國內冷軋型鋼構造設計規範及解說之研擬

Size: px
Start display at page:

Download "國內冷軋型鋼構造設計規範及解說之研擬"

Transcription

1 MOIS 89014

2 (Cold-Formed Steel Structures) (88) - ( ) 1

3 ABSTRACT Recently, the cold-formed steel has been considerably adopted in the construction of steel structures such as buildings, bridges, transmission towers, and highway products due to the demand of market. Even the thickness of cold-formed steel is quite thin as compared to the structure-used steel, the cold-formed steel structure can still take sufficient load-carrying capacity. Therefore, the development of cold-formed steel structure plays a very important role in the recent and future construction field. Due to the environmental concern and lack of construction materials such as lumber, sand, and gravel, standardized single-story metal buildings have been widely used in industrial, commercial, and residential applications in U.S. and European. It can be observed that the utilization of cold-formed steel in the construction area is getting popular in Taiwan. Therefore, fully understanding the domestic conditions about the manufacture and application of cold-formed steel is the first thing to do. Meanwhile, it is necessary to establish the native specification for the design of cold-formed steel member in the near future. Due to the advantages such as lightness, high strength and stiffness, and easy to fabrication and erection, the cold-formed steel has been widely used as the construction material. Most advanced countries like U.S., Japan, Australia, and U.K. have studied the cold-formed steel for decades. However, the cold-formed steel is not included in the domestic specification or code relative to the steel construction in Taiwan, the development of cold-formed steel design specification is the way to go. The main objective of this project is to draft the design specification and commentary for cold-formed steel. In order to promote the native specification for the design of thin-walled structures (cold-formed steel members), the suggested foreign documents and related materials will be based on the previous research - "The Investigation of Design Specification for Cold-Formed Steel Structure".

4 ( ) 3

5 91 (Cold-Formed Steel) (Yu 000 SDI 1987) (carbon or low alloy steel sheet, strip, plate or flat bar) (cold roll forming, press brake or bending brake operation) in (0.378mm) 0.5 in (6.35mm)

6 -Specification for the Design of Cold-Formed Steel Structural Members (AISI 1999) -Recommendations for the Design and Fabrication of Light Weight steel structures(aij 1985) (1) () (3) (4) (National Association of Home Builders-NAHB) (U.S Department of Housing and Urban Department-HUD) (American Iron and Steel Institute-AISI) - Prescriptive Method for Residential Cold-Formed Steel Framing (AISI 1997) 5

7 ( ) (88) - ( ) steel home ( ) 6

8 RC 7

9 (American Iron and Steel Institute - AISI) (Specification for the Design of Cold-Formed Steel Structural Members) (American Institute of Steel Construction - AISC) (Design Specification for Structural Steel Buildings) (1) () (3) (4) (5) (Commentary) AISI (Allowable Stress Design - ASD) (Plastic Design - PD) ( Limit State Design or Load Resistant Factor Design) 8

10

11 (Specification for the Design of Cold-Formed Steel Structural Members) 1. Word 97. Times New Roman 1 3. : :16 4. : :14 10

12 5. : :1 6. : :1 :0.8cm : :1 :1.cm : C (4.1-1) 15. [1.] [ ] [4.1] [4.] 4.5. Winter, G., Commentary on the 1968 Edition of Light Gage Cold-formed Steel Design Manual, American Iron and Institute, cm

13 % ( 000) ( 0 %) (1997) 13 % - Recommendations for the Design and Fabrication of Light Weight steel structures (British Standards Institute) British Standard: Structural Use of Steelwork in Building. Part 5. Code of Practice for 1

14 Design of Cold-formed Sections (The Steel Construction Institute) (Cold-Formed Steel Design Manual) (88) - ( ) 13

15 (National Association of Home Builders - NAHB) (U.S Department of Housing and Urban Department - HUD) - Prescriptive Method for Residential Cold-Formed Steel Framing (000) 14

16 194 George Winter 15

17 1. American Iron and Steel Institute, 1999, Specification for the Design of Cold-Formed Steel Structural Members with Commentary, 1996 Edition, Supplement No.1, July, American Iron and Steel Institute, 1997, Prescriptive Method for Residential Cold-Formed Steel Framing, Second Edition. 3. Architectural Institute of Japan. 1985, Recommendations for the Design and Fabrication of Light Weight Steel Structures. 4. Baehre, R., 1983, Cold-Formed Steel Structural Elements, Development in Design and Application, Instability and Plastic Collapse of Steel Structures, Ed. L.J. Morris, Granada. 5. British Standards Institution, 1987, British Standards: Structural Use of Steelwork in Building. Part 5. Code of Practice for Design of Cold-Formed Sections, BS Steel Construction Institute, 1993, Building Design using Cold-Formed Steel Sections : Worked Examples to BS 5950 : Part 5 : SDI, Steel Deck Institute, 1987, Design Manual for Composite Decks, Form Decks and Roof Decks, Canton, Ohio. 8. Yu, W.W., 000, Cold-Formed Steel Design, New York: John Wiley. 9.,

18 ( ) 17

19

20

21 I C Z

22

23

24 mm [1.1] [1.] 1. (hot-rolling) (uneven cooling). 3. (cold-rolling) (anneal) (cold-reducing stress) 4. (element) 5. (sharp-yielding type) (gradual- yielding type) (corner fillet) (Specification for the Design of Cold-Formed Steel Structural Members) [1.3] [ ]

25 1.3 (LRFD) φr n R u (1.3-1) R u = R n = φ = φr n = (Limit State) (post-buckling) [ ] LRFD (1) () LRFD r i Q i φr n (C-1.3-1) R u φr n R n φ ( ) φ<1.0 Q i r i LRFD (1) () (a) Q R ( C-1.3-1) R<Q 1 -

26 Q R Q m R m Q R Q m R m Q R C Q R βσ ln(r/q) ln(r/q) m ln(r/q) C-1.3- C-1.3- l n (R/Q) ln(r/q) 0 R m Q m R Q * ln(r/q)= ln(r/q) m ln(r/q) 0 1-3

27 R ln( m ) Qm β = (C-1.3-) VR + VQ V R = R /R m V Q = Q /Q m S e F y / = L S S/8D+L C S e = =5/3 F y = L s = S= D L R m [1.8] R m = R n (P m M m F m ) (C-1.3-4) R n R n = S e F y (C-1.3-5) P m = ( / ) M m =( / ) F m =( / ) R V = V + V + V (C-1.3-6) R P M F [ ] P m =1.11 V p =0.09 M m =1.10 V M =0.10 F m =1.0 V F =0.05 R m =1. R n V R =0.14 Q m = (L S S/8)(D m +L m ) 1-4

28 (C-1.3-7) ( DmVD ) + ( LmVL ) VQ = (C-1.3-8) Dm + Lm D m L m V D V L D m =1.5D V D =0.1 L m =L V L =0.5[1.11] (C-1.3-7) (C-1.3-8) LS S 1.05D Qm = ( + 1) L (C-1.3-9) 8 L (1.05D / L) VD + VL VQ = (C ) (1.05D / L + 1) Q m V Q (D/L) LRFD (D/L)=1/5 Q m =1.1L V Q =0.1 (C-1.3-3) (C-1.3-5) D/L=1/5 =5/3 R n =L(L S S/8) (C-1.3-) R m =1. R n Rm 1..0 L( LS S /8) = =.0 Qm 1.1L( LS S /8) β = (0.14) ln(.0) + (0.1) =.79 =.79 [1.1] (b) LRFD AISI [1.8] [ ] [ ] [1.18] 0 LRFD 0=3.0 0=4.5 0=.5 D/L=1/5 =

29 .79 0=.5 0=3.5 AISI [1-3] 1.4 (E) 050 / (G)790 / (µ) /ºC 1-6

30 .1 [.1]. ( ) (1) 1.4D + L () 1.D + 1.6L + 0.5(L r S R r ) (3) 1.D + 1.6(L r S R r ) + (0.5L 0.8W) (4) 1.D + 1.3W+ 0.5L + 0.5(L r S R r ) (5) 1.D + E + 0.5L + 0.S (6) 0.9D (1.3W E) D = E = L = L r = S = R r = W = kg/m (100 psf) (3) (4) (5) (L) (3) L r [.1..3] ( ) ASCE

31 1. 1.4D. 1.D+1.6L+0.5(L S R r ) 3. 1.D+1.6(L r S R r )+(0.5L 0.8W) 4. 1.D+1.3W+0.5L+0.5(L r S R r ) 5. 1.D+1.0E+(0.5L 0.S) D-1.3W +1.0E. (a) (1) (1.4D+L) (b) 1.4 ASCE 1.6 (c) (d) 1.0 (Composite Construction) 1. D s +1.6 C W +1.4C D s = C W = C = φ ( 1.D+1.6L 0=.5 0=3.5 ) φr n = c(1.d+1.6l) = (1.D/L+1.6)cL (C-.-1) c = D/L=1/5 (C-.-1) (C-1.3-9) R n = 1.84(cL/φ) (C-.-) Q m = (1.05D/L+1)cL = 1.1cL (C-.-3) R m /Q m = (1.51/φ)(R m /R n ) (C-.-4) φ C-1.3- C C-.-4 [.4] φ = 1.51( P M F ) exp( β V + V ) (C-.-5) m m m 0 R Q -

32 0 φ 1.D+1.6L = (1.D/L+1.6)/[φ(D/L+1)] (C-.-6) D/L.3 F( ) H( ) P( ) T( ) 1.3F 1.6H 1.P 1.T. [.1] - 3

33 CNS608 (CNS) CNS 3. CNS 6183 CNS 9704 CNS

34 CNS CNS 8499 CNS 978 ASTM AWS (1) () (3) ( CNS ASTM ) 1. CNS 473 ASTM A36. ( ) CNS 947 ASTM A36 A83D A57 A ( ) CNS 469 ASTM A4 Type I 4. CNS 460 SPA-H ASTM A588 A709 Gr.50W 5. CNS 1381 (AISI) [3.1] 1. A36. A4 A A83 4. A59 5. A ( ) A57 7. A A A A A A79 [3.] CNS 6183( ) SSC 400 CNS 6183 Z L C (steel deck CNS 9704) (steel panel for roof CNS 818) (steel panel for wall CNS 8184) (steel panel for floor CNS 8186) (steel roof deck CNS 8339) CNS

35 CNS 46( ) CNS 978( ) CNS 473( ) CNS 460( ) CNS 818 CNS 8184 CNS 8186 CNS 144( ) CNS 10804( ) CNS 1005( ) CNS 8339 CNS 460( ) CNS 144( ) CNS 10804( ) CNS 9998( ) CNS 965( ) CNS 1005( ) CNS ( ) CNS 6183 SSC 400 [3.1] (1) MPa (5 80 ksi) () MPa (4 100 ksi) (3) 1.13 (4) (elongation) 10 percent (1) MPa () MPa (3) 1.08 (4) ( )F y C (a) sharp yielding type (b) gradual - yielding type (b) - (yield point) offset method strain under load method C-3.3-(a) offset method 0.% offset strain under load method ( C-3.3-(b)) 0.5% (E) 3-3

36 E / E=050 / C (a) (b) 3-4

37 C (F y ) (F ya F ya F ya F ya = C F yc +(1-C)F yf (3.4-1) C = F yf = F yc = = B c F yv /(R/t) m (3.4-) 3-5

38 B c = 3.69(F uv /F yv )-0.819(F uv /F yv ) (3.4-3) m = 0.19(F uv / F yv ) (3.4-4) R = F yv = F yu =. C [3.3] C (Strain Hardening) (Strain Aging) [3.4] C-3.4- C-3.4- A - B C - D - C D (cold-work effect) 3-6

39 (F u /F y ratio) 5. (inside-radius-to-thickness ratio, R/t) 6. [3.1] F y D C A A B C C ASTM [3.5] (1) 1.08 ()5.08cm(in) cm(8in) 7 AISI 3-7

40 % (coating) 3-8

41 4.1 C C (w/t) (1) a

42 b. I s I a D/w 0.8 ( 4.5. ) 90 () 500 (3) I s I a D/w 0.8 ( 4.5. ) 60 w t. - (c f ) (4.-1) 0.061tdE 100 c f w 4 f = (4.-1) f d av d = f av = ( ) t = w f = U 1/ 3. w f w f ( ) L/w f L/w f L L L w f I U 1/ I w f

43 ( ) c f (4.-1) w f [4.1] ( ) ( C-4.-1) [4.] 4..1 I C (h/t) (1) 60 () 300 h t ( ) h/t ( ) ( ) ( ) 4-3

44 4.. [ ] (b) λ b = w (4.3-1) λ > b = ρw (4.3-) w = C-4.3- ρ = (1-0./λ)/λ 1.0 (4.3-3) λ = w f λ = (4.3-4) k t E (4.3-4) t E k 4.0 f (1) a I f = F y f (M y ) b II f (M n ) c. 6.. f (M c /S f ) () f F n. (b d ) λ b d = w (4.3-5) λ > b d = ρw (4.3-6) w = ρ = (1) I f d f (4.3-3) (4.3-4) ρ f d 4-4

45 () II ρ λ ρ = 1 (4.3-7) 0.673<λ<λ c ρ = ( /λ)/λ (4.3-8) λ λ c ρ = ( F / f 0. / λ ) / λ (4.3-9) + y d λ c = ( w / t) Fy / E (4.3-10) λ f d f (4.3-4) ρ 1.0 (w/t) C4.3-1 kπ E f cr = (C-4.3-1) 1 µ t ( 1 )( w / ) E = k = t = w = µ = 0.3 C

46 C-4.3- (C-4.3-1) [4.10] (1) () ( C-4.3-3) C C f max F y 193 Th. v. Karman [4.11] 4.3 (1) () 4-6

47 (3) (w) (f max (b) Th. v. Karman [4.11] Winter 1946 E t E b = 1.9t (C-4.3-) f max w f max f cr /f max b w f = cr cr f max f max f (C-4.3-3) (C-4.3-) [4.] E t E b = 1.9t (C-4.3-4) f max w f max (C-4.3-4) f cr /f max b f 1 0. = cr cr f max f max f (C-4.3-5) b = ρw (C-4.3-6) ρ = ( 1 0. / max / f cr ) / f max f / f cr = (1-0. / λ) / λ 1 (C-4.3-7) λ = f / f cr = f [1(1 µ )( w / t) ] /( kπ E) max max = 1.05 / k )( w / t) f / E (C-4.3-8) ( max I f d b d I Weng Pekoz [4.1] ( ) 4-7

48 I II (b) 0.50 d h /w 0 w/t w 3d h λ b = w d (4.3-11) h d w 1 λ w λ > b = λ (4.3-1) b w - d h w = d h = λ = (4.3-4). h (4.3-1) (b d ) ( I) 4.3. Ortiz-Colberg Pekoz [4.13] Yu [4.10] b 1 b ( C ) b 1 = b e / (3 - ψ) (4.3-13) ψ b = b e / (4.3-14) b 1 +b ψ > b = b e b 1 (4.3-15) b e = f 1 f k k = 4+(1-ψ) 3 +(1-ψ) (4.3-16) ψ = f / f 1 (4.3-17) f 1 f = C

49 f 1 (+) f (-) (+) f 1 f f 1 f. f d1 f d f 1 f f d1 f d (C-4.3-1) (h/t) (k) 3.9 ( C-4.3-1) Pekoz [4.14] Cohen Pekoz [4.15] C

50 C (b) k 0.43 (w) C (b d ) I k 0.43 f d f f d (w/t) 4-10

51 (C-4.3-1) (k) 0.43 ( C ) C (b) k 0.43 f 3 f f 3 C (b d ) I k 0.43 f d3 f f d3 Pekoz [4.14] Winter ( C-4.3-4) k=0.43 f 4.5 A s = A s A se = ( 4-11

52 ) b 0 = C C 1, C = C-4.5- d, D = C-4.5- d s = d s 4.5. d se = d s = I a = I s = k = S = 1.8 E / f (4.5-1) C-4.5- I s = (d 3 t sin θ)/1 (4.5-) A se = d se t (4.5-3) U I C

53 C ( ) Pekoz [4.14] C b 0 / t S I a = 0 ( ) 4-13

54 b = w (4.5-4) A s = A se (4.5-5) S < b 0 / t < 3S I a /t 4 = [50(b 0 /t)/s]-50 (4.5-6) b A s k = 3(I s /I a ) 1/ +1 4 (4.5-7) A s = A se (I s /I a ) A se (4.5-8) b 0 / t 3S I a /t 4 = [18(b 0 /t)/s]-85 (4.5-9) b A s k = 3(I s /I a ) 1/ (4.5-10) A s = A se (I s /I a ) A se (4.5-11). (b d ) (4.5.1) f d f Bulson [4.16] Pekoz [ ] ( ) (b) (A s ) I s /I a I s I a I a w / t S / 3 I a = 0 ( ) b = w (4.5-1) d s = d se (4.5-13) A s = A se (4.5-14) S / 3 < w / t < S I a {[( w / t) / S] k / 4} 3 4 / t 399 u = (4.5-15) n = 1/ C = I s / I a 1 (4.5-16) C 1 = C (4.5-17) b = k = C n (K a - K u ) + K u (4.5-18) 4-14

55 k u = 0.43 (1) D/w θ 40 (θ C-4.5- ) k a = (D/w) 4.0 (4.5-19) d s = C d se (4.5-0) () w / t S k a = 4.0 A s = C A se (4.5-1) I a /t 4 = [115(w/t)/S]+5 (4.5-) C 1 C b k d s A s (S/3<w/t<S ) n = 1/3. (b d ) (4.5.) f d f Desmond Pekoz Winter [4.18] Pekoz Cohen [4.14] (4.5-3) 4 I / t 3.66 ( w / t) (0.136E) / F 18.4 (4.5-3) min = y w/t = ( ) I s = (b<w) (b<w) 4-15

56 b = w ( ) (b 0 ) (t s ) t s (4.5-4) t 3 s = 1I sf / b0 (4.5-4) I sf = ( ) ( ) 4. w/t > 60 (b e ) b e b w = (4.5-5) t t t w/t = b = b e = b e ( ) (A st ) (A ef ) (1) 60<w/t<90 A ef = αa st (4.5-6) α = (3-b e /w) 1/30(1-b e /w)(w/t) (4.5-7) () w/t 90 A ef = (b e /w)a st (4.5-8) A ef A st (I s ) (4.5-3) ( ) 4-16

57 ( ) (b 0 ) (t s ) w/t ( ) 60 C C

58 (P n ) (4.6-1) (4.6-) P n = F wy A c (4.6-1) P n = 7. (4.6-) ( A e A b ) φ c = 0.85 A c = 18t +A s A c = 10t +A s F wy = (F y or F ys ) A b = b 1 t+a s A b = b t+a s A s = b 1 = 5t[0.004(L st /t)+0.7] 5t b = 1t[0.0044(L st /t)+0.83] 1t L st = t = (w/t s ) 1.8(E/F ys ) 1/ 0.37(E/F ys ) 1/ F ys t s (4.6-1) (4.6-) ( ) (A b A c (b 1 b ) Nguyen Yu[4.19] Hsiao Yu Galambos[4.0] 61 (LRFD) (φ c ) (V n ) a/h [60/(h/t)] 3.0 (I s ) 4 3 h a h 5ht 0.7 I s min = (4.6-3) a h

59 A st 1 C = v a h ( a / h) ( a / h) ( a / h) YDht (4.6-4) 1.53Ekv Cv = C v 0.8 (4.6-5) F ( h / t) y C v 1.11 h / t Ek v = C v > 0.8 (4.6-6) F y 5.34 k v = a/h 1.0 (4.6-7) ( a / h) 4.00 k v = a/h > 1.0 (4.6-7) ( a / h) a = D = 1.0 D = 1.8 D =.4 Y = ( )/( ) t h = 4.. (4.6-3) (4.6-4) Nguyen Yu[4.19] 4-19

60 5.1 (LRFD) ( ) ( ) 5. (T n ) T n = A n F y (5.-1) φ t = 0.95 A n = F y = 3.4 T n = ( ) (LRFD) (φ t 1.3 (β 0 ).5 R m R n R m = A n (F y ) m (C-3.-1) R n = A n F y (C-3.-) R m /R n = (F y ) m /F y (C-3.-3) A n Rang Galambos Yu[4.1] (F y ) m 1.10F y V M = 0.10 V F = 0.05 V P = 0 (V R coefficient of variation) 5-1

61 V R = VM + VF + VP = 0.11 V Q = (β).4 β 0 =.5 5 -

62 6.1 (a) (b) (c) (d) (a) (b) (c) 6.~6.6 (d) 6. M n ~ 6..4 ( 6..1 ) (Lateral-Torsional Buckling 6.. ) C Z ( 6..3 ) C Z ( 6..4 ) 6..1 [ ] [ ] φ b = 0.95 φ b = [ ] Mn M n = S e F y (6.-1) F y = S e = ( F y ) 6-1

63 . [ ] (1) () F y (3) λ 1 (4) 0.35F y ht (5) 30 M n (a)1.5s e F y [ ] (b) C y e y e y = = F y E E = C y = (1) C y C y = 3 w t C y = 3- λ 1 λ λ w t λ 1 w λ < λ t C y = 1 w t λ λ 1 = (6.-) F y E 1. 8 λ = (6.-3) F y E () C y C y = 1 (3) C y C y = 1 M n (a) (b) (c) [ ] M n M y 6 -

64 M y ( ) C-6.-1 C-6.-1(a) C-6.-1(b) (c) C-6.-1 (a) (b) (c) C-6.-1) M y = S e F y (C-6.-1) F y = 6-3

65 S e = ( F y ) S e (1) λ w/t f=f y () F y (closed-form solution) (successive approximation) LRFD φ M b n φb / 1/ [6.1 6.]. [ ] [ ] (partial plastification) 1980 AISI M n 1.5M y M y M n /M y M n cu [6.3] AISI C y y C y (C-6.-) w/t C-6.- cu M n (C-6..1-) (C ) σ da = 0 σ yda = M n (C-6.-) (C-6.-3) σ M n 1996 AISI Part I[6.6] [6.7] 6-4

66 C-6.- C y 6.. M c M n = Sc (6.-4) S φ b = 0.9 f S f = S c = M c /S f M c = 1. M e.78 M y M c = M y (6.-5)..78 M y > M e > 0.56 M y 10 10M y M c M y 1 (6.-6) 9 36M e 3. M e 0.56 M y M c = M e (6.-7) M y = = S f F y (6.-8) M e = (1) () (1) 6-5

67 M e = C r A σ σ (6.-9) b o ey t a. x x b. 0.5 M e c. M e () M e s ex [ j Cs j r ( t ex )] + 0 σ σ CTF = C Aσ (6.-10) C s = +1 C s = -1 σex = π ( K L r ) x E x x (6.-11) σey = π ( K L r ) y E y y (6.-1) σt = GJ Aro π EC w + ( K ) tlt (6.-13) A = C b = M max.5m max 1.5M max + 3M + 4M A B + 3M C (6.-14) M A M B M C 3/4 C b 1 1 C b C b 1 E CTF M1 ( ) = (6.-15) M M 1 M ( M 1 ) M 1 M C TF 1 r 0 polar radius of gyration M 6-6

68 x y + 0 r + r x (6.-16) r x r y radius of gyration K x K y K t x y L x L y L t x y x 0 x J St.Venant C w 3 j 1 x I y x da + xy da 0 A A (6.-17) I Z C U 6..3 () (x ) I Z (1) M e π ECbdI yc I M e = (6.-18) L π ECbdI yc Z M e = (6.-19) L d = L = I yc = ( ) ( ) (1) 6.. I (C-6.-4) M cr π L π EC GJ 1 + GJL = w EI y (C-6.-4) E G I y y C w (Warping constant of torsion) J St. Venant L [ ] 6-7

69 π E I y JI y L σ ( ) + cr = ( 1 ) (C-6.-5) L I X + µ I πd x d C-6.-5 I [6.9] π Ed 4GJL σ cr = I yc I yt I y (C-6.-6) L Sxc π I yed S xc I yc I yt I yc = I yt = I y / (C-6.-5) (C-6.-6) (C-6.-6) I y = 4GJL π I y Ed C-6.-6) π EdI yc σ cr = (C-6.-7) L S xc C b σ cr Cbπ E σ cr = (C-6.-8) L Sxc di yc C b (bending coefficient) 1 M 1 M 1 C b = (C-6.-9) M M M 1 M C AISI Kirby and Nethercot [6.10] C M max C b (C-6.-10).5M max + 3M A + 4M B + 3M C M max = M A = 1/4 M B = M C = 3/4 6-8

70 C ( ) LRFD C-6.-3 (C-6.-9) (C-6.-10) C-6.-3 C b (C-6.-8) I (C-6.-11) (6.-18) Cbπ EdI yc ( M cr ) = (C-6.-11) e L (C-6.-8) σ pr (C-6.-1) [6.7] ( L S / di ) Fy xc yc ( σ = cr ) I Fy 1 (C-6.-1) 9 36 cbπ E I 6-9

71 10 10 M y ( M cr ) I = M y (1 ) M y (C-6.-13) 9 36 ( M ) cr e C-6.-4 C-6.-4 AISI (C-6.-8 ) (C-6.-11) (C-6.-11) (C-6.-13) 1996 (6.-9) (6.-10) [ ] ( Z ) AISI I 1986 AISI ( M ) cr M y M y 1 ( M ) (C-6.-14) 4 cr e I 1996 AISI 1980 AISI I Z ( ) 0.56M y 0.56 M y (10/9) M y ( 0) Johnson Parabola (10/9) [6.13] M y M y Johnson 6-10

72 Parabola Sc M n = M c (C-6.-15) S f M c = S c = M c S f S f = (S c /S f ) φ b =0.9 LRFD β I Z C-6.-5 U U C-6.-6 C

73 C-6.-6 U U AISI 6..3 C Z M n : M n = R S e F y (6.-0) φ = 0.9 R = 0.4 C = 0.5 Z = 0.6 C = 0.7 Z S e F y 6..1 R (11.5 ) ( ) 1.5d (33 ) 8. 0% mm (0.019 in) 5.4 mm (1in) 305mm (1 in) mm (6in) 1. #

74 mm( 3/16in ) 1.7mm(0.5in) 13. stand off mm (1in) [ ] R M=0.08wL La Boube [6.16] [6.1 6.] LRFD φb (C-6.-0) = 0. 9 β W-0.9D W D C Z M n 6.. M n = R S e F y (6.-1) φ = 0.9 R = S e F y 6..1 ( ) 1996 AISI R 6-13

75 6.3 V n 1. h t Ek v F y V = 0. F ht (6.3-1) n 6 y φ v = Ekv F y < h t Ekv F y V n = 0.64t k F E (6.3-) v y φ v = h t > Ek v F y V n φ v = π Ekvt 3 = = 0.905Ekvt h 1(1 µ ) h V n = t = h = k v (6.3-3) = (1) k v = 5.34 () ( ) a. a / h 1.0 k v 5.34 = (6.3-4) ( a h) b. a / h > 1.0 k v 4.0 = (6.3-5) ( a h) a = = 6-14

76 h/t h/t V = A τ = A F 3 0. F ht (C-6.3-1) n w y w y 6 A w = ht y τ y F 3 y h/t V n kvπ EAw = Awτ cr = (C-6.3-) 1(1 µ )( h / t) τ cr = k v = E = µ = h = t = µ = 0.3 V n V n 3 = 0.905Ek t h (C-6.3-3) v h/t V n = 0.64t k F E (C-6.3-4) v y LRFD M u V u M φbm u nxo Vu + φvv n 1.3 (6.4-1) M u V u φ V φ V b n M v n φ M 0 V φ V > M u > u v n ( ).5 ( ) 0. 7 u b nxo V u 6-15

77 M u Vu φbm nxo φvvn φ b = φ v = 6.3 (6.4-) M n = M nxo = 6..1 x V n = Bleich[6.0] f f b cr τ + τ cr = 1.0 (C-6.4-1) f b = f cr = τ = τ cr = diagonal tension field action [6.1] 4.5 f 0.6 f b b max + τ τ max = 1.3 (C-6.4-) C (C-6.4-) 6-16

78 C τ/τ max f b /f bmax 6.5 P n φ w = 0.75 I φ w = 0.8 Z (two-nested Z sections) (6.5-4) φ w = 0.85 h / t R / t 6 R / t 7 N / t 10 N / h 3.5 Z (6.5-1)

79 1. h / t 150. R / t mm (0.06in.) mm (3/16 in.) P n P n I P n ( ) I (3) (6.5-1) (6.5-) (6.5-3) >1.5h () (4) (6.5-4) (6.5-4) (6.5-5) (3) (6.5-6) (6.5-6) (6.5-7) 1.5h (5) (4) (6.5-8) (6.5-8) (6.5-9) C I ( C ). 1.5h h h h [ ( h θ )] [ 0.01( N )] t kc C C C t [ ( h θ )] [ 0.01( N )] t kc C C C > 60 t t 1 + t * (6.5-1) 1 + t * (6.5-) N [ ( N ) ] [ ( N )] t t 6-18

80 t F C y N t [ ( h θ )] [ 0.007( N )] t kc C C C > 60 t t (6.5-3) 1+ (6.5-4) t N [ ( N ) ] [ ( N )] t F C + m y 5 ( ) t N t [ ( h θ )] [ 0.01( N )] t kc C C C ( m) N t FyC8 5 t [ ( h θ 771. )] [ ( N )] t kc C C C ( m) N t FyC7 5 t t (6.5-5) 1 + t * (6.5-6) t (6.5-7) 1 + (6.5-8) t t (6.5-9) P n = N C 1 = 1.-0.k (6.5-10) C = R/t 1.0 (6.5-11) C 3 = k (6.5-1) C 4 = R/t 1.0 ( 0.5) (6.5-13) C 5 = k 0.6 (6.5-14) h t C 6 = h 150 t (6.5-15) = 1. h > 150 t (6.5-16) C 7 = 1 h/t (6.5-17) k h t 1 = k h/t > 66.5 (6.5-18) h t 1 C 8 = k h/t (6.5-19) C 9 = 6.9 ( N mm) C θ = ( θ ) 90 h/t (6.5-0) F y = MPa h = (mm) 6-19

81 k = 894Fy/E (6.5-1) m = t / 1.91 (mm) (6.5-) t = (mm) N = (mm) N R = θ = (45 θ < 90 ) C I C [6.7] ( ) AISI [6.-6.4] I (1) () (3) (4) C-6.5- (a) (b) 6-0

82 1.5 C-6.5- (a) (b) (c) (d) ( Z ) I ( ) C (6.5.1) (6.5.) (6.5.3) (6.5-4) (6.5-5) (6.5-6) (6.5-7) (6.5-8) (6.5-9) [ ] C C-6.5-3(b) C-6.5-3(a) P n ( AISI ) 6-1

83 C

84 C

85 (6.5-1) (6.5-) (h/t) (N/t) (R/t) (t) (F y ) (θ) LRFD φ=0.75 φ=0.8 I (safety index) Z [ ] 7% 55% 30% (AISI 1996) Z [6.8] (6.5-4) Pu 1.07( φ P w n M ) + ( φ M b u nx0 ) 1.4 (6.6-1) (6.6-1) 54mm (10in.). Pu M u 0.8( ) + ( ) 1.3 φ P φ M w n b nxo (6.6-) h/t.33/ Fy E λ φ w P n (6.6-) (6.6-) φ b = ( 6..1 ) φ w = ( 6.5 ) P u = P n = 6.5 M u = P u M nxo = 6..1 w = t = 6-4

86 λ = ( ) 3. Z (two-nested Z sections) M u Pu φ M P no n φ = 0.9 M u = (6.6-3) M no = Z 6..1 P u = P n = Z (6.6-3) 1. h / t 150. N / t F y 483 Mpa (70 ksi) 4. R / t mm (0.5 in.) A mm (0.5 in.) A (6.6-1) (6.6-) (C-6.6-1) (C-6.6-) 551 φ w =0.75 φ w =0.8 I Z (6.6-3) [6.8]

87 C C-6.6- I 6-6

88 φ c P n φ c =0.85 P n =A e F n (7.-1) A e = F n A e F n λ c 1.5 n ( λ F y c F = ) (7.-) λ c >1.5 F n = F λc y (7.-3) Fy λ c = (7.-4) F e F e = M ux M uy 8.3 KL/r 00 KL/r 300 (1) () ( - ) (3) 7-1

89 1. P y =A g F y (C-7.-1) A g = F y =. (1) Euler ( P cr ) e π EI = (C-7.-) ( KL) (P cr ) e E I K L ( F cr ) e ( Pcr ) e π E = = (C-7.-3) A ( KL / r) g r KL/r () (C-7.-3) (F cr ) e (F pr ) 1996 AISI ( F cr ) I Fy = Fy (1 ) (C-7.-4) 4( F ) cr e F pr =F y / (C-7.-4) (F cr ) e F y / λ c (C-7.-4) c λ ( F cr ) I = (1 ) Fy (C-7.-5) 4 Fy λ c = = ( F ) cr e KL rπ F y E (C-7.-6) (C-7.-6) λ c (3) (w/t) P n =A g F cr (C-7.-7) 7 -

90 P n = A g = F cr = (4) (w/t) (C-7.-7) (F cr ) (A e ) [7.1 7.] P n =A e F cr (C-7.-8) F cr A e F cr 1996 AISI [7.1] AISC LRFD [7.3] λ c 1.5 F ( c = λ ) F (C-7.-9) n y λ c >1.5 F n = F λc y (C-7.-10) F n λ = F / F F e c y (C-7.-3) P n = A e F n (C-7.-11) (5) K K KL ( C-7.-1) K=1 K=1 K 1 C-7.-1 K [7.4] K=1.0 [7.5] K 0.75 e 7-3

91 C-7.- ( ) K 1.0 C-7.-3 K [7.6] [ ] K [7.4] C-7.-1 C

92 C-7.-1 K C-7.-3 K 3. Torsional Buckling I Z 7-5

93 [7.6] 1 π EC w σ t = GJ + (C-7.-1) Aro ( K ) t Lt A r o G J St Venant E C W K t K t C σ t F n λ c 4. - Torsional-Flexural Buckling - T I - C C

94 - [ ] P n 1 = ( Px + Pz ) ( Px + Pz ) 4βPx Pz β (C-7.-13) - F e Fe 1 = ( σ + ) ( + ) ex σ t σ ex σ t 4βσ exσ t β (C-7.-14) X σ ex = π E /( K xlx / rx ) X Euler t ( (C-7.-1)) β = 1 ( χ o / ro ) - ex Y - (C-7.-10) - ( w/t ) w/t - A e F e F e π E = (7.3-1) ( KL / r) E= K= L= R= - F e (7.3-1) (7.3-) Fe 1 = ( σ + ) ( + ) ex σ t σ ex σ t 4βσ exσ t β (7.3-) F e σ σ t ex F e = (7.3-3) σ t + σ ex 7-7

95 ex π E σ = (7.3-4) ( K L r ) x x / x σ t = 1 Ar o GJ π EC + ( K L ) t w t 6.. (7.3-5) ( X / ) o r β = (7.3-6) 1 o X F e (7.3-1) F e = σ t (7.-1) - - Y (X ) (C-7.-1) - (C-7.-14) F e σ tσ ex σ + σ = (C-7.3-1) t ex [7.11] 1 P n 1 1 = + (C-7.3-) P P x z 1 F e 1 σ ex 1 + σ = (C-7.3-3) t 7.4 F e - C w [ ] 7-8

96 T u M ux M uy M b ux φ M nxt M + φ M b uy nyt Tu + φ T t n 1.0 (8.-1) M b ux φ M nx M + φ M b uy ny Tu φ T t n 1.0 (8.-) T u = M ux M uy = T n = ( ) M nx M ny = ( ) M nxt M nyt = S ft F y S ft = φ b = ( 6..1 ) 0.90( 6.. φ t = 0.95 ) (8.-1) (8.-) P u M ux M uy 8-1

97 C b mx φ M M nx ux α x CmyM uy + φ M α b ny y Pu + φ P c n 1.0 (8.3-1) M b ux φ M nx M + φ M b uy ny Pu + φ P c no 1.0 (8.3-) P u / φ c P n 0.15 M b ux φ M nx M + φ M b uy ny Pu + φ P c n 1.0 (8.3-3) P u α x = 1 (8.3-4) PEx P u α x = 1 (8.3-5) PEy P P Ex Ey π EI x = (8.3-6) ( K L ) x x π EI y = (8.3-7) ( K L ) y y P u = M ux M uy = M uy P u L/1000 P u P n = ( ) P no = ( F n =F y ) M nx M ny = ( ) φ b = ( 6..1 ) 0.90( 6.. ) φ c = 0.85 I x = x I y = y L x = x L y = y K x = x 8 -

98 K y = y C mx C my = 1. (joint translation) C m = C m = (M 1 /M ) M 1 M M 1 /M M 1 /M 3. C m (a) C m = 0.85 (b) C m = 1.0 [8.1 8.] AISC LRFD [8.3] [8.4] AISC 8-3

99 9.1 (D/t) 0.441E/F y (imperfection) - Plantema [9.1] Plantema F ult /F y (E/F y )(t/d) t D F ult AISI D/t 0.11 E/F y 0.11 E/F y < D/t < E/F y (D/t) 0.441E/F y D/t 9. (M n ) D/t E/F y (9.-1) M n = 1.5 F y S f E/F y D/t E/F y 9-1

100 M n E / Fy = FyS f D t (9.-) / E/F y D/t E/F y M n = [0.38E/(D/t)] S f (9.-3) φ b = 0.95 S f = 1.9 ( ) Sherman[9.] (shape factor) ( ) (P n ) P n = F n A e (9.3-1) φ b = 0.95 F n λ c 1.5 n λ c > 1.5 λ ( ) F y F c = (9.3-) F n = F λc y (9.3-3) Fy λ c = (9.3-4) F e F e = ( 7.3 ) A e = [1-(1-R )(1-A 0 /A)]A (9.3-5) R = (F y /F e ) 0.5 (9.3-6) 9 -

101 A 0 = A DF y te A D/t (E/F y ) (9.3-7) ( ) /( ) A = (F e ) (A e ) (9.3-5)

102 10.1 (1)C I ()C Z (3) I I C ( ) (S max ) 1. Lrcy S = max r (10.-1) I L = r I = I r cy = C. S max L gts = (10.-) 6 mq L = T s = ( ) g = m = C (1) C w f m = (10.-3) w + d / 3 f () C 10-1

103 w f dt m = w 4I x f 4D d + D d 3d (10.-4) w f = C w f d = C D = I x = C q = ( -LRFD ) q q (s) T s = P s m / g (10.-5) P s (S max ) (1) () T s g I C 1. I (10.-1) (S max ) C I C S max /r cy I (L/r I ) 1/ [ ] I (10.-1) C r I. I (10.-) [10.] C C Q (Qm) (T s (T s g) 10 -

104 Qm=T s g (C-10.-1) T s =Qm/g (C-10.-) C-10.- q ( ) s Q = qs/ (S max ) Q (C-10.-) q C C C-10.- C L/3 L/6 (10.-)

105 ( ) t(E/f c ) 0.5 t f c t(E/F y ) 0.5 ( w/t < 0.50(E/F y ) 0.5 ) 1.33t(E/F y ) 0.5 ( w/t 0.50(E/F y ) 0.5 ) mm (0.5 in) C (W) 1.67f c C f c, [ ] σ = cr π E ( KL / r) σ cr = 1.67f c K = 0.6 L = s r = t/(1) 0.5 K ( ) [ ] C

106 ( ) Winter [10.3] Haussler [10.4] Haussler Pabers [10.5] Lutz Fisher [10.6] Salmon Johnson [10.7] Yura [10.8] SSRC [10.9] C Z C Z (1) () C Z C Z / C C 0.05W W ( ) 0.05W/. Z 4 0 Z 10-5

107 (1) P L b = 0.5 sinθ W n p d t () 1/3 P L b = 0.5 sinθ W n p d t (3) P L b = sinθ W n p d t (4) P L b L = Ctr sinθ W n p d t (10.3-1) (10.3-) (10.3-3) (10.3-4) C tr = 0.63 C tr = 0.87 C tr = 0.81 (5) 1/3 P L b L = Cth sinθ W n p d t (10.3-5) C th = 0.57 C th = 0.48 (6) P L b L = Cms sinθ W n p d t (10.3-6) C ms = 1.05 C ms = 0.90 b = d = t = L = 10-6

108 θ = Z ( ) n p = W = P L ( ) 0 ( ) n p 0 W Z Murray Elhouar [10.10] (10.3-1) (10.3-6) Murray Elhouar 1/ ( ) (P L P L 1. P L =1.5 K ( 0.5a ). P L =1.0 K ( 0.3a ) 1.4 K (1-x/a) ( 0.3a 1.0a ) C Z x = a = C K = m/d (10.3-7) m = d = Z K =I xy / I x (10.3-8) I xy = I x = 10-7

109 C I C C C C C-10.- I I C (1) ( ) () C C C C C [10.1] C 10-8

110 C (Qm) P = Qm/d C Winter Lansing McCalley[10.11] C C (P L ) C C C E/F y 10-9

111 F n (A e ) A e (1) 610mm () 0.5 d 63.5mm (3) 114mm (4) (d/t) 0 (5) 54mm (A e ) F y 345 Mpa d 15 mm t 1.91 mm L 4.88 mm 305 mm 610 ( ) ( I x /I y ) I C Z 10-10

112 ( ) Green Winter Cuykendall [10.1] ( ) C Z Yu [10.] Simaan [10.13] Simaan Pekoz [10.14] Simaan [10.13] Simaan Pekoz [10.14] Davis Yu [10.15] M nxo M nyo φ b = 0.95 φ b = 0.90 M nxo M nyo P n = A e F n (10.4-1) φ c = 0.85 A e = F n F n = 1. F n 10-11

113 KL. F n F e σ CR σ CR (1) C σ CR = σ ey + Q (10.4-) a [ ex tq ex tq 4βσ exσ tq ] 1 + β (10.4-3) σ CR = ( σ σ ) ( σ + σ ) () Z σ CR = σ t + Q (10.4-4) t σ CR = 1 {( σ ) [( ) 4( )]} ex + σ ey + Q a σ ex + σ ey + Q a σ exσ ey + σ ex Q a σ exy (3) I ( ) (10.4-5) σ CR = σ ey + Q (10.4-6) a σ CR = σ ex (10.4-7) π E σ ex = ( ) L / r x π σ exy = AL EI xy π E σ ey = ( ) L / r y (10.4-8) (10.4-9) ( ) σ t = 1 Ar 0 GJ π EC + L w ( ) σ tq = Q = σ + Q (10.4-1) t t Q o (-s/s ) ( ) s = (mm) 15mm s 305mm s =305mm 10-1

114 Q o = Q a = Q / A ( ) A = L = t ( Qd ) ( 4Ar ) Q = ( ) / o d = I xy = 3. F n γ = (π/l)[c 1 +(E 1 d/)] ( ) C 1 E 1 C 1 E 1 (1) C C 1 = (F n C o )/( σ ey -F n + Q ) ( ) a Fn [( σ ex Fn )( ro Eo xodo ) Fn xo( Do xoe E 1 = ( σ F ) r ( σ F ) ( F x ) ex n o tq n n o o )] ( ) ()Z Fn [ Co( σ ex Fn ) Doσ exy ] C 1 = ( σ F + Q )( σ F ) σ ey n a ex n exy ( ) E 1 = (F n E o ) / ( σ tq -F n ) (10.4-0) (3) I C 1 = (F n C o )/( σ ey -F n + Q ) (10.4-1) E 1 = 0 a x o = x ( ) C o E o D o C o = L/350 ( ) (10.4-) D o = L/700 ( ) (10.4-3) E o = L/(d 10,000) rad (10.4-4) F n >0.5F y σ ex σ ey σ exy σ tq E G E 10-13

115 G E G E = 4EF n (F y -F n )/F y G = G/(E /E) (10.4-6) (10.4-5) Q o γ ( ) Q o γ kn / mm 15.9mm ( ) ( ) S-1 1.7mm Q o γ C ( C-10.4-) Simaan[10.13] Simaan Pekoz[10.14] 10.4 ( ) Pekoz [10.17] Miller Pekoz [ ] 10-14

116 C C P n = (8.3-1) (8.3-) (8.3-3) M nx M ny M nxo M nyo 10-15

117 11.1 [11.1] 1. ( ) ). (1) ( ) () mm mm (AWS) AWS D1.3 AWS D AWS C1.1 AWS C

118 11..1 V L T F F F F F H H H H H V V V V OH OH OH OH F F F F H H V V OH OH (F= H= V= OH= ) ( ) ( ) Pekoz McGuire [11.] [11.3] Pekoz McGuire[11.] (American Welding Society) ( ) [11.4] AWS C C mm (0.15 in) mm (0.18 in) ( 11.-3) 3.81 mm P n 1. P n = L t e F y (11.-1) φ = (11.-) (11.-3) 11 -

119 P n = L t e 0.6F xx (11.-) φ = 0.80 P n = L t e F y / 3 (11.-3) φ = 0.90 P n = F xx = F y = L = t e = mm 1.7 mm.03 mm 9.53 mm d e 9.5mm C

120 C-11.- ( ) ( ) P n πd e 1. P n = 0.75Fxx 4 φ =0.60. (d a /t) E / F ) ( u (11.-4) P n =.0 t d a F u (11.-5) φ = E / F ) < (d a /t) <1.397 E / F ) ( u ( u E / F P n = u t d a F u (11.-6) d a / t φ =0.50 (d a /t) E / F ) ( u P n =1.40 t d a F u (11.-7) φ =0.50 P n = 11-4

121 d = d a = d a =(d-t) d a =(d- t) ( ) d e = =0.7d-1.5t 0.55d (11.-8) t = ( ) F xx = F u = C C e min Pu e min = φf t F u /F sy 1.08 φ = 0.70 F u /F sy 1.08 u φ = 0.60 (11.-9) P u = t = F sy = C C d 1.0 [11.] (1) () (3) (4) C ( C ) mm 11-5

122 C C C

123 C C P n πd 1. P n = e Fxx 4 φ =0.60. F u /E < (11.-10) Pn = [ (F u /E)]td a F u 1.46td a F u (11.-11) F u /E Pn = 0.70 td a F u (11.-1) φ = 0.60 e min d 11-7

124 F xx 414 Mpa F u 565 Mpa F xx F u % % - [ ] (1) () [ ] % [ ] C C ( C ) [11.7] 70% ( C-11.-9) 11-8

125 1. ( ). ( ) ( ) P n πd P n = e Ld 4 + e 0.75F xx (11.-1) P n =.5 t F u (0.5L+0.96d a ) (11.-13) φ =0.60 P n = D = L = ( L 3d ) d a = d a =(d-t) d a =(d-t). d e = = 0.7d-1.5t F u F xx ( C ) [11.4] C

126 C P n 1. L/t < 5 P n = 0.01L 1 - tlfu (11.-14) t φ = 0.60 L/t 5 P n =0.75tLF u (11.-15) φ = P n =tlf u (11.-16) φ =0.60 t C C t 1 t t 3.81mm P n =0.75t w LF xx (11.-17) φ =0.60 P n = L = t w = = 0.707w w 11-10

127 w 1 w = ( C C-11.-1) L w 1 t 1 F u F xx [11.] L w 1 w w 1 ( C ) C C L C T [11.] 3.81mm 11-11

128 3.81mm C V. 3. P n 1. ( C ) P n =0.833tLF u (11.-18) φ =0.55. ( C ~ C d) (1) t t w <t h L P n =0.75tLF u (11.-19) φ =0.55 () t w t h L P n =1.50tLF u (11.-0) φ =0.55 t P n =0.75t w LF xx (11.-1) φ =0.60 P n = h = L = 11-1

129 t w = 90 ( C a C b) = 5/16R V =1/R( R>1.7mm 3/8R = 90 = 0.707w w ( C c C d) = R = w 1 w = ( C c C d) F u F xx ( C ) a b 90 AWS D1.1-96[11.8] c d 90 W 1 ( c) ( d) C

130 C C V C a (W 1 =R) 11-14

131 C b (W 1 =R) C c (W 1 >R) C d (W 1 <R) 11-15

132 C P n P n = 11.. φ = (mm) (mm) (kn) (kn) mm Recommended Practice for Resistance Welding Coated Low-Carbon Steel AWS C (.1- ) 3. mm Recommended Practice for Resistance Welding Coated Low-Carbon Steel AWS C1.1-66( 1.3- ).7 N/m AWS C AWS C

133 AWS C AWS C1.1-66[ ] CNS 6183 SSC41 CNS 115 CNS mm 4.76 mm ASTM A194/A194M ASTM A307 (Type A) ASTM A35 ASTM A35M ASTM A354 (Grade BD) ASTM A449 ASTM A490 ASTM A490M ASTM A563 ASTM A563M ASTM A436 ASTM A436M ASTM F844 ASTM F959 ASTM F959M 11-17

134 ( ) d < d h d d d h (d+0.8)by(d+6.4) (d+0.8)by(.5d) (d+0.6)by(d+6.4) (d+1.6)by(.5d) d d mm 4.76 mm [11.11] ( 4.76 mm). A35 A mm A449 A354 Grade BD 1.7 mm

135 mm ( ) [ ] 1.7 mm mm (P n ) P n = tef u (11.3-1) F u /F sy 1.08 φ = 0.70 F u /F sy <1.08 φ = 0.60 P n = F u = F sy = e = t = (3d) 1.5 (1.5d) e - d h / e d h

136 (d) (d) e min (F u ) F u /F sy P e = (C ) Fu t e = P = t = (C ) Winter [ ] Yu [ ] P n 1. P n = ( r+3rd/s)F u A n F u A n (11.3-) φ = 0.65 φ = P n = (1.0-r+.5rd/s)F u A n F u A n (11.3-3) φ = 0.65 P n = F y A n (11.3-4) φ = 0.95 A n = r = r 0. r 0.0 s = ( ) s d = t = F u = F y = 11-0

137 mm (P n ) (F u ) r d/s 3. [11.19] 4. ( ) (P n ) F u /F sy (P n ) φ φ P n d F u t t (mm) F u /F sy φ P n 0.61 t<4.76 t F u dt < F u dt F udt t (mm) F u /F sy φ P n 0.61 t< F u dt F u dt t

138 F u /F sy (Winter[ ] Yu[ ] Chong Matlock[11.19]) P n P n = A b F (11.3-5) A b = F F nv F nt φ F F nt φ

139 F φ nt F φ nv (MPa) (MPa) A307 Grade A mm d<1.7 mm A307 Grade A d 1.7 mm A A A354 Grade BD 6.4 mm d<1.7 mm A354 Grade BD 6.4 mm d<1.7 mm A mm d<1.7 mm A mm d<1.7 mm A mm d<1.7 mm A mm d<1.7 mm

140 F nt (MPa) φ A f v f v 61 A354 Grade BD f v f v 696 A f v f v 558 A f v f v 776 A307 Grade A 6.4 mm d<1.7 mm d 1.7 mm 34-5f v f v mm (1/ in.) A307 A449 A mm 10% 6.35 mm (1/4 in.) 9.63 mm (3/8 in.) (tensile-stress area / gross-area) mm(1/ in) 5.4 mm(1 in.) % LRFD ( ) (pull-out failure) ( ) C Z 11.4 d = ( C ) φ = 0.5 P ns = P nt = P not = P nov = t 1 = t = F u1 = F u = 11-4

141 mm(0.08 in.) 6.35 mm(0.5 in.) [11.0] [ ] [11.3] C C C d mm (in.) (0.060) (0.073).18 (0.086) 3.51 (0.099) 4.84 (0.11) (0.15) (0.138) (0.151) (0.164) (0.190) (0.16) 1/ (0.50) 11-5

142 C (3d) (3d) 1.5 (1.5d) (P ns ) t /t P ns P ns = 4.(t 3 d) 1/ F u (11.4-1) P ns =.7 t 1 df u1 (11.4-) P ns =.7 t df u (11.4-3) t /t 1.5 P ns P ns =.7 t 1 df u1 (11.4-4) P ns =.7 t df u (11.4-5) 1.0 < t /t 1 <.5 P ns C

143 P ns Eq Eq C t ( C ) ( C ) N/A t 1.7 t 1 df u1 t.7 t df u C (t 3 d) 1/ F u t 1.7 t 1 df u1 t.7 t df u C P ns φ

144 ( ) d w 7.94 mm 1.7 (1) (pull-out failure) () (pull-over failure) (3) 1.7 mm (P not ) P not =0.85 t c d F u (11.4-6) t c t [11.1] Pekoz [11.3] (P nov ) P nov =1.5t 1 d w F u1 (11.4-7) d w 1.7 mm [11.] Pekoz [11.3] (P nt ) 1.5 P not P nov φ (V n ) V n = 0.6 F u A wn (11.5-1) φ =

145 A wn = (d wc n d h ) t d wc = n = d h = F u = t = Birkernoe Gilmor [11.4] C [11.11] [11.11] P C P p = 0.85f c A 1 (11.6-1) P p = 0.85f c A 1 A / A (11.6-) 1 φ c =

146 f c = A 1 = A = A / A ( ) ( ) /

147 CNS- 8.ASTM-The material standard of the American Society for Testing and Materials. 9.AWS Code-The Structural Welding Code of American Welding Society ( ) (Shop drawing) (Approve) (Detail Dimension)

148 CNS AWS JIS

149 (1) () (3). (1) () CNS ASTM (3) (White Rust) 1-3

150 (studs) (top and bottom track) (anchors) 10 ( ) (axially loaded studs) 5. (lintels) 6. (horizontal strap bracing) (joist bridging) (metal deck or plywood). (end clips) 3. (joist) (wall studs) (lintels)

151 CNS147. ASTM (studs) (gage) (depth and width) (spacing) (joists) (gage) (depth and width) (spacing)

152

153 1-7

154 13.1 UBC-97 AISC-97 UBC D + 0.5L + 1.6W (13.-1) 1.D + 1.6L + 1.6W (13.-) 1.D + 0.5L + 1.6W (13.-3) 1.D + 0.5L + E (13.-4) 0.9D E 5L + 1.6W (13.-5) 0.9D - 1.6W + 1.6W (13.-5) D= L= W= E= y y 1.0 UBC-97 AISC-97 ( ) (l/r) (Ω 0 ) 4. (braced bay)

155 P DL +0.5P LL +Ω 0 P E (13.4-1). 0.9P DL -Ω 0 P EE (13.4-) P DL P LL P E Ω R 1.6~ C.5 Fu 1.6~ y Fu 1.764~.38 UBC-97 Ω 0.~.8 C/Fu<=1 Ω

156 American Iron and Steel Institute, Cold-Formed Steel Design Manual 1996 Edition. 1.4 Yu, W. W., V. A. Liu, and W. M. Mckinney, Structural Behavior and Design of Thick, Cold Formed Steel Members, Proceeding of the Second Specialty Conference on Cold Formed Steel Structure, University of Missouri Rolla, Rolla, MO, October Yu, W. W., V. A. Liu, and W. M. Mckinney, Structural Behavior of thick Cold Formed steel Menders, Journal of the Structural Division, ASCE, Vo1. 100, No. ST1, January Pekoz, T. B, Development of a Unified Approach to the Design of Cold Formed Steel Members, Report SG-86-4, American Iron and Steel Institute, Yu, W. W., Cold Formed Steel Design, nd Edition, Wiley-Interscience, New York, NY, Ravindra, M.. K. and T. V. Galambos, Load and Resistance Factor Design for steel, Journal of the Structural Division ASCE, Vo1. 104, No. ST9, September Hsiao, L. E., W. W Yu and T. V. Galambos, Load and Resistance Factor Design of Cold Formed Steel Calibration of the AISI Design Provisions, Ninth Progress Report, civil Engineering Study 88-, University of Missouri-Rolla, Rolla, MO, February Hsiao, L. E., W. W. Yu and T. V. Galambos; AISI LRFD Method for Cold Formed Steel Structural Members, Journal of Structural Engineering, ASCE, Vo1. 116, No., February Ellingwood, B., T. V. Galambos, J. G. MacGregor, and C. A. Cornell, Development of a Probability Based Load Criterion for American National Standard A58:Building Code Requirements for Minimum Design Loads in Buildings and Other Structures, U. S. Department of Commerce, National Bureau of Standards, NBS Special Publication, June Galambos, T. V., B. Ellingwood, J. G. MacGregor, and C. A. Cornell, Probability Based Load Criteria: Assessment of Current Design Practices, Journal of the Structural Division, ASCE, Vo1. 108, No. ST5, May 198. R - 1

157 1.13 Rang, T. N., T. V. Galambos, and W. W. Yu, Load and Resistance Factor Design of Cold Formed Steel: Study of Design Formats and Safety Index Combined with Calibration of the AISI Formulas for Cold Work and Effective Design Width, First Progress Report, Civil Engineering Study 79-1, University of Missouri-Rolla, Rolla, MO, January Rang, T. N., T. V. Galambos, and W. W. Yu, Load and Resistance Factor Design of Cold Formed Steel: Statistical Analysis of Mechanical Properties and Thickness of Material Combined with Calibration of the AISI Design Provisions on Unstiffened Compression Elements and Connections, Second Progress Report, Civil Engineering Study 79-, University of Missouri-Rolla, Rolla, MO, January Rang, T. N., T. V. Galambos, and W. W. Yu, Load and Resistance Factor Design of Cold Formed Steel: Calibration of the Design Provisions on Connections and Axially Loaded Compression Members, Third Progress Report, Civil Engineering Study 79-3, University of Missouri-Rolla, Rolla, MO, January Rang, T. N., T. V. Galambos, and W. W. Yu, Load and Resistance Factor Design of Cold Formed Steel: Calibration of the Design Provisions on Laterally Unbraced Beams and Beam-Columns, Fourth Progress Report, Civil Engineering Study 79-4, University of Missouri-Rolla, Rolla, MO, January Supomsilaphachai, B., T. V. Galambos, and W. W. Yu, Load and Resistance Factor Design of Cold Formed Steel: Calibration of the Design Provisions on Beam Webs, Fifth Progress Report, Civil Engineering Study 79-5, University of Missouri-Rolla, Rolla, MO, September Ellingwood, B., J. G. MacGregor, T. V. Galambos, and C. A. Cornell, Probability Based Load Criteria: Load Factors and Load Combinations, Journal of the Structural Division, ASCE, Vo1. 108, No. ST5, May American Society of Civil Engineers, Minimum Design Loads for Buildings and Other Structures, ASCE Standard 7-95, Ellingwood, B., T. V. Galambos, J. G. MacGregor, and C. A. Cornell, Development of a Probability Based Load Criterion for American National Standard A58:Building Code Requirements for Minimum Design Loads in Buildings and Other Structures, U. S. Department of Commerce, National Bureau of Standards, NBS Special Publication, June Ellingwood, B., J. G. MacGregor, T. V. Galambos, and C. A. Cornell, R -

158 Probability Based Load Criteria: Load Factors and Load Combinations, Journal of the Structural Division, ASCE, Vo1. 108, No. ST5, May Hsiao, L. E., W. W. Yu and T. V. Galambos, Load and Resistance Factor Design of Cold-Formed Steel: Comparative Study of Design Methods for Cold-Formed Steel, Eleventh Progress Report, Civil Engineering Study 88-4, University of Missouri-Rolla, Rolla, MO, February American Iron and Steel Institute, Cold-Formed Steel Design Manual, 1996 Edition Karren, K. W. and G. Winter, Effects of Cold-Work on Light Gage Steel Members, Journal of the Structural Division, ASCE, Vo1. 93, No. ST1, February Chajes, A., S. J. Britvec, and G. Winter, Effects of Cold-Straining on Structural Steels, Journal of Structure Division, ASCE, Vol. 89, No. ST, February American Society for Testing and Materials, Standard Methods and Definitions for Mechanical Testing of Steel Products, ASTM 370, Winter, G., Performance of Thin Steel Compression Flanges, Preliminary Publication, 3 rd Congress of the International Association of Bridge and Structural Engineering, Liege, Belgium. 4. Winter, G., Commentary on the 1968 Edition of the Specification for the Design of Cold-Formed Steel Structural Members, American Iron and Steel Institute, New York, NY, LaBoube, R. A. and W. W. Yu, Structural Behavior of Beam Webs Subjected Primarily to Shear Stress, Final Report, Civil Engineering Study 78-, University of Missouri-Rolla, Rolla, MO, June LaBoube, R. A. and W. W. Yu, Structural Behavior of Beam Webs Subjected to a Combination of Bending and Shear, Final Report, Civil Engineering Study 78-3, University of Missouri-Rolla, Rolla, MO, June LaBoube, R. A. and W. W. Yu, Bending Strength of Webs of Cold-Formed Steel Beams, Journal of the Structural Division, ASCE, Vol. 108, No. ST7, July Hetrakul, N. and W. W. Yu, Structural Behavior of Beam Webs Subjected to Web Crippling and a Combination of Web Crippling and Bending, Final Report, Civil Engineering Study 78-4, University of Missouri-Rolla, Rolla, MO, R - 3

159 June Hetrakul, N. and W. W. Yu, Cold-Formed Steel I-Beams Subjected to Combined Bending and Web Crippling, Thin-Walled Structures Recent Technical Advances and Trends in Design, Research and Construction, Rhodes, J. and A. C. Walker (Eds), Granada Publishing Limited, London, Nguyen, P. and W. W. Yu, Structural Behavior of Transversely Reinforced Beams Webs, Final Report, Civil Engineering Study 78-5, University of Missouri-Rolla, Rolla, MO, July Nguyen, P. and W. W. Yu, Structural Behavior of Longitudinally Reinforced Beams Webs, Final Report, Civil Engineering Study 78-6, University of Missouri-Rolla, Rolla, MO, July Yu, W. W., Cold-Formed Steel Design, nd Edition, Wiley-Interscience, New York, NY, Bleich, F., Buckling strength of Metal Structures, McGraw-Hill Book Co., New York, NY, Weng, C. C. and T. B. Pekoz, Subultimate Behavior of Uniformly Compressed Stiffened Plate Elements, Research Report, Cornell University, Ithaca, NY, Ortiz-Colberg, R. and T. B. Pekoz, Load Carrying Capacity of Perforated Cold-Formed Steel Columns, Research Report No. 81-1, Cornell University, Ithaca, NY, Pekoz, T. B., Development of a Unified Approach to the Design of Cold-Formed Steel Members, Report SG-86-4, American Iron and Steel Institute, Cohen, J. M. and T. B. Pekoz, Local Buckling Behavior of Plate Elements, Research Report, Cornell University, Ithaca, NY, Bulson, P. S., The Stability of Flat Plates, American Elsevier Publishing Company, New York, NY, Pekoz, T. B., Development of a Unified Approach to the Design of Cold-Formed Steel Members, Proceedings of the Eighth International Specialty Conference on Cold-Formed Steel Structures, University of Missouri-Rolla, Rolla, MO, November Desmond, T. P., T. B. Pekoz, and G. Winter, Edge Stiffeners for Thin-Walled Members, Journal of Structural Division, ASCE, Vol. 107, No. ST, Feb Nguyen, P. and W. W. Yu, Structural Behavior of Transversely Reinforced Beam Webs, Final Report, Civil Engineering Study 78-5, University of Missouri-Rolla, Rolla, MO, July Hsiao, L. E., W. W. Yu, and T. V. Galambos, Loads and Resistance Factor R - 4

160 Design of Cold-Formed Steel: Calibration of the AISI Design Provisions, Ninth Progress Report, Civil Engineering Study 88-, University of Missouri-Rolla, Rolla, MO, Feb American Iron and Steel Institute, LRFD Cold-Formed Steel Design Manual, Washington, D. C., Hsiao, L. E., W. W. Yu, and T. V. Galambos, Load and Resistance Factor Design of Cold-Formed Steel: Calibration of the AISI Design Provisions, Ninth Progress Report, Civil Engineering Study 88- University of Missouri-Rolla, Rolla, MO, February Reck, H. P., T. Pekoz, and G. Winter, Inelastic Strength of Cold-Formed Steel Beams, Journal of Structural Division, ASCE, Vol. 101, No. ST11, November Yener, M. and T. B. Pekoz, Partial Stress Redistribution in Cold-Formed Steel, Journal of Structural Engineering, ASCE, Vol. 111, No. 6, June Yener, M. and T. B. Pekoz, Partial Moment Redistribution in Cold-Formed Steel, Journal of Structural Engineering, ASCE, Vol. 111, No. 6, June American Iron and Steel Institute, Cold-Formed Steel Design Manual, Washington, D. C., Yu, W. W., Cold-Formed Steel Design, nd edition, Wiley-Interscience, NY, Winter, G., Discussion of Strength of Beams as Determined by Lateral Buckling, by Karl de Vries, Transactions, ASCE, Vol. 11, Winter, G., Lateral Stability of Unsymmetrical I-beams and Trusses, Transactions, ASCE, Vol. 198, Kirby, P. A. and D. A. Nethercot, Design for Structural Stability, John Wiley and Sons, Inc., NY, Pekoz, T. B. and G. Winter, Torsional-Flexural Buckling of Thin-Walled Sections Under Eccentric Load, Journal of Structural Division, ASCE, Vol. 95, No. ST5, May Pekoz, T. B. and N. Celebi, Torsional-Flexural Buckling of Thin-Walled Sections Under Eccentric Load, Engineering Research Bulletin 69-1, Cornell University, Galambos, T. V., Inelastic Buckling of Beams, Journal of Structural Division, ASCE, Vol. 89, No. ST5, October Pekoz, T. B. and P. Soroushian, Behavior of C- and Z- Purlins Under Uplift, Report, No. 81-, Cornell University, R - 5

161 6.15 Pekoz, T. B. and P. Soroushian, Behavior of C- and Z- Purlins Under Wind Uplift, Proceedings of the Sixth International Specialty Conference on Cold-Formed Steel Structures, University of Missouri-Rolla, Rolla, MO, November Laboube, R. A., Roof Panel to Purlin Connection: Rotational Restraint Factor, Proceedings of the IABSE Colloquium on Thin-Walled Metal Structures in Buildings, Stockholm, Sweden, Laboube, R. A., M. Golovin, D. J. Montague, D. C. Perry, and L. L. Wilson, Behavior of Continuous Span Purlin System, Proceedings of the Ninth International Specialty Conference on Cold-Formed Steel Structures, University of Missouri-Rolla, Rolla, MO, November Haussler, R. W. and R. F. Pahers, Connection Strength in Thin Metal Roof Structures, Proceedings of the Second International Specialty Conference on Cold-Formed Steel Structures, University of Missouri-Rolla, Rolla, MO, October Haussler, R. W., Theory of Cold-Formed Steel Purlin/Girt Flexure, Proceedings of the Ninth International Specialty Conference on Cold-Formed Steel Structures, University of Missouri-Rolla, Rolla, MO, November Bleich, F., Buckling Strength of Metal Structures, Mcgraw-Hill, NY, Laboube, R. A. and W. W. Yu, Structural Behavior of Beam Webs Subjected Primarily to Shear Stress, Final Report, Civil Engineering Study 78-, University of Missouri-Rolla, Rolla, MO, June Winter, G. and R. H. J. Pian, Crushing Strength of Thin Steel Webs, Cornell Bulletin 35, pt. 1, April Zetlin, L., Elastic Instability of Flat Plates Subjected to Partial Edge Loads, Journal of Structural Division, ASCE, Vol. 81, September Hetrakul, N. and W. W. Yu, Structural Behavior of Beam Webs Subjected to Web Crippling and a Combination of Web Crippling and Bending, Final Report, Civil Engineering Study 78-4, University of Missouri-Rolla, Rolla, MO, June Winter, G., Commentary on the 1968 Edition of the Specification for the Design of Cold-Formed Steel Structural Members, American Iron and Steel Institute, NY, Bhaka, B. H., R. A. Laboube, and W. W. Yu, The Effect of Flange Restraint on Web Crippling Strength, Final Report, Civil Engineering Study 9-1, University of Missouri-Rolla, Rolla, MO, March Cain, D. E., R. A. Laboube, and W. W. Yu, The Effect of Flange Restraint on Web Crippling Strength of Cold-Formed Steel Z- and I-Sections, Final Report, R - 6

162 Civil Engineering Study 95-, University of Missouri-Rolla, Rolla, MO, May Laboube, R. A., J. N. Nunney, and R. E. Hodge, Web Crippling Behavior of Nested Z-Purlins, Engineering Structures, Hancock, G. J., Editor, Vol. 16, No. 5, Butterworth-Heinemann Ltd., London, July, American Iron and Steel Institute, Cold-Formed Steel Design Manual, Washington, D. C., Pekoz, T. B., Development of a Unified Approach to the Design of Cold-Formed Steel Members, Report SG-86-4, American Iron and Steel Institute, American Institute of Steel Construction, Load and Resistance Factor Design Specification for Structural Steel Buildings, Chicago, IL., December Galambos, T. V. (Editor), Guide to Stability Design Criteria for Metal Structures, Fourth Edition, John Wilen and Sons, New York, N.Y., Harper, M. M., R. A. La Boube and W. W. Yu, Behavior of Cold-Formed Steel Roof Trusses, Summary Report, Civil Engineering study 95-3, University of Missouri-Rolla, Rolla, MO, May Winter, G., Commentary on the 1968 Edition of the Specification for the Design of Cold-Formed Steel Structural Members, American Iron Steel Institute, New York, NY, American Institute of Steel Construction, Specification for Structural Steel Building-Allowable Stress Design and Plastic Design, Chicago, IL, Chajes, A. and G. Winter, Torsional-Flexural Buckling of Thin-Walled Members, Journal of the Structural Division, ASCE, V01. 91, No. ST4, August Chajes, A., P. J. Fang, and G. Winter, Torsional-Flexural Buckling, Elastic and Inelastic and Inelastic of Cold-Formed Thin-Walled Columns, Engineering Research Bulletin, No. 66-1, Cornell University, Yu, W. W., Cold-Formed Steel Design, nd Edition, Wiley-Interscience, New York, N. Y Pekoz, T. B. and G. Winter, Torsional-Flexural Buckling of Thin-Walled Section Under Eccentric Load, Journal of the Structural Division, ASCE, V01. 95, No. ST5, May Pekoz, T. B., Combined Axial Load and Bending in Cold-Formed Steel R - 7

163 Members, Thin-Walled Metal Structures in Buildings, IABSE Colloquium, Stockholm, Sweden, Pekoz, T. B. and O. Sumer, Design Provisions for Cold-Formed Steel Columns and Beam-Column, Final Report, submitted to American Iron and Steel Institute, Cornell University, September American Institute of Steel Construction, Load and Resistance Factor Design Specification for Structural Steel Buildings, Chicago, IL, December Winter, G., Commentary on the 1968 Edition of the Specification for the Design of Cold-Formed Steel Structural Members, American Iron and Steel Institute, New York, NY, Sherman, D. R., Bending Equations for Circular Tubes, Annual Technical Session Proceedings, Structural Stability Research Council, Winter, G., Commentary on the 1968 Edition of the Specification for the Design of Cold Formed Steel Structural Members, American Iron and Steel Institute, New York, NY, Yu, W. W., Cold Formed Steel Design, nd Edition, wiley-intersciance, New York, NY, Winter, G., Lateral Bracing of Columns and Beams, Transactions, ASCE, Vo1. 15, Haussler, R. W., Strength of Elastically Stabilized Beams, Journal of Structural Division, ASCE, Vo1.90, No. ST3, June 1964; also ASCE Transaction, Vo1. 130, Haussler, R. W. and R. F. Pahers, Connection Strength in Thin Metal Roof Structures, Proceeding of the Second Specialty Conference on Cold Formed Steel Structures, University of Missouri-Rolla, Rolla, MO, October Lutz, L. A. and J. M. Fisher, A Unified Approach for Stability Bracing Requirements, Engineering Journal, AISC, 4 th Quarter, Vo1., No. 4, Salmon, C. G., and J. E. Johnson, Steel Structures: Design and Behavior, Third Edition, Harper Row, New York, NY, Yura, J. A., Fundamentals of Beam Bracing, Is Your Structure Suitably Braced? Structural Stability Research Council, April Structural Stability Research Council, Is Your Structure Suitably Braced?, Lehigh University, Bethlehem, PA, April R - 8

164 10.10 Murray, T. M. and S. Elhouar, Stability Requirements of Z-Purlin Supported Conventional Metal Building Roof Systems, Annual Technical Session Proceedings, Structural Stability Research Council, Winter, G., W. Lansing, and R. B. McCalley, Jr., Performance of Laterally Loaded Channel Beams, Research, Engineering Structures Supplement. (Colton Papers, Vo1. ), Green, G. G., G. Winter and T. R. Cuykendall, Light Gage Steel Columns in Wall-Braced Panels, Bulletin, No. 35/, Cornell University Engineering Experimental Station, Simaan, A., Bucking of Diaphragm-Braced Columns of Unsymmetrical Sections and Applications to Wall Studs Design, Report No. 353, Cornell University, Ithaca, NY, Simaan, A.and T. Pekoz, Diaphragm-Braced Members and Design of Wall Studs, Journal of the Structural Division, ASCE, Vo1 10, ST1, January Davis, C. S. and W. W. Yu, The Structural Performance of Cold Formed Steel Members with Perforated Elements, Final Report, University of Missouri-Rolla, Rolla, MO, May Rack Manufacturers Institute, Specification for the Design, Testing, and Utilization of Industrial Steel Storage Racks, Charlotte, NC, Pekoz, T. B., Design of Cold Formed Steel Columns, Proceedings of the Ninth International Specialty Conference on Cold Formed Steel Structural University of Missouri-Rolla, Rolla, MO, November Miller, T. H. and T. Pekoz, Studies on the Behavior of Cold Formed Steel Wall Stud Assemblies, Final Report, Cornell University, Ithaca, NY, Miller, T. H. and T. Pekoz, Unstiffened Strip Approach for Perforated Wall Studs, Journal of the Structural Engineering, ASCE, Vo1.10, No., February Brokenbrough, Rl L., Fastening of Cold-Formed Steel Framing, American Iron and Steel Institute, Washington, DC, September Pekoz, T. B. and W. McGuire, Welding of Sheet Steel, Report SG-79-, American Iron and Steel Institute, January Yu, W. W., Cold Formed Steel Design, nd Edition, Wiley-Interscience, New York, NY, American Welding Society, Structural Welding Code Sheet Steel, ANSI/AWS D1.3-89, Miami, FL, LaBoube, R. A. and W. W. Yu, Tensile Strength of Welded Connections, Final R - 9

165 Report, Civil Engineering Study 91-3, University of Missouri-Rolla, Rolla, MO, June LaBoube, R. A. and W. W. Yu, Behavior of Arc Spot Weld Connections in Tension, Journal of Structural Engineering, ASCE, Vol. 119, No. 7, July LaBoube, R. A. and W. W. Yu, Tensile Strength of Welded Connections, Final Report, Civil Engineering Study 91-3, University of Missouri-Rolla, Rolla, MO, June American Welding Society, Structural Welding Code Steel, ANSI/AWS D1.1-96, Miami, FL, American Welding Society, Recommended Practice for Resistance Welding, AWS C1.1-66, Miami, FL, AWS, Recommended Practice for Resistance Welding Coated Low Carbon Steels, AWS C1.3-70, Miami, FL, Research Council and Structural Connections, Allowable Stress Design Specification for Structural Joints Using ASTM A35 or A490 Bolts, Research Council and Structural Connections, Load and Resistance Factor Design Specification for Structural Joints Using ASTM A35 or A490 Bolts, Winter, G, Light Gage Steel Connections with High-Strength, High-Torqued Bolts, Publications, IABSE, Vol. 16, Winter, G., Tests on Bolted Connections in Light Gage Steel, Journal of the Structural Division, ASCE, Vol. 8, No. ST, February Yu, W. W., AISI Design Criteria for Bolted Connections, Proceedings of the Sixth International Specialty Conference on Cold-Formed Steel Structures, University of Missouri-Rolla, Rolla, MO, November Yu, W. W., Cold-Formed Steel Design, Wiley-Interscience, New York, NY, Yu, W. W., Cold-Formed Steel Design, nd Edition, Wiley-Interscience, New York, NY, Chong, K. P. and R. B. Matlock, Light Gage Steel Bolted Connections without Washers, Journal of the Structural Division, ASCE, Vol. 101, No. ST7, July Pekoz, T.B., Design of Cold-Formed Steel Screw Connections, Proceedings of the Tenth International Specialty Conference on Cold-Formed Steel Structures, University of Missouri-Rolla, Rolla, MO, October European Convention for Construction Steelwork, European Recommendations for the Design of Light Gage Steel Members, First Edition, R - 10

166 Brussels, Belgium, British Standards Institution, British Standard: Structural Use of Steelwork in Building, Part 5 Code of Practice for Design of Cold-Formed Sections, BS 5950: Part 5: CF9-, American Iron and Steel Institute, Test Methods for Mechanically Fastened Cold-Formed Steel Connections, Research Report CF9-, Washington, D. C., Birkernoe, P. C. and M. I. Gilmor, Behavior of Bearing Critical Double-Angle Beam Connections, Engineering Journal, AISC, Fourth Quarter, R - 11

167 Anneal Amplification factor Arc seam weld Arc spot weld Aspect ratio Batten plate Beam Beam-column Biaxial bending Braced frame Buckling Coefficient Buckling fracture Buckling load Built-up member Butt joint Cladding Closed-form solution Coefficient of variation Cold-formed steel member Cold-work effect Cold rivet Column Column Curve Combined mechanism Compact section Composite beam Composite column Connection Critical load Critical moment Curvature Design documents Design strength Diagonal bracing Diagonal tension field action Diaphragm Diaphragm action Double curvature Drift A - 1

168 Ductility factor Effective length k Effective length factor k Effective moment of inertia Effective stiffness Effective width Elastic analysis - Elastic-perfectly plastic Element Elongation Embedment Euler formula Euler load Factor load Fastener Fatigue Fillet weld First-order analysis Flat width Flange Curling Flexible connection Flexural strength Floor system Force Fracture toughness Fracture buckling Fracture instability Fully composite beam Fusion weld Gradual-yielding type Groove weld Hot rivet Hot-rolling Hybrid-beam Hysteresis loop Inclusions Inelastic action Inside bend radius Instability Joint Lateral bracing member ( - ) Lateral (or lateral-torsional) buckling A -

169 Limit state Lip Load factor Loads LRFD Load and Resistance Factor Design Local buckling Lower-bound load Moment redistribution Nominal load Nominal length Noncompact section P- P-delta effect Panel-zone Partial plastification Partially composite beam Plane frame Plastic analysis Plastic design section Plastic hinge Plastic modulus Plastic moment Plastic strain Plastic zone Plastic Plug weld Post-buckling strength Pull-out failure Pull-over failure Purlin Radius of gyration Required strength Residual stress Resistance Resistance factor Resistance weld Ridge frame Roof deck Root of the flange Rotation capacity Rotational stiffness St. Venant torsion A - 3

170 Second-order analysis Section modulus Service load Serviceability limit state Shape factor Sharp-yielding type Shear-friction Shear lag Shear wall Sidesway Sidesway buckling Single curvature Slenderness ratio Slenderness section Slip-critical joint Space frame Splice Stability-limit load Steel deck Steel panel for roof Steel panel for floor Steel panel for wall Steel roof deck Stiffened element Stiffer Stiffness Strain aging Strain hardening Strength design Strength limit state Stress Stress concentration Strength axial Structural system Stub column Successive approximation Supported frame Tangent modulus Temporary structure Tensile strength Tensile field action Toe of the fillet A - 4

171 - Torque-tensile relationship Unbraced length Undercut Uneven cooling Universal-mill plate Unstiffened element Upper bound load Vertical bracing ( ) Wall panel Wall stub Warping torsion Weak axial Web buckling Web crippling Weld Width-to-thickness ratio Working load Yield moment Yield plateau Yield point Yield strength Yield stress A - 5

172 A A 1 A A b A g A n A s A se A w b e c C C mx C my C w C y d D d a d e d h d s D s d se d wc - = d s B - 1

173 e E e y = F y /E f c f 1 f f av f b f cr F cr F m F sy F u F u1 F u F wy F xx F y F yc F yf F yu F yv g H I a I s I sf I x I y I yc J k ( ) / (F y or F ys ) X Y ( ) St. Venant B -

174 K K v K x K y L L r L s L st L x L y m M A M B M c M e M m M max M n M no X Y X Y C 1/4 3/4 ( / ) Z M nx M ny M nxo M u X P u M ux M uy M y n n p N P P DL P E P LL P m / B - 3

175 P n P no P not P nov P ns P nt P u R r r cy r I r 0 R n R r R u s S S c S e S f S ft t C I ( ) s M c /S f B - 4

176 t 1 t t e T n T s T u t w V R V Q V n w W 90 w 1 w w f Y o β ( )/( ) µ 0.3 λ φ φ b φ v φ w φr n θ ρ τ τ cr (45 o θ<90 o ) Z ( ) B - 5

177 B - 6

DB4102-P062-擴頭鋼筋.pdf

DB4102-P062-擴頭鋼筋.pdf ACI 318-11 ACI 352-02 CCT ACI 318-11 2.2 d b 70 MPa ACI 318-11 ACI 318-11 joints ACI 318-08 -11 ACI, 2008, 2011 ACI 352-02 ACI, 2002 1 62 2(a) 2(b) (2) (3) (4) RC (5) RC (6) RC RC 1 (a) (b) 2 (1) T 3 (1)

More information

附件一 摘要格式範例

附件一 摘要格式範例 ATC-40(996) (Capacity Spectrum Method (Capacity Curve) Acceleration)(Spectral Displacement) (Performance Point) ETAB 93 2 94 7 8 ETABS (999;2000) ETABS ATC-40(996) Pushover ETAB ETABS 93 2 94 7 8 ETABS

More information

Fig. 1 Frame calculation model 1 mm Table 1 Joints displacement mm

Fig. 1 Frame calculation model 1 mm Table 1 Joints displacement mm 33 2 2011 4 ol. 33 No. 2 Apr. 2011 1002-8412 2011 02-0104-08 1 1 1 2 361003 3. 361009 3 1. 361005 2. GB50023-2009 TU746. 3 A Study on Single-span RC Frame Reinforced with Steel Truss System Yuan Xing-ren

More information

2 49 30667. 7m 2, 424008m 2,,,, 20. 5m,, 4. 6 m 2 3, - 14. 5m, 87200m 2,, ( ) Leoadaly 1 C40, 2200mm 2650mm, 30m, 49000kN 71000kN, 193m, 156m,,, 2 1,

2 49 30667. 7m 2, 424008m 2,,,, 20. 5m,, 4. 6 m 2 3, - 14. 5m, 87200m 2,, ( ) Leoadaly 1 C40, 2200mm 2650mm, 30m, 49000kN 71000kN, 193m, 156m,,, 2 1, 11 2 2009 4 Progress in Steel Building Structures Vol. 11 No. 2 Apr. 2009 1, 1, 1, 1, 1, 1, 2 (1. ( ), 518033 ; 2., 518031) : 238m, 260m, 17. 3, B,,, : ; ; ; ; : TU 355 : A : 1671-9379 (2009) 02-0048 -

More information

Linn Cove [1,2] 1(a)(b) Figg and Muller epoxy epoxy Linn Cove 183 [3] (a) (b) (c) (d) 1 43

Linn Cove [1,2] 1(a)(b) Figg and Muller epoxy epoxy Linn Cove 183 [3] (a) (b) (c) (d) 1 43 George C. Lee (1) (2) C393Z π 42 Linn Cove [1,2] 1(a)(b) Figg and Muller 6.1 1.5 epoxy epoxy Linn Cove 183 [3] (a) (b) (c) (d) 1 43 Dollas [4] [5] (P1) (P2 P3P4) 2Priestley et al. (2002) [6] ( 3 ) P1 P2

More information

UDC

UDC CECS 102:2002 Technical specification for steed structure of light-eight Buildings ith gabled frames 2003 1 Technical specification for steed structure of light-eight Buildings ith gabled frames CECS102:2002

More information

~ ~ Y 3 X / / mm 400 ~ 700 C40 ~ C ~ 400 C40 ~ C ~

~ ~ Y 3 X / / mm 400 ~ 700 C40 ~ C ~ 400 C40 ~ C ~ 43 7 2013 4 Building Structure Vol. 43 No. 7 Apr. 2013 518038 TU398 +. 2 A 1002-848X 2013 07-0059-06 Discussion on inclined column design of a super high-rise building Zhang Lin Zhang Delong Shenzhen CAPOL

More information

ο HOH 104 31 O H 0.9568 A 1 1 109 28 1.01A ο Q C D t z = ρ z 1 1 z t D z z z t Qz = 1 2 z D z 2 2 Cl HCO SO CO 3 4 3 3 4 HCO SO 2 3 65 2 1 F0. 005H SiO0. 032M 0. 38 T4 9 ( K + Na) Ca 6 0 2 7 27 1-9

More information

3978 30866 4 3 43 [] 3 30 4. [] . . 98 .3 ( ) 06 99 85 84 94 06 3 0 3 9 3 0 4 9 4 88 4 05 5 09 5 8 5 96 6 9 6 97 6 05 7 7 03 7 07 8 07 8 06 8 8 9 9 95 9 0 05 0 06 30 0 .5 80 90 3 90 00 7 00 0 3

More information

-2 4 - cr 5 - 15 3 5 ph 6.5-8.5 () 450 mg/l 0.3 mg/l 0.1 mg/l 1.0 mg/l 1.0 mg/l () 0.002 mg/l 0.3 mg/l 250 mg/l 250 mg/l 1000 mg/l 1.0 mg/l 0.05 mg/l 0.05 mg/l 0.01 mg/l 0.001 mg/l 0.01 mg/l () 0.05 mg/l

More information

增 刊 谢 小 林, 等. 上 海 中 心 裙 房 深 大 基 坑 逆 作 开 挖 设 计 及 实 践 745 类 型, 水 位 埋 深 一 般 为 地 表 下.0~.7 m 场 地 地 表 以 下 27 m 处 分 布 7 层 砂 性 土, 为 第 一 承 压 含 水 层 ; 9 层 砂 性 土

增 刊 谢 小 林, 等. 上 海 中 心 裙 房 深 大 基 坑 逆 作 开 挖 设 计 及 实 践 745 类 型, 水 位 埋 深 一 般 为 地 表 下.0~.7 m 场 地 地 表 以 下 27 m 处 分 布 7 层 砂 性 土, 为 第 一 承 压 含 水 层 ; 9 层 砂 性 土 第 34 卷 增 刊 岩 土 工 程 学 报 Vol.34 Supp. 202 年. 月 Chinese Journal of Geotechnical Engineering Nov. 202 上 海 中 心 裙 房 深 大 基 坑 逆 作 开 挖 设 计 及 实 践 谢 小 林 2 2, 翟 杰 群, 张 羽, 杨 科, 郭 晓 航, 贾 坚 (. 同 济 大 学 建 筑 设 计 研 究 院 (

More information

Microsoft Word - 10-06-0186-D10-0627孙竹森.doc

Microsoft Word - 10-06-0186-D10-0627孙竹森.doc 第 34 卷 第 6 期 电 网 技 术 Vol. 34 No. 6 2010 年 6 月 Power System Technology Jun. 2010 文 章 编 号 :1000-3673(2010)06-0186-07 中 图 分 类 号 :TM 754 文 献 标 志 码 :A 学 科 代 码 :470 4051 输 电 线 路 钢 管 塔 的 推 广 与 应 用 孙 竹 森 1, 程

More information

é SI 12g C = 6 12 = 1 H2( g) + O2( g) H2O( l) + 286kJ ( 1) 2 1 1 H 2( g) + O2( g) H2O( l) H = 286kJ mol ( 2) 2 1 N 2 ( g) + O2( g) NO 2 ( g) 34kJ 2 1 1 N 2 ( g) + O2( g) NO 2 ( g) H = + 34kJ mol 2 1 N

More information

五花八门宝典(一).doc

五花八门宝典(一).doc BBS...5... 11...23...26...31...46...49...54...55...57...59...62... 110... 114... 126... 132... 149 I "108" 1 2 3 4 BBS 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 M ( ) Kg S ( ) A ( ) K (

More information

12-1b T Q235B ML15 Ca OH Table 1 Chemical composition of specimens % C Si Mn S P Cr Ni Fe

12-1b T Q235B ML15 Ca OH Table 1 Chemical composition of specimens % C Si Mn S P Cr Ni Fe * - - 100084 Q235B ML15 Ca OH 2 DOI 10. 13204 /j. gyjz201508023 STUDY OF GALVANIC CORROSION SENSITIVITY BETWEEN ANY COUPLE OF STUD WELDMENT OR BEAM Lu Xinying Li Yang Li Yuanjin Department of Civil Engineering

More information

33 4-67 Fig. 1 1 Plan of typical floor 2 Fig. 2 Analysis model - 1 0. 85 4 1 Table 1 Period results s SATWE ETABS SAP2000 ABAQUS T 1 4. 681 4. 679 4.

33 4-67 Fig. 1 1 Plan of typical floor 2 Fig. 2 Analysis model - 1 0. 85 4 1 Table 1 Period results s SATWE ETABS SAP2000 ABAQUS T 1 4. 681 4. 679 4. 33 4 2011 8 Earthquake Resistant Engineering and Retrofitting Vol. 33 No. 4 Aug. 2011 1002-8412 2011 04-0066-07-1 2 2 2 3 1. 100084 2. 518029 3 523808-215m 11. 2 - TU973 +. 17 A Summarization of Structural

More information

Ζ # % & ( ) % + & ) / 0 0 1 0 2 3 ( ( # 4 & 5 & 4 2 2 ( 1 ) ). / 6 # ( 2 78 9 % + : ; ( ; < = % > ) / 4 % 1 & % 1 ) 8 (? Α >? Β? Χ Β Δ Ε ;> Φ Β >? = Β Χ? Α Γ Η 0 Γ > 0 0 Γ 0 Β Β Χ 5 Ι ϑ 0 Γ 1 ) & Ε 0 Α

More information

國 家 通 訊 傳 播 委 員 會 本 會 103 年 度 辦 公 廳 舍 維 護 工 程 施 工 綱 要 規 範 ( 除 契 約 圖 說 另 有 規 定 外, 悉 以 本 規 範 為 准 ) 103 年 7 月 目 錄 名 稱 頁 數 名 稱 頁 數 01. 一 般 要 求 50 09. 裝 修 工 程 17 01271 計 量 與 計 價 2 09910 油 漆 11 01310 施 工 管

More information

建築工程品質管理案例研討

建築工程品質管理案例研討 1.1...2-1 1.2...2-2 1.3...2-2 2.1...2-3 2.2...2-3 2.3...2-8 3.1...2-11 3.2...2-12 3.3...2-15 3.4...2-16 3.5...2-17 4.1...2-19 4.2...2-19 4.3...2-22 4.4...2-24 4.5...2-26 4.6...2-28 5.1...2-29 5.2...2-32

More information

VLBI2010 [2] 1 mm EOP VLBI VLBI [3 5] VLBI h [6 11] VLBI VLBI VLBI VLBI VLBI GPS GPS ( ) [12] VLBI 10 m VLBI 65 m [13,14] (referen

VLBI2010 [2] 1 mm EOP VLBI VLBI [3 5] VLBI h [6 11] VLBI VLBI VLBI VLBI VLBI GPS GPS ( ) [12] VLBI 10 m VLBI 65 m [13,14] (referen 31 2 Vol. 31, No. 2 2013 5 PROGRESS IN ASTRONOMY May., 2013 doi: 10.3969/j.issn.1000-8349.2013.02.08 VLBI 1,2 1 ( 1. 200030 2. 100049 ) VLBI VLBI VLBI VLBI VLBI VLBI P228.6 A 1 (VLBI) 20 60 (ITRF) (EOP)

More information

00 sirius 3R SIRIUS 3R 3RV1 0A 1 3RT1 3RH1 3 3RU11/3RB SIRIUS SIRIUS TC= / 3RV1 A 1 IEC6097- IP0 ( IP00) 1/3 IEC6097- (VDE0660) DIN VDE 06 0 AC690V, I cu 00V 1) P A n I n I cu A kw A A ka S00 0.16 0.0

More information

高層辦公建築避難演練驗證與避難安全評估之研究

高層辦公建築避難演練驗證與避難安全評估之研究 MOIS 921003 I ABSTRACT KEY WORD: the high-story office buildings evaluating of evacuation safety. the evacuating drill the As result of the rapid economic development in recent years domestically, as

More information

! # % & ( & # ) +& & # ). / 0 ) + 1 0 2 & 4 56 7 8 5 0 9 7 # & : 6/ # ; 4 6 # # ; < 8 / # 7 & & = # < > 6 +? # Α # + + Β # Χ Χ Χ > Δ / < Ε + & 6 ; > > 6 & > < > # < & 6 & + : & = & < > 6+?. = & & ) & >&

More information

鋼結構建築工地安裝作業手冊

鋼結構建築工地安裝作業手冊 RC ISO AISCAWSJASS 1 1-1 2 1. 2. 3. 4. 1. - 87 2. Chinese National Standards 3. Japanese Industrial Standards 4. American Society of Testing and Materials 3 5. American National Standards Institute 6.

More information

m K K K K m Fig. 2 The plan layout of K K segment p

m K K K K m Fig. 2 The plan layout of K K segment p 410151 K7 + 914 - K7 + 984 12 5. 3 Midas DOI 10. 7617 /j. issn. 1000-8993. 2013. 09. 020 THE ANALYSIS OF THE DESIGN AND CONSTRUCTION SECURITY OF DEEP FOUNDATION IN PURUI TUNNEL OPEN-CUT SEGMENT Yang Ping

More information

( )

( ) ( ) * 22 2 29 2......................................... 2.2........................................ 3 3..................................... 3.2.............................. 3 2 4 2........................................

More information

Ps22Pdf

Ps22Pdf ) ,,, :,,,,,,, ( CIP) /. :, 2001. 9 ISBN 7-5624-2368-7.......... TU311 CIP ( 2001) 061075 ( ) : : : : * : : 174 ( A ) : 400030 : ( 023) 65102378 65105781 : ( 023) 65103686 65105565 : http: / / www. cqup.

More information

11 25 stable state. These conclusions were basically consistent with the analysis results of the multi - stage landslide in loess area with the Monte

11 25 stable state. These conclusions were basically consistent with the analysis results of the multi - stage landslide in loess area with the Monte 211 11 11 158 JOURNAL OF RAILWAY ENGINEERING SOCIETY Nov 211 NO. 11 Ser. 158 16-216 211 11-24 - 6 1 2 3 3 3 1. 126 2. 92181 74 3. 181 1 2 3 4 1. 27 1. 3 1. 56 1. 73 4 1 2 3 4. 96 1. 15 1. 48 1. 6 f s =

More information

68 2012 11 the requirements of load - bearing rescue and turning of the large fire engine can be served as an outdoor safety area. 5 The second floor

68 2012 11 the requirements of load - bearing rescue and turning of the large fire engine can be served as an outdoor safety area. 5 The second floor 2012 11 11 170 JOURNAL OF RAILWAY ENGINEERING SOCIETY Nov 2012 NO. 11 Ser. 170 1006-2106 2012 11-0067 - 06 1 2 ( 1. 苏 州 设 计 研 究 院 股 份 有 限 公 司, 江 苏 苏 州 215021; 2. 苏 州 市 消 防 支 队, 江 苏 苏 州 215021) 1 2 3 4

More information

PLAXIS 2D m PLAXIS 3D Foundation mm ~ m ~ mm m m 312 m 200 mm 0. 98

PLAXIS 2D m PLAXIS 3D Foundation mm ~ m ~ mm m m 312 m 200 mm 0. 98 2011 11 11 158 JOURNAL OF RAILWAY ENGINEERING SOCIETY Nov 2011 NO. 11 Ser. 158 1006-2106 2011 11-0052 - 06 200002 6 PLAXIS 3D Foundation HS TU 471 A Design and 3D Numerical Analysis of a Deep Excavation

More information

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P.

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P. () * 3 6 6 3 9 4 3 5 8 6 : 3. () ; () ; (3) (); (4) ; ; (5) ; ; (6) ; (7) (); (8) (, ); (9) ; () ; * Email: [email protected] . () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) :

More information

1 2 / 3 1 A (2-1) (2-2) A4 6 A4 7 A4 8 A4 9 A ( () 4 A4, A4 7 ) 1 (2-1) (2-2) ()

1 2 / 3 1 A (2-1) (2-2) A4 6 A4 7 A4 8 A4 9 A ( () 4 A4, A4 7 ) 1 (2-1) (2-2) () (39mm E-Mail ( )( ), : : 1 1 ( ) 2 2 ( ) 29mm) WSK ( 1 2 / 3 1 A4 2 1 3 (2-1) 2-1 4 (2-2) 2-2 5 A4 6 A4 7 A4 8 A4 9 A4 10 11 ( () 4 A4, 5 6 7 8 A4 7 ) 1 (2-1) (2-2) () 1 2 (2-1) 3 (2-2) 4 5 6 7 (8 ) 9

More information

... II... III A A A.2...

... II... III A A A.2... ICS 13.200 X XX DZ DZ Specfcaton of desgn and constructon for landslde stablzaton - - - - 1 ... II... III 1... 1 2... 1 3... 1 4... 3 5... 4 6... 7 7... 12 8... 18 9... 24 10... 28 11... 32 12... 35 13...

More information

m m m

m m m * 610034 DOI 10. 13204 /j. gyjz201511010 RESEARCH ON CHENGDU MODERN INDUSTRIAL ARCHITECTURAL HERITAGE Li Yunzhang Lu Liyang College of Architecture and Environment Sichuan University Chengdu 610034 China

More information

4 / ( / / 5 / / ( / 6 ( / / 7 1 2 / 3 ( 4 ( 2003 8 ( 2

4 / ( / / 5 / / ( / 6 ( / / 7 1 2 / 3 ( 4 ( 2003 8 ( 2 : / ( 6 (2003 8 : ( 1 ( ( / / (,, ( ( - ( - (39mm 29mm 2 ( 1 2 3-6 3 6-24 6-48 12-24 8-12 WSK / WSK WSK 1 4 / ( / / 5 / / ( / 6 ( / / 7 1 2 / 3 ( 4 ( 2003 8 ( 2 9 5 ( 10 3 11 / (600 4 5 AA 710 AB 720 730

More information

認可人士、註冊結構工程師及註冊岩土工程師作業備考 APP-142

認可人士、註冊結構工程師及註冊岩土工程師作業備考 APP-142 2009 年 8 月 按 新 分 類 方 法 重 新 發 布 的 認 可 人 士 註 冊 結 構 工 程 師 及 註 冊 岩 土 工 程 師 作 業 備 考 APP-142 屋 宇 署 認 可 人 士 及 註 冊 結 構 工 程 師 作 業 備 考 296 2004 年 混 凝 土 的 結 構 使 用 作 業 守 則 2004 年 混 凝 土 的 結 構 使 用 作 業 守 則 ( 下 稱 守 則

More information

I 宋 出 认 V 司 秋 通 始 司 福 用 今 给 研 除 用 墓 本 发 共 柜 又 阙 杂 既 * *" * " 利 牙 激 I * 为 无 温 乃 炉 M S H I c c *c 传 统 国 古 代 建 筑 的 砺 灰 及 其 基 本 性 质 a 开 始 用 牡 壳 煅 烧 石 灰 南

I 宋 出 认 V 司 秋 通 始 司 福 用 今 给 研 除 用 墓 本 发 共 柜 又 阙 杂 既 * * *  利 牙 激 I * 为 无 温 乃 炉 M S H I c c *c 传 统 国 古 代 建 筑 的 砺 灰 及 其 基 本 性 质 a 开 始 用 牡 壳 煅 烧 石 灰 南 尽 对 古 证 K 避 不 B 要 尽 也 只 得 随 包 国 古 代 建 筑 的 砺 灰 及 其 基 本 性 质 传 统 国 古 代 建 筑 的 顿 灰 及 其 基 本 性 质 李 黎 张 俭 邵 明 申 提 要 灰 也 称 作 贝 壳 灰 蜊 灰 等 是 煅 烧 贝 壳 等 海 洋 生 物 得 的 氧 化 钙 为 主 要 成 分 的 材 料 灰 作 为 国 古 代 沿 海 地 区 常 用 的 建

More information

( m+ n) a 6 4 4 4 4 7 4 4 4 48 m n m+ n a a = a 4 a 4 3 a a 4 a 4 3 a = a 4 a 4 4 a 4 == 3 = a ma na ( m+ n) a A 0 a m a n m n a m+n 0 B a m a n m n m>n a m-n C 0 (a m ) n m n a mn D (ab) n n a n b n (

More information

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip * - 1 1 2 3 1. 100124 2. 100124 3. 210018 - ABAQUS - DOI 10. 13204 /j. gyjz201511033 EXPERIMENTAL STUDY AND THEORETICAL MODEL OF A NEW TYPE OF STEEL-LEAD DAMPING Shen Fei 1 Xue Suduo 1 Peng Lingyun 2 Ye

More information

ASCE ASCE

ASCE ASCE ASCE igroup May, 2013 ASCE ASCE The American Society of Civil Engineers 1852 150 159 14 (ANSI) (Osaka Bay; airport Japan) (Interstate Highway ; US highway) (Golden Gate; bridge AND wind; bridge AND resonance)

More information

PowerPoint Presentation

PowerPoint Presentation 1 1 2 3 4 2 2004 20044 2005 2006 5 2007 5 20085 20094 2010 4.. 20112116. 3 4 1 14 14 15 15 16 17 16 18 18 19 19 20 21 17 20 22 21 23 5 15 1 2 15 6 1.. 2 2 1 y = cc y = x y = x y =. x. n n 1 C = 0 C ( x

More information

Microsoft Word - 301E高温样本封面.doc

Microsoft Word - 301E高温样本封面.doc 无锡卓尔阀业有限公司 301E 三偏心高温 蝶阀 Triple Eccentric High Temperature Butterfly Valves STANDARD SPECIFICATION 301E GENERAL 301E Triple Eccentric High Temperature Butterfly valve 301E Triple eccentric high temperature

More information

数 学 高 分 的 展 望 一 管 理 类 联 考 分 析 第 一 篇 大 纲 解 析 篇 编 写 : 孙 华 明 1 综 合 能 力 考 试 时 间 :014 年 1 月 4 日 上 午 8:30~11:30 分 值 分 配 : 数 学 :75 分 逻 辑 :60 分 作 文 :65 分 ; 总

数 学 高 分 的 展 望 一 管 理 类 联 考 分 析 第 一 篇 大 纲 解 析 篇 编 写 : 孙 华 明 1 综 合 能 力 考 试 时 间 :014 年 1 月 4 日 上 午 8:30~11:30 分 值 分 配 : 数 学 :75 分 逻 辑 :60 分 作 文 :65 分 ; 总 目 录 数 学 高 分 的 展 望... 1 第 一 篇 大 纲 解 析 篇... 1 一 管 理 类 联 考 分 析... 1 二 最 新 大 纲 解 析... 1 三 考 前 复 习 资 料 及 方 法... 第 二 篇 总 结 篇... 4 1 应 用 题 考 点 总 结 与 技 巧 归 纳... 4 代 数 模 块 题 型 归 纳 及 考 点 总 结... 9 3 数 列 模 块 题 型 归

More information

因 味 V 取 性 又 鸟 U 且 最 大 罗 海 惜 梅 理 春 并 贵 K a t h l ee n S c h w e r d t n er M f l e z S e b a s t i a n C A Fe rs e T 民 伊 ' 国 漳 尤 地 视 峰 州 至 周 期 甚 主 第 应

因 味 V 取 性 又 鸟 U 且 最 大 罗 海 惜 梅 理 春 并 贵 K a t h l ee n S c h w e r d t n er M f l e z S e b a s t i a n C A Fe rs e T 民 伊 ' 国 漳 尤 地 视 峰 州 至 周 期 甚 主 第 应 国 ' 东 极 也 直 前 增 东 道 台 商 才 R od e ric h P t ak 略 论 时 期 国 与 东 南 亚 的 窝 贸 易 * 冯 立 军 已 劳 痢 内 容 提 要 国 与 东 南 亚 的 窝 贸 易 始 于 元 代 代 大 规 模 开 展 的 功 效 被 广 为 颂 扬 了 国 国 内 市 场 窝 的 匮 乏 窝 补 虚 损 代 上 流 社 会 群 体 趋 之 若 鹜 食 窝

More information

Research of numerical simulation of high strength steel welding residual stress and fatigue life By Chen Song

Research of numerical simulation of high strength steel welding residual stress and fatigue life By Chen Song Research of numerical simulation of high strength steel welding residual stress and fatigue life By Chen Song I ABSTRACT They are very necessary and important to carry on the research on the welding residual

More information

44(1) (1) (4) (4) 63-88TSSCI Liu, W. Y., & Teele S. (2009). A study on the intelligence profile

44(1) (1) (4) (4) 63-88TSSCI Liu, W. Y., & Teele S. (2009). A study on the intelligence profile 03-8632639 E-mail [email protected] //1997/8~2000/7 / 2008 8 () 1992 8 1. 2. 3. 4. Wei-Yu Liu 2001.8~2008.7 * SCI EI SSCI A&HCI A 2016 11(1) 1-11 Liu, W. Y. (2015). The Study of Writing Reflective

More information

Ps22Pdf

Ps22Pdf (3 ) ,,, ;,, (CIP) /. 3. :, 003. 11 () ISBN 75610994.... TB301 CIP (000) 75084 : : 17, :71007 :09-8493844 : www.nwpup.com : : 787 mm1 09 mm 1/ 16 : 1.5 : 509 : 1997 10 1 003 11 3 5 : 15 000 : 7.00 : (,,,

More information

一 本 学 科 概 况 ( 学 科 一 般 情 况 ) 1.1 学 科 概 况 ( 管 理 科 学 与 工 程 ) 管 理 科 学 与 工 程 是 管 理 学 门 类 中 的 一 级 学 科, 其 下 不 设 二 级 学 科 管 理 科 学 与 工 程 学 科 是 以 人 类 社 会 组 织 管 理

一 本 学 科 概 况 ( 学 科 一 般 情 况 ) 1.1 学 科 概 况 ( 管 理 科 学 与 工 程 ) 管 理 科 学 与 工 程 是 管 理 学 门 类 中 的 一 级 学 科, 其 下 不 设 二 级 学 科 管 理 科 学 与 工 程 学 科 是 以 人 类 社 会 组 织 管 理 深 圳 大 学 管 理 科 学 与 工 程 一 级 学 科 学 术 学 位 硕 士 研 究 生 培 养 方 案 修 订 前 期 调 研 报 告 学 院 :( 盖 章 ) 学 科 ( 位 ) 点 名 称 : 管 理 科 学 与 工 程 ( 一 级 学 科 ) 负 责 人 : 王 家 远 1 一 本 学 科 概 况 ( 学 科 一 般 情 况 ) 1.1 学 科 概 况 ( 管 理 科 学 与 工 程

More information

第9章 排队论

第9章  排队论 9, 9. 9.. Nt () [, t] t Nt () { Nt ( ) t [, T]} t< t< t< t + N ( ( t+ ) i+ N( t) i, N( t) i,, N( t) i N + + N ( ( t ) i ( t ) i ) (9-) { Nt ( ) t [, T)} 9- t t + t, t,, t t t { Nt ( ) t [, T] } t< t,,

More information

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π ! # % & ( ) + (,. /0 +1, 234) % 5 / 0 6/ 7 7 & % 8 9 : / ; 34 : + 3. & < / = : / 0 5 /: = + % >+ ( 4 : 0, 7 : 0,? & % 5. / 0:? : / : 43 : 2 : Α : / 6 3 : ; Β?? : Α 0+ 1,4. Α? + & % ; 4 ( :. Α 6 4 : & %

More information

<4D6963726F736F667420576F7264202D20D1D0BEBFCAD2C4EAB1A8323030392DC9CFCDF8B0E62E646F63>

<4D6963726F736F667420576F7264202D20D1D0BEBFCAD2C4EAB1A8323030392DC9CFCDF8B0E62E646F63> 同 济 大 学 建 筑 工 程 系 钢 与 轻 型 结 构 研 究 室 2009 年 度 年 报 本 年 报 统 计 日 期 :2009.01.01~2009.12.31 2010 年 1 月 编 印 钢 与 轻 型 结 构 研 究 室 2009 年 度 报 告 (2010/01/15 完 稿 ) (1) 人 事 变 更 3 月 : 硕 士 研 究 生 程 欣 ( 导 师 陈 以 一 ) 经 提 前

More information

???}?????????O

???}?????????O 粘 粘 粘粘 粘 粘粘粘 粘 粘 Effect of Pozzolan on Shear Behavior of Prestressed Concrete Beams 粘粘粘粘粘粘 Chien-Hung Lin 粘粘 粘 粘 Yan-Liang Chen 粘 粘粘粘粘粘 粘 100 粘 粘 7 粘 粘 粘 100 7 26 粘 粘粘 粘 粘粘粘粘 粘 粘粘粘粘粘 粘 粘 粘粘粘粘粘 粘粘粘粘粘 粘粘

More information

[6].. (reduced beam section connection, RBS) RBS RBS. 2 /mm A/cm 2 I/cm

[6].. (reduced beam section connection, RBS) RBS RBS. 2 /mm A/cm 2 I/cm 36 3 2014 6 1),2) ( 266033) ( 266033)..,,,, TU973+.13 TU391 A doi 10.6052/1000-0879-13-429 SEISMIC PERFORMANCE OF STEEL STRUCTURES WITH REDUCED BEAM SECTION CONNECTIONS 1) HAN Minglan,2) WANG Yan CHEN

More information

(Electron Spectroscopy) 3-2

(Electron Spectroscopy) 3-2 III AES...3...7...11...12...14 1....14 2....18 (Depth Profile)...21...25 (Electron Spectroscopy) 3-2 Pierre Auger 1922 1923 30 P. Auger X (Auger ) AES 1. (Auger Effect) ' E L2,3 K L 1 (EK E ) L1 X ( XPS

More information

38 2013 1 1972 280mm 110mm 14 7-8 BRBF 4 HRB400 14mm 9-13 60mm 37. 44MPa 38. 80MPa 15-16 2 BRBF BRBF BRB BRBF Fig. 1 1 Dormitory building before and a

38 2013 1 1972 280mm 110mm 14 7-8 BRBF 4 HRB400 14mm 9-13 60mm 37. 44MPa 38. 80MPa 15-16 2 BRBF BRBF BRB BRBF Fig. 1 1 Dormitory building before and a 46 7 2 0 1 3 7 CHINA CIVIL ENGINEERING JOURNAL Vol. 46 Jul. No. 7 2013 BJJQ-2010-169-01 2012-10-25 RC 100044 20 70 8 RC 1 2. 5 RC RC RC 66. 9% FEMA356 Perform-3D RC TU375. 4 A 1000-131X 2013 07-0037-10

More information

Ⅰ、Ⅱ类博士后中期考核表 贾布裕.docx

Ⅰ、Ⅱ类博士后中期考核表 贾布裕.docx Ⅰ Ⅱ 类 博 士 后 中 期 考 核 表 所 在 学 院 : 土 木 与 交 通 学 院 姓 名 : 贾 布 裕 合 作 导 师 : 徐 国 元 研 究 学 科 方 向 : 交 通 运 输 工 程 合 同 起 止 时 间 : 2015 年 8 月 至 2017 年 中 期 考 核 起 止 时 间 : 2015 年 8 月 至 2016 年 8 月 8 月 一 主 要 工 作 内 容 ( 一 ) 科

More information

#4 ~ #5 12 m m m 1. 5 m # m mm m Z4 Z5

#4 ~ #5 12 m m m 1. 5 m # m mm m Z4 Z5 2011 6 6 153 JOURNAL OF RAILWAY ENGINEERING SOCIETY Jun 2011 NO. 6 Ser. 153 1006-2106 2011 06-0014 - 07 300142 ABAQUS 4. 287 mm 6. 651 mm U455. 43 A Analysis of Impact of Shield Tunneling on Displacement

More information

01-0982.doc

01-0982.doc 第 32 卷 第 7 期 岩 土 工 程 学 报 Vol.32 No.7 2010 年 7 月 Chinese Journal of Geotechnical Engineering July 2010 沿 海 碎 石 回 填 地 基 上 高 能 级 强 夯 系 列 试 验 对 比 研 究 年 廷 凯 1,2, 水 伟 厚 3, 李 鸿 江 4, 杨 庆 1,2, 王 玉 立 (1. 大 连 理 工

More information

892213E006146

892213E006146 Modular Design of Quality Control Systems NSC89-2213-E006-146 89 8 1 90 7 31 ( ) ISO14000, and OHSAS18000. Keywords: ISO9000; ISO14000; OHSAS18000; Quality ISO9000 ISO14000 OHSAS18000 Management; Environment

More information

Construction of Chinese pediatric standard database A Dissertation Submitted for the Master s Degree Candidate:linan Adviser:Prof. Han Xinmin Nanjing

Construction of Chinese pediatric standard database A Dissertation Submitted for the Master s Degree Candidate:linan Adviser:Prof. Han Xinmin Nanjing 密 级 : 公 开 学 号 :20081209 硕 士 学 位 论 文 中 医 儿 科 标 准 数 据 库 建 设 研 究 研 究 生 李 楠 指 导 教 师 学 科 专 业 所 在 学 院 毕 业 时 间 韩 新 民 教 授 中 医 儿 科 学 第 一 临 床 医 学 院 2011 年 06 月 Construction of Chinese pediatric standard database

More information

中華民國建築學會第十二屆建築研究成果發表會

中華民國建築學會第十二屆建築研究成果發表會 (2006/7 3146 31 32 A Seismic Simulation of Architectural Model for Teaching Structural Engineering Kuei-Ming Hsu Department of Civil Engineering Kao Yuan University Ru-Jen. Chao Department of Information

More information

鋼結構工程之監造實務

鋼結構工程之監造實務 目 錄...8-1...8-2 2.1...8-2 2.2...8-2...8-3 3.1...8-3 3.2...8-3 3.3...8-4 3.4...8-9 3.5...8-9 3.6...8-11 3.7...8-12 3.8...8-13 3.9...8-14 3.10...8-18 3.11...8-21 3.12...8-24 3.13.. 8-27...8-37 4.1...8-37

More information

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7 !! # & ( ) +,. )/ 0 1, 2 ) 3, 4 5. 6 7 87 + 5 1!! # : ;< = > < < ;?? Α Β Χ Β ;< Α? 6 Δ : Ε6 Χ < Χ Α < Α Α Χ? Φ > Α ;Γ ;Η Α ;?? Φ Ι 6 Ε Β ΕΒ Γ Γ > < ϑ ( = : ;Α < : Χ Κ Χ Γ? Ε Ι Χ Α Ε? Α Χ Α ; Γ ;

More information

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! # &!! ) ( +, ., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! 2 2 & & 1 3! 3, 4 45!, 2! # 1 # ( &, 2 &, # 7 + 4 3 ) 8. 9 9 : ; 4 ), 1!! 4 4 &1 &,, 2! & 1 2 1! 1! 1 & 2, & 2 & < )4 )! /! 4 4 &! &,

More information

Microsoft Word - 33-p0191-14skyd8.doc

Microsoft Word - 33-p0191-14skyd8.doc 第 20 卷 第 4 期 中 南 大 学 学 报 ( 社 会 科 学 版 ) Vol.20 No.4 2014 年 8 月 J. CENT. SOUTH UNIV. (SOCIAL SCIENCE) Aug. 2014 基 于 模 糊 层 次 分 析 法 的 政 府 干 部 胜 任 力 评 价 实 证 研 究 薛 琴 ( 南 京 工 程 学 院 经 济 与 管 理 学 院, 江 苏 南 京,211167)

More information

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 = ! # % # & ( ) % # ( +, & % # ) % # (. / ). 1 2 3 4! 5 6 4. 7 8 9 4 : 2 ; 4 < = = 2 >9 3? & 5 5 Α Α 1 Β ΧΔ Ε Α Φ 7 Γ 9Η 8 Δ Ι > Δ / ϑ Κ Α Χ Ε ϑ Λ ϑ 2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ!

More information

0 1 / m m 2 ~ 3. 9m 3. 2m 1 / m 23. 6m mm 3 300mm 32. 1% 38. 1% 250mm C60 ~ C50 ~ C40 C

0 1 / m m 2 ~ 3. 9m 3. 2m 1 / m 23. 6m mm 3 300mm 32. 1% 38. 1% 250mm C60 ~ C50 ~ C40 C Journal of Building Structures 1000-6869 2011 06-0010-08 32 6 2011 6 Vol. 32 No. 6 June 2011 002 200092 14 1 /15 7 7 7 8 MIDAS 7 TU973 TU317. 1 A Seismic performance of multi-tower structure with large

More information

关于发布国家标准《给水排水管道工程

关于发布国家标准《给水排水管道工程 UDC P GB 5026897 Code for construction and acceptance of water supply and sewerage pipeline 1997-10-05 1998-05-01 [1997]279 [1990]160 (GB5026897) 1998 5 1 1997 10 5 [1990] (90) 1609 ( 17 100045) 1997 6

More information

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ; ! #! % & ( ) +!, + +!. / 0 /, 2 ) 3 4 5 6 7 8 8 8 9 : 9 ;< 9 = = = 4 ) > (/?08 4 ; ; 8 Β Χ 2 ΔΔ2 4 4 8 4 8 4 8 Ε Φ Α, 3Γ Η Ι 4 ϑ 8 4 ϑ 8 4 8 4 < 8 4 5 8 4 4

More information

穨D03-02c-Annex.PDF

穨D03-02c-Annex.PDF Drs. K. W. Boey, S.F. Li, C.W. Kwan and Ms. Bonny Wong ( ) 1 1.0 1.1 1.2 2.0 2.1 10 32.4 11.6 6.6(World Health Organisation,1999) 2.2 (Conwell, 2001 Klinger, 1999 Yip & Chiu, 1998) 2.3 (Shneidman, 1985)

More information

元培科技大學 年度「傑出校友」推薦表

元培科技大學      年度「傑出校友」推薦表 101 年 度 傑 出 校 友 蕭 文 達 本 校 畢 業 年 屆 民 國 74 年 畢 業 科 系 土 木 工 程 科 五 專 部 二 專 日 間 部 進 修 部 二 技 日 間 部 進 修 部 四 技 日 間 部 進 修 部 進 修 學 院 學 經 歷 學 歷 經 歷 國 立 中 興 大 學 土 木 工 程 學 系 博 士 朝 陽 科 技 大 學 環 境 安 全 衛 生 中 心 組 長 (90.2~

More information