37 5 2018 9 GeologicalScienceandTechnologyInformation Vol.37 No.5 Sep. 2018 doi:10.19509/j.cnki.dzkq.2018.0535. [J]. 201837(5):254-259. 1 2 3 (1. 650041;2. 650041; 3. ( ) 430074) : : ; ; ; :P642;TE88 :A :1000-7849(2018)05-0254-06 1 - - [1-2] [3] 6 [9] 6 (68%) (18%) (9%) (5%) [4] [5] [6] : 2.1 [10] (Lame ): [7] σr = pir2 i -por 2 o - ( pi-po)r 2 ir 2 o R 2 o -Ri 2 (R 2 o -R 2 i) r 2 (1) σθ = pir2 i -por 2 o + ( pi-po)r 2 ir 2 o R 2 o -Ri 2 (R 2 o -R 2 i) r 2 [8] :σr (MPa);σa PU (MPa);pi (MPa);po :2018-03-14 : : (1966 ) E-mail:954548924@qq.com : (1994 ) E-mail:yhchaos@ 163.com PE 2
5 : 255 (MPa);r (mm);r i (mm);r o (mm) 2.2 (1) (PE) ( po=0 ) (PU)3 3 :1 σr σθ ;2 ;3 1 1 Fig.1 Stresscalculationdiagramofmultilayercompositelayer 2 (σ r ) Rmo = (σ r ) Rm+1i u Rmo = u Rm+1i pf: pf =k m (R mi R 3o E m K m μ m) pim =1~3 (2) :k m m ( 2) ;E m m (MPa);K m m ; μ m m ;R mi m (mm);r mo m (mm) σz=0 Lame (1) σθm : σθm = σrm = mo ( 2 )- pf pi K 2 m -1 1+R2 r K 2 m -1 K2 m + R2 mo r m =1~3 (3) mo ( 2 )- pf m 3.1 σrm 3.1.1 ( ) 2 ( ) pi K 2 m -1 1-R2 r K 2 m -1 K2 m - R2 mo r m =1~3 (4) :σθm m (MPa);σrm m (MPa) 2 : εθm = 1 ( σθm E m -μ ) mσr m m =1~3 (5) :εθm m 3 [11-12] [13-14] 308.8 mm 1 m ASOE PE Fig.2 2 (a) (b) Long-term tensilecreeptest(a)long-term bending creeptest(b)
256 2018 PU( ) NI14 2 1 2 1 Table2 Sizeandperformanceparametersofeachliningof Table1 Specimensizeandquantity foldingpipe /(mm mm) 50.8 50.8 ASTM D1777 5.56mm I ASTM D638 4 MPa(67 MPa); 32MPa(470MPa); 45 25MPa(179MPa) 127 12.7 ASTM D790 4.0 MPa(25.1 MPa) 50.8 50.8 ASTM D2440 39.6±0.6 ; 40.5±0.6 Rmi/mm Rmo/mm E/MPa PE 154.4 156.4 1070 0.41 156.4 158.4 83000 0.35 PU 158.4 160.4 2.8 0.25 3.2.2 25.4 12.7 ASTM E228 0.0094% ( z=0z=36 I ASTM 2990 2.4 MPa mm) 0 90 180 270 127 12.7 ASTM 2990 15.50 MPa K( 0.5) x y z 3.1.2 E 0.5 308.8 mm ( 4-c) 0.6 MPa ASTM D1599 z ( 3) z=0z=36 mm UZ=0 3.0 MPa 3.2.3 FEA (236 MPa)( 5-a) KEVLAR29YARNS 200 MPa 3 3 MPa 232.6 MPa Fig.3 Strengthtestandtightnesstestofflexiblepipe whole KEVLAR29YARNS 200 MPa performance ( 5-b) 3 MPa 8.3% 0.6% 3.2 3.6% 3.3 2 2 FEA 3 3.2.1 2 ( 4-a) ( 4-b) 1/4 SOLID45 COMB- 0 PU υ
5 : 257 Fig.4 4 (a) (b) (c) Hosestructurediagram (a)hosefiniteelementmodel(b)andmeshgenerationandconstraintset(c) Fig.5 5 (a) (b) Maximumstressincompositehose(a)andcompositehosestrainoneachlayer(b) 3 Table3 Comparisonoffiniteelementsimulationandtheoreticalcalculationresults 3 MPa( ) PE PU /MPa /MPa /MPa FEA 4.2 0.0036 232 0.0025 0 0.0023 1.85 0.0006 231 0.0027 0 0.0027 KEVLAR29YARNS 200 MPa(ASTM D412-61T) 2 PE FEA PE PE 2.27 4 PE PU FEA 0.4% [15] 2 :1 FEA ;2 ( ) 4.1 ;3 30a ;4 90% 140km 20km 3000
258 2018 km 6 m/min ;6 4.2 50kPa [16] U ;7 30% CCTV ;8 GB50268 0.8 MPa :1 : 0.8 MPa 30 min ;2 ; : 6-a ;3 15min;15min 0.02 MPa (0.4 MPa) U ;4 30min ;9 ;10 ;5 6-b 6 (a) (b) Fig.6 Internalsurfaceimageaftercleaning(a)andcompletedcompositehoselinerimage(b) 5 (3) (1) (4) (2) : [1] WannagatFLobanovaTSalyukovVetal.Implementationof thenew Primusline pipelinerehabilitation methodinthe Russian Federation[C].International Gas Union Research
5 : 259 Conference[IGRC].2008. ternationalno-dig2011paper3b-04. [4]. main[j].canadianjournalofcivilengineering200128(6): [J]. 201635(2):37-40. 969-978. [5]. : - [13]. [D]. : [J]. 200928(3):99-102. [6]. [J]. [14]. PVC-FRP-PE 2007(4):36-3842. [7] CJJ/T210-2014. [15]. [M]. : [S]. : 2014. 2014. [8]. [16]. [J]. [J]. 2007(5):11-14. [9] RameilM.Blastfromthepast:Ahistoryofpipebursting[C]. TT GroupTrenchlessInternational2009. [10]. [M]. : 2006. 2003. [D]. : 2012. 201232(4):36-39. ApplicationofTrenchlessTechnologyinNaturalGasPipelineRepair HuChenghong 1 XiaJufei 2 ZhaoYahong 3 (1.KunmingGasGroup HoldingCo.LtdKunming650041China; 2.YunnanPetroChinaKunlunGasCo.LtdKunming650041China; 3.FacultyofEngineeringChinaUniversityofGeosciences(Wuhan)Wuhan430074China) [2] Ragula G.A utilityperspective:what sholdingcipplining backfromgasindustryapplicationsinnorthamerica[c].in- [3]. [11]. [M]. : 1986. [J]. 201030(9):26-29. [12]ZhaoJQDaigleL.Structuralperformanceofsliplinedwater- Abstract:Foldinglining methodiswidelyusedin municipalwatersupplyanddrainagepipelinerepairin metropolis.howeverduetothediferencesofthestructurestrengthofliningfewcasesofno-dignatu- ralgaspipelinerepairarereportedbyfoldinglinermethod.baseonmaterialphysicalmechanicalproper- tiesandtestdatathispaperestablishedafiniteelementmodelandmathematicalempiricalformulaabout stressandstrainatthefailurepointofnaturalgaspipelineafterrenewingbytrenchlesstechnology.the applicationshowsthatthepipeburstingstrengthiswelcoincidedwiththemodelandformularesult.tak- ingthecurrentsituationofgaspipenetworkinkunmingcityintoaccountthepaperalsointroducesbrief- lytheprocessflowandapplicationprospectofcompositehoserepairingingaspipenetwork. Keywords:foldliningmethod;naturalgas;trenchlessrehabilitation;multi-layerthick-walcylinder