,,. 8 Fig. 8 Desired control torque 9 SGCMG Fig. 9 SGCMG gimbal rates 10 SGCMG Fig. 10 SGCMG gimbal angle 6 Fig. 6 Attitude angle of spacecraft 11 SGCMG Fig. 11 SGCMG singularity measure 7 Fig. 7 Attitude angular velocity of spacecraft 6 (Conclusion),

1622 30.,,,.,,,. (References): [1]. [J]., 1998, 13(1): 19 23. (HAN Jingqing. Auto-disturbance-rejection controller and its applications [J]. Control and Decison, 1998, 13(1): 19 23.) [2]. [J]., 1989, 9(4): 328 335. (HAN Jingqing. Control theory, Is it a model analysis approach or a direct control approach [J]. Journal of System Science & Mathematical Science, 1989, 9(4): 328 335.) [3],. [J]., 2002, 19(4): 485 492. (HUANG Yi, ZHANG Wenge. Development of active disturbance rejection controller [J]. Control Theory & Applications, 2002, 19(4): 485 492.) [4] HAN J Q. From PID to active disturbance rejection control [J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900 906. [5] LU K F, XIA Y Q, YANG D. Controller design for rigid spacecraft attitude tracking with actuator saturation [J]. Information Sciences, 2013, 220: 343 366. [6] LI S H, YANG X, YANG D. Active disturbance rejection control for high pointing accuracy and rotation speed [J]. Automatica, 2009, 45(8): 1854 1860. [7] ZHU Z, XU D, LIU J M, et al. Missile guidance law based on extended state observer [J]. IEEE Transactions on Industrial Electronics, 2013, 60(12): 5882 5891. [8] XIA Y Q, DAI L, FU M Y, et al. Application of active disturbance rejection control in tank gun control system [J]. Journal of The Franklin Institute, 2013, 02, 003. [9] HILLIS A J. Active motion control of fixed offshore platform using an extended state observer [J]. Proceedings of the Institution of Mechanical Engineers, 2010, 224(1): 53 63. [10] LI H X, LI S H. Speed control for PMSM servo system using predictive functional control and extended state observer [J]. IEEE Transactions on Industrial Electronics, 2012, 59(2): 1171 1183. [11] GUO B Z, ZHAO Z L. On convergence of non-linear extended state observer for multi-input multi-output system with uncertainty [J]. IET Control Theory and Applications, 2012, 6(15): 2375 2386. [12] GUO B Z, ZHAO Z L. On the convergence of an extended state observer for nonlinear system with uncertainty [J]. Systems & Control Letters, 2011, 60(6): 420 430. [13] ZHENG Q, LINDA Q, GAO Z Q. On validation of extended state observer through analysis and experimentation [J]. Journal of Dynamic Systems, Measurement and Control, 2012, 134(2), 6. [14] YOO D, YAU S T, GAO Z Q. Optimal fast tracking observer bandwidth of the linear extended state observer [J]. International Journal of Control, 2007, 80(1): 102 111. [15],. [J]., 2010, 18(4): 34 39. (LEI Zhongmou, L.. U Zhenduo. Nonlinear auto-disturbance rejection control for spacecraft attitude control system [J]. Aerospace Control, 2010, 18(4): 34 39.) [16],,. [J]., 2005, 22(1): 43 47. (ZHU Chengyuan, YANG Di, ZHAI Kun. Active disturbance attitude controller for large flexible multi-body satellite without gyroscopes [J]. Computer Simulation, 2005, 22(1): 43 47.) [17],,. [J]., 2007, 29(12): 2122 2126. (ZHOU Lini, TANG Guojin, LI Haiyang. Active disturbance rejection controller design for spacecraft attitude maneuver [J]. System Engineering and Electronics, 2007, 29(12): 2122 2126.) [18],,. [J]., 2004, 22(6): 25 31. (ZHU Chengyuan, YANG Di, Yang Xu. Design of the active disturbance rejection attitude control system for large flexible multi-body satellite [J]. Aerospace Control, 2004, 22(6): 25 31.) [19],,. [J]., 2007, 28(4): 845 849. (LI Shunli, LI Litao, YANG Xu. Active disturbance rejection control for flexible multi-body satellite system [J]. Journal of Astronautics, 2007, 28(4): 845 849.) [20],,. [J]., 2012, 29(3): 401 407. (LAI Aifang, GUO Yu, ZHENG Lijun. Active disturbance rejection control for spacecraft attitude maneuver and stability [J]. Control Theory & Applications, 2012, 29(3): 401 407.) : (1970 ),,,,, E-mail: wuzhong@buaa.edu.cn; (1991 ),,,, E-mail: liya0612@gmail.com; (1982 ),,,,, E-mail: weikongming@aspe. buaa.edu.cn; (1966 ),,,,, E-mail: lguo@buaa.edu.cn.