風險值的估計 常態分配機率觀念回顧 (1) 標準常態分配 u 是一個服從標準常態分配的隨機變數可以簡單地表示為 u~n(0,1 ) u 的平均數和變異數分別為 E(u) =0 和 var(u) =1 機率密度函數 φ(x): 標準常態分配的機率密度函數 Φ(x): 標準常態分配的累積機率密度函數

Size: px
Start display at page:

Download "風險值的估計 常態分配機率觀念回顧 (1) 標準常態分配 u 是一個服從標準常態分配的隨機變數可以簡單地表示為 u~n(0,1 ) u 的平均數和變異數分別為 E(u) =0 和 var(u) =1 機率密度函數 φ(x): 標準常態分配的機率密度函數 Φ(x): 標準常態分配的累積機率密度函數"

Transcription

1 11 風險值的估計 本單元重點 : 常態分配觀念回顧 分量 左尾機率 下方風險 & 常態標準化 相對風險值 & 絕對對風險值 報酬與標準差之時間加總性質 風險值的實證 : 歷史模擬法 均數 - 變異數法 GARCH 法

2 風險值的估計 常態分配機率觀念回顧 (1) 標準常態分配 u 是一個服從標準常態分配的隨機變數可以簡單地表示為 u~n(0,1 ) u 的平均數和變異數分別為 E(u) =0 和 var(u) =1 機率密度函數 φ(x): 標準常態分配的機率密度函數 Φ(x): 標準常態分配的累積機率密度函數

3 風險值的估計 3 常態分配機率觀念回顧 () 標準常態分配的累積機率密度函數 對於任一給定的 c 值 ( 例如 c = , 以下採用約為 1.96 來做近似說明 ), u c 所發生的機率 α 可以表示成 α = pr(u c) = c φ(u)du = Φ(c) (11.1.1) 例如若 c αc = 1.96 = pr(u 1.96) = φ(u)du = Φ( 1.96) = 0.05

4 風險值的估計 4 常態分配機率觀念回顧 (3) 分量 ( 百分位 ) 的形式表示 αc=1.96 =.5% 這就是我們常說的 左尾機率值 左尾機率 左尾機率, 在臨界值 c 1.96 時, 即為下圖常態分配圖左方所示的陰影區面積 =.5% 面積 =.5%

5 風險值的估計 5 常態分配機率觀念回顧 (4) 左尾機率 α = 1% 另一個常見的例子就是左尾機率 α = 1% 時, 臨界值 =.3635 ( 以下採用約為 -.36 來做近似說明 ) 即 u.36 所發生的機率可以表示成 α c=.36 = pr(u.36) =.36 φ(u)du = Φ(.36) 1%.

6 風險值的估計 6 常態分配機率觀念回顧 (5) 左尾機率 α = 5% 同理, 左尾機率 α = 5% 時, 臨界值 = ( 以下採用約為 來做近似 ), 即 u 所發生的機率可以表示成 α c= = pr(u 1.645) = φ(u)du = Φ( 1.645) 1%.

7 風險值的估計 7 常態分配的對稱性 常態分配是一個對稱分配 以臨界值.36 為例, 若 u 服從常態分配, 則 : pr(u.363) = pr(u.36) 1% 用累積機率密度函數來表示 任何對稱分配, 必定存在 Φ(-.36) = 1-Φ(.36) (11.1.) F(-x) = 1-F(x). (11.1.3)

8 風險值的估計 8 分量 (quantile) 分量 (quantile), 亦稱分位數 (percentile) 係指某種分配由小到大排列的累積百分位之 橫軸數值 這個值其實就是我們上節所用的符號 c 分量可以視為是累積機率函數的反函數 對任何分配的累積機率函數 F(x) 在臨界值 c 的位置左尾出現的機率是 α = F(x c), (11.1.4)

9 風險值的估計 9 分量 & 累積機率函數 F(x) 在臨界值 c 的位置左尾出現的機率有的時候直接寫成 α = F(c), (11.1.5) 而分量就是 c = G(α), (11.1.6) 分量 c 對應特定的 左尾 機率值 左尾 機率 = α 位置的分量 c α = G(α). (11.1.7)

10 風險值的估計 10 常用之分量 1% 之分量 例如像我們上節提過的常態分配隨機變數, Φ(-.36) = 1% 所以用我們所定義的符號就可以表示成 c 1% =Φ 1 (1%)= -.36 其中 Φ 1 (α) = G(α) 代表累積機率函數的 反函數 5% 之分量 同理,c 5% =Φ 1 (5%)= 且 c 1% = c 99%, c 5% = c 95%

11 風險值的估計 11 常態變數標準化 若有一個常態變數 y, 其平均數和變異數分別為 E(y) = µ y 和 var(y) = (σ y ), 則標準化後 u = (y µ σ y y ) (11.1.8)

12 風險值的估計 1 分量 & 標準化 (1) 標準化後變數之.5% 分量 若 u* = ( 即, 或者說 u* = c.5% ), 則在 µ y 和 σ y 是已知的特定數值之下, 令此時 ( 即 u* = c.5% ) 之 y 值, 以 y* 表示之, 則 c.5% = (y * µ σ y y ) (11.1.9)

13 風險值的估計 13 分量 & 標準化 () 上頁之 (11.1.9) 式移項之後可得 y * µ = c.5% σ y + y ( ) 非標準常態變數之分量 當變數 y 並非標準常態變數時, 分量的計算可利用標準化後的標準常態變數分量換算而得 轉換公式 是即如同 ( ) 式 y α = c α σ y + µ y, ( )

14 風險值的估計 14 非標準常態變數之分量轉換 (1) 即在已知 µ y σ y 的情況下, 代入下式, y α = c α σ y + µ y, ( ) 即可得到非標準常態變數 y 在左尾機率 = α 的分量 y α 舉例 y ~ N(10 y, ), 則此變數在 5% 的分量, 可經由標準化後的分量 (c 5% = 1.645) 轉換計算而得 y % 5 = = 6.71

15 風險值的估計 15 非標準常態變數之分量轉換 () 非標準常態變數 z 在左尾機率 = 1% 的分量 同理, 若已知 z~n (0, 3 ), 非標準常態變數 z 在左尾機率 = 1% 的分量 z 1% =.36 σ z + µ z = = 6.978

16 風險值的估計 16 報酬率 ~ 常態分配之可能損失 (1) 標準常態分配報酬率之損失 若有某一個金融資產, 從現在開始, 經過 t 時間之後的報酬率 r t, 假設 r t ~ N(0, 1) 那持有這種資產 1 元, 經過 t 時間之後, 資產價值會變成 (1+ r t ) 元 因為 r t ~ N(0, 1) 的關係,E(r t ) = 0, 這代表以機率來看的 平均而言, 經過 t 時間之後持有這種資產 1 元, 還是 1 元

17 風險值的估計 17 報酬率 ~ 常態分配之可能損失 () 用前節介紹的常態累積機率函數來理解 經過 t 時間之後, 你可能會損失 ( 即 r t <0) 的機率是 Φ( r t <0) = 50% 對稱機率分配 t 時間之後, 你可能會獲利 ( 即 r t >0) 的機率是 1 Φ( r t <0) = 50% 損失超過是 1.96 元 ( 即 r t 1.96) 的機率是多少?

18 風險值的估計 18 持有資產的下方風險問題 這個報酬率出現損失的財務問題, 轉換成機率來描述, 其實就是上一節所提過的, 臨界值是 1.96 的左尾機率是多少, 臨界值的左尾機率 臨界值的左尾機率可以直接代入常態累積機率函數, 即 另一種方式來描述 Φ( r t 1.96) = 5%. 在 95% 的信賴水準下 (confidence level) ( 即有 5% 的機率 ), 持有這種資產 1 元的可能損失是多少?

19 風險值的估計 19 分量 (quantile) & 可能損失 5% 機率之可能損失 這樣的財務問題, 其實就是上一節所提過的分量 (quantile), 所以可能損失是在 左尾 機率 = 5% 位置的分量 1% 機率之可能損失 c 5% = Φ 1 (5%) = 同理, 在 99% 的信賴水準下 ( 即有 1% 的機率 ), 持有這種資產 1 元的可能損失是在 左尾 機率 = 1% 位置的分量 c 1% = Φ 1 (1%) =.36 即持有這種資產 1 元, 有 1% 的機率可能損失超過.36 元

20 風險值的估計 0 持有這種資產 W 0 之可能損失 因為每 1 元有 1% 的機率可能損失超過.36 元期初持有這種資產 W 0 元, 期末的總損失, 可能超過 可能損失 L W 0 (.36) 元 期初資產價值 W 0, 期末資產價值是 W* = W 0 (1+r t ); 可能損失 L 即為 L = W 0 -W* = W 0 -W 0 (1+r t ) = W 0 ( r t ) 因左尾機率 1% 的分量 =.36, 所以可能損失 L 為 L = W 0 ( (.36)) = W 0.36

21 風險值的估計 1 常態分配報酬率之損失標準化 報酬率非標準常態分配 例如, R t ~ N(µ, σ ) 5% 的機率, 持有這種資產 1 元的可能損失將超過 多少? 我們可以利用 11.1 節所介紹的常態變數標準化之方式, 來回答 ( 或計算 ) 這個問題

22 風險值的估計 α% 的機率持有資產 1 元的可能損失? R t 經常態標準化後為 r t (R = t µ ) 所以若損失 ( 以負數表示之 ) r t * =.36, 則 σ.36 = (R * t µ ) σ 上式移項之後可得 R * t =. 36σ + µ

23 風險值的估計 3 1% 機率持有資產 1 元的可能損失? R * t =. 36σ + µ R t ~ N(0.1, ) 上式的應用, 舉例來說, 如果 R t ~ N(0.1, ), 則有 1% 的機率, 持有這種資產 1 元的可能損失將超過 R * t = = 4.55 資產期初價值為 W 0 有 1% 的機率可能損失將超過 L = W 0 ( ( 4.55)) = W

24 風險值的估計 4 風險值的計算 風險值 (value at risk): 按照 Jorion (000) 的定義, 風險值是 : 在給定的信賴水準下, 經過某一時間之後, 持有資產損失可能超過的值 信賴水準 所謂 給定的信賴水準, 通常 = 1% 或 5%, 某一時間 而某一時間可能是 1 日後 5 日後,10 日後等

25 風險值的估計 5 相對風險值 (1) 所謂 相對風險值 (relative value at risk, 或簡寫為 relative VaR), 即是相對於報酬平均數 (mean), 給定的信賴水準 (1-α) 下, 經過某一時間之後, 持有資產損失可能超過的值 數學式表示 令期末資產價值 W = W 0 (1+R), 而可能超過的損失 W* = W 0 (1+R*), 則 相對風險值 VaR(mean) = E(W) W* = W 0 E[(1+R)] W 0 (1+R*) = W 0 ( R*+µ) (11.3.1)

26 風險值的估計 6 相對風險值 () 因為 E(R) = µ, 或者可再進一步寫成 VaR(mean) = W 0 ( R*+µ) = W 0 ( c α σ µ+µ) = W 0 ( c α σ) = W 0 (c α σ) (11.3.)

27 風險值的估計 7 絕對風險值 而所謂 絕對風險值 (absolute value at risk, 或簡寫為 absolute VaR), 即是相對於報酬 = 0, 在給定的信賴水準 (1-α) 下, 經過某一時間之後, 持有資產損失可能超過的值 數學式表示 令期末資產價值 W = W 0 (1+R), 而可能超過的損失 W* = W 0 (1+R*), 則 絕對風險值 VaR(zero) = W 0 W* = W 0 W 0 (1+R*) = W 0 R* (11.3.3) = W 0 (c α σ+µ) (11.3.4)

28 風險值的估計 8 變數為 iid 時之時間加總性質 時間加總 (time aggregation ) 性質 計算 VaR 時, 必需先定義預測的期間 ( 英文稱為 time horizon), 例如 1 日 5 日 或 10 日 ( 即約 週 ) 這時我們就必需將估計而得的平均數和標準差進行日期頻率轉換, 計量上稱之為時間加總 (time aggregation ) 性質 相同獨立分配 (iid) 變數 r t 必需滿足以下 3 個條件, 才能稱之為服從 iid

29 風險值的估計 9 相同獨立分配 (iid) 3 個條件 (1) 跨期均數不變 ( 為固定常數 ) E(r t ) = E(r t-1 ) =... = E(r t-j ) = µ (11.3.5) () 跨期變異數不變 ( 亦為固定常數 ) var(r t ) = var (r t-1 ) =... = var (r t-j ) = σ (11.3.6) (3) 跨期變數互不相關 ( 即自我相關係數 =0) cov(r t, r t-j ) = 0, for j 0. (11.3.7)

30 風險值的估計 30 iid 變數之短期 長期轉換 在此 3 條滿足的前提下, 我們可以將短期的平均數和標準差, 轉換成較長期的平均數和標準差 1 日報酬率轉換成 k 日報酬率 令 r t 為 t 時間之 1 日報酬率, 即第 1 日的報酬率 r 1, 第 日的報酬率 r,..., 第 t 日的報酬率 r t, 第 t+1 日的報酬率 r t+1 ; 以此類推, 第 t+k 日的報酬率 r t+k k 日 的報酬的期望值 所以 k 日 的報酬的期望值, 以 r t, k = = k j 1 0 r t j 表示之 (k=) 的報酬,E(r t, ) = E(r t-1 ) + E(r t ), 依 (11.3.5) 式,E(r t-j ) = µ = E(r t ), 故 E(r t, ) = E(r t-j ) + E(r t ) = µ+µ = µ.

31 風險值的估計 31 iid 之 1 日報酬率轉換 在弱式定態的假設下, 日的報酬期望值, 等於 1 日報酬期望值的 倍 ; 同理,5 日報酬期望值, 等於 1 日報酬期望值的 5 倍 因此 星期 (10 個工作日 ) 的報酬期望值 = 10 µ 1 個月 ( 約 個工作日 ) 的報酬期望值 = µ 一年 ( 約為 5 工作日, 或 50 個工作日 ) 的報酬期望值 = 5 1 日報酬率

32 風險值的估計 3 iid 之 1 日報酬率標準差轉換 若報酬率是 iid, 沒有自我相關, 即 cov(r t, r t-j ) = 0, for j 0 日 (k=) 的報酬標準差 var(r t, ) = var(r t-1 + r t ) = var(r t-j ) + var(r t ) + cov(r t, r t-j ) 因 cov(r t, r t-j ) = 0, 故上式 var(r t, ) = var(r t-j ) + var(r t ) = σ 所以 日報酬的變異數 σ ( 日 ) = σ, 因此標準差為 σ ( 日 ) = σ. (11.3.9)

33 風險值的估計 33 T 日報酬率標準差 σ ( 日 ) = σ. (11.3.9) 以此類推 T 日報酬的標準差為 σ (T 日 ) = T σ ( ) 即報酬標準差依 時間長短 開根號 倍數擴大 而報酬平均數依 時間長短 之倍數擴大

34 風險值的估計 34 變數為非 iid 時之時間加總性質 當報酬變數符合 iid 分配時, 在計算 K 期時距以後的 VaR 時是比較容易的, 因為只要將平均數 K, 而標準差 K 即可 但可惜的是, 有許多金融資產的報酬率都不符合 iid 分配 最常見的情況, 就是報酬率有自我相關 ARMA 現象 ; 而報酬率的變異數常有 ARCH 現象

35 風險值的估計 35 報酬率為 AR(1) 之時間加總性質 r t ~ AR(1) 以 r t ~ AR(1) 為例, 報酬率的 DGP 是 r + t = c + φ1rt 1 u t 其中 u t ~N(0,σ ); 則 日報酬變異數 var(r t-1 + r t ) = var(r t-1 ) + var(r t ) + cov(r t-1, r t ) = σ + σ +φ 1 σ =σ (+φ 1 ) ( )

36 風險值的估計 36 AR(1) 之 k 日報酬變異數的公式 依 Jorion (00, p.104) 所述,k 日報酬變異數的公式是 var k 1 [ k + (k 1) φ + (k ) φ (1 ] k rt + i = σ 1 1 ) φ1. (11.3.1) i= 1 忽略報酬有自我相關問題時, 會導致風險值有被低 估的現象

37 風險值的估計 37 報酬具有 ARCH/GARCH 性質 GARCH(1,1) 若報酬率具有以下的 GARCH(1,1) 性質, 即 r t = µ+ u t, ( ) u t = σ tv t, ( ) σ = α + α + β σ t 0 1u t 1 1 t 1 ( ) ( 注意 :v t ~N(0,1), h t = σt )

38 風險值的估計 38 GARCH 下預測 ˆ t + 1 σ 的公式 (1) 如果現在的時間點是 t, 則預測下 1 期 (t+1) 的變異數的公式 所需要的資料 t 式是 ˆ σ 和 σ t + 1 = α 0 + α1u t + β1σ t ( ) u 都是已知的 可是要預測 σ t ˆ ˆ t+ = α 0 + α1û t+ 1 + β1σ t+ 1 ˆ t + 的時候, 依公 σ ( ) 可是我們沒有 û t + 1 可以代入

39 風險值的估計 39 GARCH 下預測 ˆ t + 1 σ 的公式 () 依據 ( ) 式, 取落後 1 期可知入 ( ) 式, 可得 u t 1 = σ t 1v t 1, 將之代 在等號右邊加再減一項 α σ t σ t = α0 + α1( σ t 1v t 1 ) + β1σ t 1 ( ) 1 1, 重新整理後可得 σ t = α 0 + ( α 1 + β 1 ) σ 1 + α1σ t 1 (v t 1 1). ( ) t 因此預測 t+1 期的變異數可以按 ( ) 式 σ t + 1 = α 0 + α1u t + β1σ t.

40 風險值的估計 40 GARCH 下預測 ˆ t + k σ 的公式 (3) 由於條件期望值 E(v t 1 1.) =0, 故 ( ) 式之最後一項在預測下 k 期時會消去, 所以預測 t+ 期的變異數公式 ˆ ˆ t+ = α 0 + ( α1 + β1) σ t+ 1 σ, 如此重覆代入, 直至 t+k 期 ˆ ˆ ˆ t+ 3 = α 0 + ( α1 + β1) σ t+ 3 σ, (... ) ˆ σ t+ k = α 0 + α1 + β1 σ t + k 1.

41 風險值的估計 41 GARCH(1,1) 預測 k 日報酬條件變異數 最後根據 Tsay (00, p.66-67), 未來 k 日報酬條件變異數的公式是 var k i= 1 r t ˆ k + i = σ t+ i i= 1 ( 假設報酬無自我相關 ) 將此式的結果開根號後, 即可獲得未來 k 日報酬條件標準差的值.

42 風險值的估計 4 風險值的實證估計 歷史模擬法 歷史模擬法 (historical simulation method) 屬於無母數 (nonparamatirc) 估計法 無母數法, 是指不需要對變數做任何先驗假設, 例如, 不用假設報酬是常態分配 均數 - 共變數法 報酬為常態變數時之估計法 其原理係由前述酬率標準差轉換的方法, 換算出 VaR GARCH 法 與均數 - 共變異法類似, 只是允許變異數可變動

43 風險值的估計 43 歷史模擬法 (1) 計算報酬率, 並按大小排序 則先計算報酬率 r t r t = ln(p t / P t-1) 然後將報酬率 r t 自小而大 排序, 排序後的變數下標寫成 i, 即 r i,i = 1,,..., N. ( 即報酬率樣本數是 N) 依信賴水準找出分量 1% 的分量, 就是排序後第 (0.01 N) 筆報酬率的大小 5% 的分量, 即是排序後第 (0.05 N) 筆報酬率的大小

44 風險值的估計 44 歷史模擬法 () 代入風險值公式 得到 α 分量 : R*= r α, 因可能的損失 W* =W 0 (1+R*), 故再代入風險值公式 : VaR = W 0 W* = W 0 -W 0 (1+R*) = W 0 (R*) (11.4.1)

45 風險值的估計 45 歷史模擬法計算 VaR 範例 (1) 以下範例將利用 gretl 所附的 b-g.gdt 檔所含的德國馬克 / 英磅匯率日資料, 全部樣本期間為 Jan 3, 1984 至 Dec. 31, 1991, 共有 1974 筆 Y = 100 * [ln(p t ) - ln(p t-1 )] 保留樣本 做為 樣本外 資料 1. 工作檔視窗 [Sample], 在原來 "@all" 處, 改填入

46 風險值的估計 46 計算 α=1% 的分量 R*. 在指令區輸入 1% 分量函數 3. 結果 (R*) = ( 記得除以 100) 計算 α=1% 的 VaR ( 假設 W 0 = 1 million 英磅 ) 4. 代入風險值公式 VaR 1% = W 0 (R*) = ( ) 100 = 則未來 1 日內, 在信賴水準 = 99% 的情況下,( 即有 1% 的機率會損失超過 ) 的風險值為 ( 英磅 )

47 風險值的估計 47 歷史模擬法計算 VaR 範例畫面

48 風險值的估計 48 從次數分配觀察分量 (quantile) 次數分配表 在 Eviews 工作視窗選單中, 點選打開 Y 變數, 在隨後出現的物件視窗中, 按 [View/ One way tabulation] 在 Max # of bins: 填入 99 ( 表示分成 99 組計算 ), 按確定後即顯示如下之

49 風險值的估計 49 用歷史模擬法計算 5 日 VaR 範例 Step 1: 先將工作資料還原成全樣本 指令區輸入 : Step : 產生 5 日報酬率 中輸入以下之公式 ( 或見下圖 ), 再按 [ 確定 ] 即可 : genr r5=y+y(-1)+y(-)+y(-3)+y(-4) Step 3: 設定樣本內之子樣本區間 指令區輸入 : smpl

50 風險值的估計 50 Step 4: 計算 α=1% 的 5 日報酬率之分量 R5* 指令區輸入 1% 分量函數 5 日報酬率 1% 分量 R5* = Step 5: 計算 α=1% 的 5 日 VaR 則未來 5 日內, 在信賴水準 = 99% 的情況下,( 即有 1% 的機率會損失超過 ) 的風險值為 ( 依 (11.4.1) 式 ): VaR = WR* = 1,000,000 ( ) =

51 風險值的估計 51 均數 - 共變數法 報酬為常態變數之估計法 以均數 - 共變數法 (mean-variance) 來估計 VaR 分成 : (1) 相對風險值 VaR (mean) = W 0 (c α σ) (11.4.7) () 絕對風險值 VaR(zero) = W 0 (c α σ+µ). 需要資料 所以估計顯著水準 α 之 1 日 VaR 需要 W 0 c α 和 σ

52 風險值的估計 5 均數 - 共變數法估計 1 日相對 VaR 範例 舉例來說, 若 α = 1%, 則 c 5% =.36, 所以我們只要能取得 σ 的估計值, 即可計算我們想要的 VaR 實際的操作, 請見下例 Step 1: 取得 Y 之標準差 σ 在 Y 變數視窗上, 選 [View/Descriptive Statistics.../Histogram...] 即可獲得 σ ( 即標準差,Standard deviation) 的值, 如下圖所示, σ =

53 風險值的估計 53 Step : 計算 α = 1% 之相對 VaR 在常態分配下 α = 1% 之分量 c 5% =.36, 同樣地, 假設我們期初持有 100 萬的英磅, 即 W 0 = 1,000,000 Step 3: 計算相對風險值 依 (11.4.7) 式, 相對風險值是 VaR (mean) = W 0 (c α σ) 所以則未來 1 日內, 在信賴水準 = 99% 的情況下,( 即有 1% 的機率會損失超過 ) 的風險值為 : VaR= W (c α σ)= (.36) ( 100)=

54 風險值的估計 54 均數 - 共變數法來估計 5 日的 VaR k 日報酬的標準差公式 σ (k) = k σ step 1: 計算 α = 1% 之 5 日報酬的標準差 因為 k 日報酬的標準差公式 σ (k) = k σ, 而在常態分配下 α = 1% 之分量 c 5% =.36, 所以 5 日報酬的標準差等於 σ( 5) = 5 σ = = Step : 計算 α = 1% 之相對 VaR 依 (11.4.7) 式, 相對風險值公式是 VaR (mean)= W 0 (c α σ (5) ) = (.36) ( 100)=

55 風險值的估計 55 本單元練習 請依範例, 以歷史模擬法計算 Y 之 α=1% 的 10 日 VaR 請依範例, 用均數 - 共變數法計算 Y 之 1 日絕對 VaR 請依範例, 用均數 - 共變數法計算 Y 之 5 日絕對 VaR

Microsoft Word - ACI chapter00-1ed.docx

Microsoft Word - ACI chapter00-1ed.docx 前言 Excel Excel - v - 財務管理與投資分析 -Excel 建模活用範例集 5 相關 平衡 敏感 - vi - 前言 模擬 If-Then 規劃 ERP BI - vii - 財務管理與投資分析 -Excel 建模活用範例集 ERP + BI + ERP BI Excel 88 Excel 1. Excel Excel 2. Excel 3. Excel - viii - 前言 1.

More information

0 0 = 1 0 = 0 1 = = 1 1 = 0 0 = 1

0 0 = 1 0 = 0 1 = = 1 1 = 0 0 = 1 0 0 = 1 0 = 0 1 = 0 1 1 = 1 1 = 0 0 = 1 : = {0, 1} : 3 (,, ) = + (,, ) = + + (, ) = + (,,, ) = ( + )( + ) + ( + )( + ) + = + = = + + = + = ( + ) + = + ( + ) () = () ( + ) = + + = ( + )( + ) + = = + 0

More information

.., + +, +, +, +, +, +,! # # % ( % ( / 0!% ( %! %! % # (!) %!%! # (!!# % ) # (!! # )! % +,! ) ) &.. 1. # % 1 ) 2 % 2 1 #% %! ( & # +! %, %. #( # ( 1 (

.., + +, +, +, +, +, +,! # # % ( % ( / 0!% ( %! %! % # (!) %!%! # (!!# % ) # (!! # )! % +,! ) ) &.. 1. # % 1 ) 2 % 2 1 #% %! ( & # +! %, %. #( # ( 1 ( ! # %! % &! # %#!! #! %!% &! # (!! # )! %!! ) &!! +!( ), ( .., + +, +, +, +, +, +,! # # % ( % ( / 0!% ( %! %! % # (!) %!%! # (!!# % ) # (!! # )! % +,! ) ) &.. 1. # % 1 ) 2 % 2 1 #% %! ( & # +! %, %. #(

More information

# % & ) ) & + %,!# & + #. / / & ) 0 / 1! 2

# % & ) ) & + %,!# & + #. / / & ) 0 / 1! 2 !!! #! # % & ) ) & + %,!# & + #. / / & ) 0 / 1! 2 % ) 1 1 3 1 4 5 % #! 2! 1,!!! /+, +!& 2! 2! / # / 6 2 6 3 1 2 4 # / &!/ % ). 1!!! &! & 7 2 7! 7 6 7 3 & 1 2 % # ) / / 8 2 6,!!! /+, +! & 2 9! 3 1!! % %

More information

When the rejection rule for a test at every level α can be re-written as then xxx is the p-value of the test. xxx < α, If p-value < α, then the test c

When the rejection rule for a test at every level α can be re-written as then xxx is the p-value of the test. xxx < α, If p-value < α, then the test c Hypothesis Testing - review The null hypothesis (H 0 ) and the alternative hypothesis (H 1 ) Type I error: rejecting H 0 when H 0 is true Type II error: failing to reject H 0 when H 1 is true (H 0 is false)

More information

Random Variables

Random Variables Random Variables W. M. Song 桑慧敏 Tsing Hua Univ. 清華大學 205.09.23 W. M. Song 桑慧敏 Tsing Hua Univ. 清華大學 Random Variables 205.09.23 / 6 Song 歌詞 2 樣本點, 實數值, 隨機變數結連理 3 cdf, pdf, 身份證件辨唯一 4 期望值, 變異數, 又名一二階動差 5 馬可夫,

More information

) & ( +,! (# ) +. + / & 6!!!.! (!,! (! & 7 6!. 8 / ! (! & 0 6! (9 & 2 7 6!! 3 : ; 5 7 6! ) % (. ()

) & ( +,! (# ) +. + / & 6!!!.! (!,! (! & 7 6!. 8 / ! (! & 0 6! (9 & 2 7 6!! 3 : ; 5 7 6! ) % (. () ! # % & & &! # % &! ( &! # )! ) & ( +,! (# ) +. + / 0 1 2 3 4 4 5 & 6!!!.! (!,! (! & 7 6!. 8 / 6 7 6 8! (! & 0 6! (9 & 2 7 6!! 3 : ; 5 7 6! ) % (. () , 4 / 7!# + 6 7 1 1 1 0 7!.. 6 1 1 2 1 3

More information

: p Previous Next First Last Back Forward 1

: p Previous Next First Last Back Forward 1 7-2: : 7.2......... 1 7.2.1....... 1 7.2.2......... 13 7.2.3................ 18 7.2.4 0-1 p.. 19 7.2.5.... 21 Previous Next First Last Back Forward 1 7.2 :, (0-1 ). 7.2.1, X N(µ, σ 2 ), < µ 0;

More information

《儿童少年卫生学》教学大纲

《儿童少年卫生学》教学大纲 儿 童 少 年 卫 生 学 教 学 大 纲 ( 供 公 共 卫 生 系 预 防 医 学 专 业 用 ) 前 言 儿 童 少 年 卫 生 学 简 称 儿 少 卫 生 学, 它 是 保 护 促 进 儿 童 青 少 年 身 心 健 康 的 科 学, 是 预 防 医 学 专 业 课 重 要 组 成 部 分 儿 少 卫 生 学 的 任 务 是 研 究 正 在 成 长 中 的 儿 童 青 少 年 的 身 心 发

More information

1 7 10 240 í é é í º 182 230nm A X 240

More information

( ) t ( ) ( ) ( ) ( ) ( ) t-

( ) t ( ) ( ) ( ) ( ) ( ) t- (Statistics). (Descriptive Statistics). (Inferential Statistics) (Inductive Statistics) ( ) t ( ) ( ) ( ) ( ) ( ) t- ( ) ( ) ( )? ( ) ( )? ( ) )?( t ) ( )? ( ) ( ) ( ) ( ) ( ) ( )? ( ) ( ) ( )? ( )?( t

More information

01.dvi

01.dvi 物理資優營微積分教材 1 y = f ( ) (, f ( ) ) 點的切線斜率 : =lim f ( + ) f () 若 f () = n,n 為自然數 =lim ( + ) n n 微分的基本性質 : (i) 線性 : 若 a, b 是常數 (ii) 萊布尼茲律 : n n 1 + O ( ) = n n 1 {af ()+bg ()} = a + bg {f () g ()} = g + f

More information

%! # # % % & # ( ) ( +, & +, +, & +, & +, +, &!

%! # # % % & # ( ) ( +, & +, +, & +, & +, +, &! %! # # % % & # ( ) ( +, & +, +, & +, & +, +, &! & &./ 0 # #1 # 2! +, 3 4 4 +,!!!! 4 4 4 4 4 56 7 89 #! 4! 4 4! 4 4! 14 #: 2 4! +,! +, 14 4 ; < = ( 4 < = +14 # : 1 1 4 # : : 3 # (4,! / +, +, +, > +,? 3

More information

# ( + + # + # 6 +,! + # +! +, + # ( + ) ( + ( + ) + 7! + # + /8 + ) ( +! + #. + ( +, +! + # + # + + ( ! ( + ) ( + ) +, + ( + 9% +! +, + ( +

# ( + + # + # 6 +,! + # +! +, + # ( + ) ( + ( + ) + 7! + # + /8 + ) ( +! + #. + ( +, +! + # + # + + ( ! ( + ) ( + ) +, + ( + 9% +! +, + ( + ! ## % & (! ) # (! + ) (, ( + ) ( +! ( + + # + #! + ( + + ( + ) ( + + ( + # + ) +! ( + ( + # +! ( + ) + # ( + ) + # +! ( +. + / 0. + ( + # + # + +, + ) + + ) + 1!, ( 2 1 # 3 )! # ( 4 5 #3 (! # ( 4 # #

More information

840 提示 Excel - Excel -- Excel (=) Excel ch0.xlsx H5 =D5+E5+F5+G5 (=) = - Excel 00

840 提示 Excel - Excel -- Excel (=) Excel ch0.xlsx H5 =D5+E5+F5+G5 (=) = - Excel 00 Excel - - Excel - -4-5 840 提示 Excel - Excel -- Excel (=) Excel ch0.xlsx H5 =D5+E5+F5+G5 (=) = - Excel 00 ( 0 ) 智慧標籤 相關說明提示 -5 -- Excel 4 5 6 7 8 + - * / % ^ = < >= & 9 0 (:) (,) ( ) Chapter - :,

More information

現在人類獲取地球內部訊息的方法, 是從可能影響我們身家性命安全的地震, 用數學模型把地震資料轉換成地震波速度, 進而獲得地底物質密度與深度的關係 地下世界知多少 km/s g/cm 3 P Gpa km S P S 3,000 3,000 ak K 透視地底 Percy Bridgma

現在人類獲取地球內部訊息的方法, 是從可能影響我們身家性命安全的地震, 用數學模型把地震資料轉換成地震波速度, 進而獲得地底物質密度與深度的關係 地下世界知多少 km/s g/cm 3 P Gpa km S P S 3,000 3,000 ak K 透視地底 Percy Bridgma 透視地球深處 的窗戶? extreme condition extreme environment 94.5 1 270 21 3.9 12.3 6,400 300 4,000 1864 Jules Gabriel Verne 1959 2008 1990 Paul Preuss 2003 24 2013 2 482 現在人類獲取地球內部訊息的方法, 是從可能影響我們身家性命安全的地震, 用數學模型把地震資料轉換成地震波速度,

More information

% %! # % & ( ) % # + # # % # # & & % ( #,. %

% %! # % & ( ) % # + # # % # # & & % ( #,. % !!! # #! # % & % %! # % & ( ) % # + # # % # # & & % ( #,. % , ( /0 ) %, + ( 1 ( 2 ) + %, ( 3, ( 123 % & # %, &% % #, % ( ) + & &% & ( & 4 ( & # 4 % #, #, ( ) + % 4 % & &, & & # / / % %, &% ! # #! # # #

More information

, 13.4

, 13.4 2019 1 15 26 3.4, 13.4 BLUE t F 1 1. TSS ESS RSS TSS = ESS + RSS R 2 := ESS/TSS = 1 RSS/TSS R 2 := 1 [RSS/(n k)]/[tss/(n 1)] 2. y i ŷ i y i x i 2 2 3. 1 2 k F 1 F 4. 2 2 3 1 5 1.1 pp. 60, 272...........

More information

第9章 排队论

第9章  排队论 9, 9. 9.. Nt () [, t] t Nt () { Nt ( ) t [, T]} t< t< t< t + N ( ( t+ ) i+ N( t) i, N( t) i,, N( t) i N + + N ( ( t ) i ( t ) i ) (9-) { Nt ( ) t [, T)} 9- t t + t, t,, t t t { Nt ( ) t [, T] } t< t,,

More information

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. ! # !! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. #! % & & ( ) # (!! /! / + ) & %,/ #! )!! / & # 0 %#,,. /! &! /!! ) 0+(,, # & % ) 1 # & /. / & %! # # #! & & # # #. ).! & #. #,!! 2 34 56 7 86 9

More information

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! # &!! ) ( +, ., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! 2 2 & & 1 3! 3, 4 45!, 2! # 1 # ( &, 2 &, # 7 + 4 3 ) 8. 9 9 : ; 4 ), 1!! 4 4 &1 &,, 2! & 1 2 1! 1! 1 & 2, & 2 & < )4 )! /! 4 4 &! &,

More information

➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉ Lecture on Stochastic Processes (by Lijun Bo) 2

➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉ Lecture on Stochastic Processes (by Lijun Bo) 2 Stochastic Processes [email protected] 111111 ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉ Lecture on Stochastic Processes (by Lijun Bo) 2 : Stochastic Processes? (Ω, F, P), I t I, X t (Ω, F, P), X = {X t, t I}, X t (ω)

More information

ACI pdf

ACI pdf 09 9.1 -...9-2 9.1.1...9-2 9.1.2...9-3 9.2 -...9-4 9.2.1 PMT - ()...9-4 9.2.2...9-6 9.3 -...9-8 9.3.1 PMT - ()...9-8 9.4...9-10 9.4.1... 9-11 9.4.2...9-12 9.4.3...9-14 9.5 -...9-17 9.5.1...9-18 1 Excel...9-21

More information

大 綱 最 有 利 標 目 的 及 類 型 最 有 利 標 之 辦 理 方 式 準 用 最 有 利 標 取 最 有 利 標 精 神 最 有 利 標 之 類 型 及 其 相 關 規 定 適 用 最 有 利 標 準 用 最 有 利 標 及 取 最 有 利 標 精 神 作 業 程 序 及 實 務 分 析

大 綱 最 有 利 標 目 的 及 類 型 最 有 利 標 之 辦 理 方 式 準 用 最 有 利 標 取 最 有 利 標 精 神 最 有 利 標 之 類 型 及 其 相 關 規 定 適 用 最 有 利 標 準 用 最 有 利 標 及 取 最 有 利 標 精 神 作 業 程 序 及 實 務 分 析 最 有 利 標 作 業 程 序 實 務 分 析 交 通 部 採 購 稽 核 小 組 陳 秘 書 牧 民 日 期 :101 年 05 月 21 日 大 綱 最 有 利 標 目 的 及 類 型 最 有 利 標 之 辦 理 方 式 準 用 最 有 利 標 取 最 有 利 標 精 神 最 有 利 標 之 類 型 及 其 相 關 規 定 適 用 最 有 利 標 準 用 最 有 利 標 及 取 最 有 利 標

More information

Ζ # % & ( ) % + & ) / 0 0 1 0 2 3 ( ( # 4 & 5 & 4 2 2 ( 1 ) ). / 6 # ( 2 78 9 % + : ; ( ; < = % > ) / 4 % 1 & % 1 ) 8 (? Α >? Β? Χ Β Δ Ε ;> Φ Β >? = Β Χ? Α Γ Η 0 Γ > 0 0 Γ 0 Β Β Χ 5 Ι ϑ 0 Γ 1 ) & Ε 0 Α

More information

# 7 % % % < % +!,! %!!

# 7 % % % < % +!,! %!! ! # % 7 8 9 7! & () + ),. + / 0 /. 1 0 /2 &3 )4, 4 4 5 / 6 : /! # ;!!!! # %! &!! ( ) # 7 % % % < % +!,! %!! % % = % % % % % # 9 =! 7 8 7 8 > 8 7 =7 # 9 # 8 7 8 % ) % % % % %! %. / % < < < % / % < < <

More information

0 1 VaR 2 VaR 3 VaR 4 5 VaR 6 7 VaR 2

0 1 VaR 2 VaR 3 VaR 4 5 VaR 6 7 VaR 2 VaR B 1 0 1 VaR 2 VaR 3 VaR 4 5 VaR 6 7 VaR 2 VaR VaR VaR _VaR VaR 0.72 VaR 3 2001 VaR _VaR 180 2000 2 60% VaR VaR 4 VaR VaR VaR VaR VaR VaR 5 VaR 1 VaR VaR(Value at Risk) Prob P

More information

第五章 機率分配

第五章  機率分配 第五章機率分配 授課教師 : 2011.02.18 更新 1 本章重點 認識隨機變數 瞭解期望值與變異數的定義與意義 認識二項分配與常態分配的各種性質 瞭解標準常態分配如何查表與其應用 2 大綱 隨機變數與機率分配 機率分配的重要參數 二項分配 百努力試驗 常態分配 標準常態分配 3 5-1 隨機變數與機率分配 並非所有的事件發生機率都是定值 機率也是一個變數 在本節中將介紹隨機變數與其對應的機率分配

More information

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2 ! # %!% # ( % ) + %, ). ) % %(/ / %/!! # %!! 0 1 234 5 6 2 7 8 )9!2: 5; 1? = 4!! > = 5 4? 2 Α 7 72 1 Α!.= = 54?2 72 1 Β. : 2>7 2 1 Χ! # % % ( ) +,.

More information

第八章 審計抽樣 本章學習重點 stratified random sampling systematic sampling PPS PPS MUS 8-3 壹抽樣與審計抽樣 audit sampling 100%

第八章 審計抽樣 本章學習重點 stratified random sampling systematic sampling PPS PPS MUS 8-3 壹抽樣與審計抽樣 audit sampling 100% 第八章 審計抽樣 第一節審計抽樣的基本概念 第二節控制測試審計抽樣計畫 第三節證實測試之審計抽樣計畫 第八章 審計抽樣 本章學習重點 stratified random sampling systematic sampling PPS PPS MUS 8-3 壹抽樣與審計抽樣 audit sampling 100% 8-4 貳審計抽樣名詞介紹 population sampling unit representative

More information

Microsoft Word - 95_1_stat_handout_04抽樣與抽樣分配.doc

Microsoft Word - 95_1_stat_handout_04抽樣與抽樣分配.doc 4 第四章抽樣與抽樣分配 006 年 8 月 9 日最後修改 4. 抽樣與抽樣方法 4. 抽樣分配概論 4. 常見的抽樣分配 4.4 中央極限定理 4. 抽樣與抽樣方法 母體 (populatio): 我們有興趣的研究對象, 一般是由許多個體或所組成的集合 樣本 (sample): 母體的部分集合 我們有興趣的是母體, 但是實際測量 研究的是樣本 我們希望經由樣本提供的資訊來推測母體的狀況 ( 推論統計

More information

! # % & ( & # ) +& & # ). / 0 ) + 1 0 2 & 4 56 7 8 5 0 9 7 # & : 6/ # ; 4 6 # # ; < 8 / # 7 & & = # < > 6 +? # Α # + + Β # Χ Χ Χ > Δ / < Ε + & 6 ; > > 6 & > < > # < & 6 & + : & = & < > 6+?. = & & ) & >&

More information

統計分析入門與應用 說明 : a. 獨立樣本 : 兩個來自於獨立, 沒有相關的樣本 b. 成對樣本 : 兩個平均數來自於同一個樣本, 有關係的樣本 7-2 Means 平均數分析 Means 平均數分析是用在不同類別變數組合下, 連續變數在各組的統計量, 例如 : 平均數 中位數 標準差 總合 最小

統計分析入門與應用 說明 : a. 獨立樣本 : 兩個來自於獨立, 沒有相關的樣本 b. 成對樣本 : 兩個平均數來自於同一個樣本, 有關係的樣本 7-2 Means 平均數分析 Means 平均數分析是用在不同類別變數組合下, 連續變數在各組的統計量, 例如 : 平均數 中位數 標準差 總合 最小 平均數比較 (t 檢定 ) CHAPTER 7-1 平均數比較 ( 各種 t test 的應用 ) 平均數比較 (Compare Means) 是常用的統計分析, 用來比較兩個群體的平均數, 也就是各種 t test 的應用, 常見的範例 1: 在學生學習成就方面, 常見的方法是將學生隨機分成 2 組, 一組使用原本的教法, 稱為控制組 (control group), 另一組使用新的教法, 稱為處理組

More information

! + +, ) % %.!&!, /! 0! 0 # ( ( # (,, # ( % 1 2 ) (, ( 4! 0 & 2 /, # # ( &

! + +, ) % %.!&!, /! 0! 0 # ( ( # (,, # ( % 1 2 ) (, ( 4! 0 & 2 /, # # ( & ! # %! &! #!! %! %! & %! &! & ( %! & #! & )! & & + ) +!!, + ! + +, ) % %.!&!, /! 0! 0 # ( ( # (,, # ( % 1 2 ) (, 3 0 1 ( 4! 0 & 2 /, # # ( 1 5 2 1 & % # # ( #! 0 ) + 4 +, 0 #,!, + 0 2 ), +! 0! 4, +! (!

More information

PowerPoint 演示文稿

PowerPoint 演示文稿 . ttp://www.reej.com 4-9-9 4-9-9 . a b { } a b { }. Φ ϕ ϕ ϕ { } Φ a b { }. ttp://www.reej.com 4-9-9 . ~ ma{ } ~ m m{ } ~ m~ ~ a b but m ~ 4-9-9 4 . P : ; Φ { } { ϕ ϕ a a a a a R } P pa ttp://www.reej.com

More information

Untitled

Untitled 456_1 456_2 456_3 456_4 1 456_5 456_6 456_7 456_8 456_9 456_10 456_11 2 456_12 456_13 456_14 456_15 456_16 456_17 3 456_18 456_19 456_20 456_21 456_22 ew 456_23 456_24 4 456_25 456_26 456_27 456_28 456_29

More information

- i - 1 2 W 1 W 2 W W W d(w) = d(p) + d (P) + L+ d(t) + d( σ ) + d(r) 2 P 2 P t σ R 1 2 = d(p) + Γ d (P) + L+ θ d(t) + ν d( σ) + ρ d(r) 2 Delta Delta Leland WW Delta-Gamma Delta-Gamma-Vega Michel Crouhy,

More information

1 2 3 4 5 6 7 8 9 10 11 12 3.1 4.5 8.5 14.5 19.5 23.9 28.2 27.9 23.3 17.6 11.9 5.8 7.2 8.7 13.0 19.2 24.0 28.0 32.0 31.7 27.2 22.2 16.4 10.1-0.1 1.2 5.0 10.7 15.8 20.7 25.0 24.9 20.2 13.8 8.2 2.3 42 62.7

More information

1736 34 35 1323 1371 48 1487 1537 50 1538 1556 18 1556 1575 19 1595 1616 26 1736 1740 1736 1739 40 1751 561 1 1 2 2 1980

More information

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7 !! # & ( ) +,. )/ 0 1, 2 ) 3, 4 5. 6 7 87 + 5 1!! # : ;< = > < < ;?? Α Β Χ Β ;< Α? 6 Δ : Ε6 Χ < Χ Α < Α Α Χ? Φ > Α ;Γ ;Η Α ;?? Φ Ι 6 Ε Β ΕΒ Γ Γ > < ϑ ( = : ;Α < : Χ Κ Χ Γ? Ε Ι Χ Α Ε? Α Χ Α ; Γ ;

More information