This application note describes the design and performance of a CO centered at 1750 MHz for a PCS handset that uses Alpha s SM varactor diode.

Size: px
Start display at page:

Download "This application note describes the design and performance of a CO centered at 1750 MHz for a PCS handset that uses Alpha s SM varactor diode."

Transcription

1 A Low Phase Noise CO Design for PCS Handset Applications Application Note Introduction The CO design in a PCS handset must satisfy a number of stringent electrical, cost, and size requirements which include: Power supply - 3 DC power supply - < 6 ma total current consumption Layout - Minimum components count - Aggressive PCB layout design and component placement rules with spacing less than 5 mils and placement pads no larger than component s land area - Total CO footprint smaller than 7 x 8 mm Cost - Minimum component cost - Maximum production yield - Tight component tolerance control to minimize or avoid trimming - Total CO cost well under $0.50 The factors that have significant impact on the primary CO electrical specifications may be summarized as follows: Primary design criteria - Frequency tuning range - Tuning sensitivity - Output power level Stability and spectrum purity factors - Phase noise at a given frequency offset - Frequency pulling when terminated with SWR > 2 at all phases - Frequency pushing - Temperature stability Other electrical specifications may include harmonic content or spur levels in the output signal, tuning linearity, etc. However, for the existing handset CO market these specifications have been standardized based on available technology. Some typical PCS CO characteristics for PCS handsets are given in Table 1. Manufacturer Murata Other Parameter Test Conditions MQE523 MQE920 Typical CTL = Frequency Range* (GHz) CTL = Tuning Sensitivity (MHz/) Supply oltage () Supply Current (ma) < 8 Control oltage () CTL Output Power (dbm) P OUT Pushing Figure (MHz/) < 2 Pulling Figure (MHz) SWR = 2, for all phases < 2 Phase Noise 10 khz *Frequency selection depends on the system requirement. Table 1. Typical Characteristics for PCS Handset COs Alpha Industries, Inc. [781] Fax [617] sales@alphaind.com 1

2 This application note describes the design and performance of a CO centered at 1750 MHz for a PCS handset that uses Alpha s SM varactor diode. This low R varactor was designed specifically for low phase noise applications. The CO was designed to satisfy the listed requirements for a PCS handset. The Colpitts CO Fundamentals The fundamental Colpitts CO operation is illustrated in Figures 1a and 1b. Figure 1a shows a Colpitts CO circuit the way it is usually implemented on a PCB. Figure 1b reconfigures the same circuit as a common-emitter amplifier with parallel feedback. We have separated the transistor junction and package capacitors, C EB, C CB and C CE, from the transistor parasitic components to demonstrate their direct effect on the CO tank circuit. In an actual low noise CO circuit, the capacitor we noted as C AR may have a more complicated structure. It would include series and parallel connected discrete capacitors used to set the oscillation frequency and tuning sensitivity. The parallel connection of the resonator inductor, L RES, and the varactor capacitive branch, C AR, refer to the parallel resonator (or simply resonator). A fundamental property of the parallel resonator in a Colpitts CO implementation is its inductive impedance at the oscillation frequency. This means that its parallel resonant frequency is always higher than the oscillation frequency. At parallel resonance in the resonator branch, the impedance in the feedback loop is high, acting like a stopband filter. Thus, the closer the oscillation frequency to the parallel resonant frequency, the higher the loss introduced in the feedback path. However, since more reactive energy is stored in the parallel resonator closer to the resonant frequency, then higher Q-load (Q L ) will be achieved. Obviously, low loss resonators, like crystal or dielectric resonators, allow much closer and lower oscillation loss buildup at parallel resonance, in comparison to microstrip or discrete inductor-based resonators. The proximity of the parallel resonance to the oscillation frequency may be effectively established by the C SER capacitor value. Indeed, if the capacitance of C SER is reduced, the parallel resonator will have higher inductance to compensate for the increased capacitive reactance. This means that the oscillation frequency will move closer to parallel resonance resulting in higher Q L and higher feedback loss. CC C SER C CB C CE CCC C CB L RES C AR C DI1 C EB P OUT C SER L RES C CC C DI2 RL C EB C DI1 C AR CDI2 RL C CE Figure 1a. Basic Colpitts CO Configuration Figure 1b. Common-Emitter iew of the Colpitts CO 2 Alpha Industries, Inc. [781] Fax [617] sales@alphaind.com

3 The Leeson equation, establishing a connection between tank circuit Q L and its losses, states: ξ ( ƒ m ) = FkT 2P 2 ƒ Q 4 2 L ƒ m Where F is the large signal noise figure of the amplifier as shown in Figure 1b; P is the loop or feedback power (measured at the input of the transistor); and Q L is loaded Q. These three parameters have significant consequences for phase noise in an actual low noise RF CO. In designing a low noise CO, we need to define the condition for minimum F and maximum P and Q L. This discussion shows that loop power and Q L are contradictory parameters.that is, an increase in Q L leads to more loss in the feedback path resulting in lower loop power. The condition for the optimum noise figure is also contrary to maximum loop power and largely depends on the specific transistor used. The best noise performance is usually achieved with a high gain transistor and the maximum gain coinciding with minimum noise at large signals. Since there are no such specifications currently available for standard industry transistors, we can only base our transistor choice on experience. The CO Model In Figure 2, the transistors X 1 and X 2 are connected in DC Cascode sharing the base biasing network consisting of R 2 (R DI1 ), R 3 (R DI2 ) and R 4 (R DI3 ). The bias resistor values were designed to distribute the DC voltages evenly between X 1 and X 2. Resistor R 6 (R L ) was chosen as low as 100 to minimize the DC voltage drop to the specified 8 ma. At RF frequencies, X 2 works as a common-emitter amplifier with the emitter grounded through capacitor SRLC2. The oscillator stage output is fed to the buffer transistor through coupling capacitor C 17 (C CPL ). The output circuit of the buffer stage consists of the printed microstrip-line inductor TL 5 and output capacitor C 1 (C OUT ). Capacitor SLC2, in parallel with the microstrip-line inductor TL 5, may be used for finer trimming, when SLC2 is selected lower than 0.5 pf. Figure 2. PCS CO Schematic for Libra I, Using DC Cascode Colpitts CO Configuration Alpha Industries, Inc. [781] Fax [617] sales@alphaind.com 3

4 The resonator circuit consists of the printed microstrip-line inductor T 3 in parallel with ceramic capacitor X 3 (C PAR ), the capacitive varactor branch with X 5 (C SER1 ) and varactor SM X 6 connected in series.the model for varactor SM is described in a separate circuit schematic bench shown in Figure 4. The varactor choice was based on the CO frequency coverage and the requirement for low phase noise. This requirement is related to the need for low equivalent series resistance, R S_EQ, in the overall CO resonator. The equivalent series resistance of the capacitive branch of the CO resonator, shown in Figure 1, includes the varactor with its series resistance. This resistance may be expressed as follows: R K S_ EQ Where: = K 2 M J K ƒ ( R 1 + CJO + rs + r P) - CE 1 M AR J S ; K ƒ = 1 ƒ 2r ƒ P AR K K ƒ C C JO E + r AR is the varactor DC bias in the middle of the tuning range; C E is the capacitance of the resonator capacitive branch in the middle of the tuning range; C JO, J, M are the parameters describing varactor capacitance [1] ; R P, R S are the series resistances of C PAR and C SER1 ; and K F is the relative tuning sensitivity. P ; RS_MIN Ce = 8 pf Ce = 3 pf SM123x SM14x 2 SM11x9 SM K F (%) Figure 3. Optimum R S vs. Relative Frequency Sensitivity for Different C E The results of this equation versus relative tuning sensitivity are given in Figure 3 for different varactor processes. The low resistance SM1763 process looks best for tuning sensitivities higher than % per. The values of variables used in the circuit are given in the variable equation module. The default and test benches are shown in Figures 4 and 5 respectively. 4 Alpha Industries, Inc. [781] Fax [617] sales@alphaind.com

5 Figure 4. Default Bench for Libra I Figure 5. PCS CO Test Bench Alpha Industries, Inc. [781] Fax [617] sales@alphaind.com 5

6 Figure 6. SM SPICE Model for Libra I SM SPICE Model The SM is a low series resistance, hyperabrupt varactor diode. It has the industry s smallest plastic package, SC-79, with a body size of 47 x 31 x 24 mils (total length with leads is 62 mils). Table 2 describes the model parameters. It shows default values appropriate for silicon varactor diodes that may be used by the Libra I simulator. The SPICE model for the SM varactor diode, defined for the Libra I environment, is shown in Figure 6 with a description of the parameters employed. 6 Alpha Industries, Inc. [781] Fax [617] sales@alphaind.com

7 Parameter Description Unit Default IS Saturation current (with N, determine the DC characteristics of the diode) A 1e-14 R S Series resistance Ω 0 N Emission coefficient (with IS, determines the DC characteristics of the diode) - 1 TT Transit time S 0 C JO Zero-bias junction capacitance (with J and M define nonlinear F 0 junction capacitance of the diode) J Junction potential (with J and M define nonlinear junction capacitance of the diode) 1 M Grading coefficient (with J and M define nonlinear junction capacitance of the diode) E G Energy gap (with XTI, helps define the dependence of IS on temperature) E 1.11 XTI Saturation current temperature exponent (with E G, helps define - 3 the dependence of IS on temperature) KF Flicker-noise coefficient - 0 AF Flicker-noise exponent - 1 FC Forward-bias depletion capacitance coefficient B Reverse breakdown voltage Infinity I B Current at reverse breakdown voltage A 1e-3 ISR Recombination current parameter A 0 NR Emission coefficient for ISR - 2 IKF High-injection knee current A Infinity NB Reverse breakdown ideality factor - 1 IBL Low level reverse breakdown knee current A 0 NBL Low level reverse breakdown ideality factor - 1 T NOM Nominal ambient temperature at which these model parameters were derived C 27 FFE Flicker-noise frequency exponent - 1 Table 2. Silicon Diode Default alues in Libra I According to the SPICE model, the varactor capacitance, C, is a function of the applied reverse DC voltage, R, and may be expressed as follows: C = C JO 1 + R J This equation is a mathematical expression of the capacitance characteristic. This model is accurate for abrupt junction varactors (like Alpha s SM1408); however, for hyperabrupt junction varactors the model is M + CP less accurate because the coefficients are dependent on the applied voltage. To make the equation work better for the hyperabrupt varactors the coefficients were optimized for the best capacitance versus voltage fit, as shown in Table 3. Please note that in the Libra model above, C P is given in picofarads, while C JO is given in farads to comply with the default unit system used in Libra. Part Number C JO (pf) M J () C P (pf) R S (Ω) L S (nh) SM Table 3. SPICE Parameters for SM Alpha Industries, Inc. [781] Fax [617] sales@alphaind.com 7

8 CC (3 ) AR R C SL 1 C R k 1 NE NE68619 MSL 2 RF Out C C R k C C C C MSL 1 D 1 C C R C Figure 7. PCS CO Schematic (D 1 : SM ) CO Design, Materials and Layout The CO schematic diagram is shown in Figure 7. The circuit is powered by a 3 voltage source.the I CC current was established near 8 ma. The RF output signal is coupled from the CO through the capacitor C 10 (2 pf). The PCB layout is shown in Figure 8.The board was made of standard, 30 mil thick FR4 material. A more detailed drawing of the CO layout is shown in Figure 9 with the dimensions of critical circuit components. The bill of materials used is given in Table 4. Designator alue Part Number Footprint Manufacturer C p 0402AU101KAT 0402 AX C 2 2 p 0402AU2R0JAT 0402 AX C 3 2 p 0402AU2R0JAT 0402 AX C 4 1 p 0402AU1R0JAT 0402 AX C p 0402AU2R4JAT 0402 AX C p 0402AU0R5JAT 0402 AX C p 0402AU0R75JAT 0402 AX C p 0402AU101KAT 0402 AX C p 0402AU101KAT 0402 AX C 10 2 p 0402AU2R0KAT 0402 AX C p 0402AU0R5KAT 0402 AX D 1 SM SM SC-79 Alpha Ind. R k CR10-392J-T 0402 AX/KYOCERA R k CR10-682J-T 0402 AX/KYOCERA R CR10-271J-T 0402 AX/KYOCERA R CR10-101J-T 0402 AX/KYOCERA 1 NE68119 NE68119 SOT-416 NEC/CEL 2 NE68619 NE68619 SOT-416 NEC/CEL Table 4. Bill of Materials 8 Alpha Industries, Inc. [781] Fax [617] sales@alphaind.com

9 Figure 8. PCB Layout Alpha Industries, Inc. [781] Fax [617]

10 Figure 9. Detailed Drawing of the PCS CO Layout Measurement and Simulation Results The measured performance of this circuit and the simulated results obtained with the model are shown in Figures 10 through 12. Phase noise measurements versus frequency offset are shown in Figure 12. It shows greater than -90 dbc/hz at 10 khz offset and greater than -110 dbc/hz at 100 khz offset. This 20 db/decade slope is fairly constant up to 5 6 MHz. The measurements were done in the range below 7 MHz, offset because of the 100 ns delay-line setup used. This measurement was made using the Aeroflex PN9000 Phase Noise Test Set. The measured frequency tuning response in Figure 10 shows linear 60 MHz/ tuning in the range typical for battery applications. The simulated frequency tuning response is very similar to the measured response. CO output power variation versus tuning shows a divergence within ±2 db between measurement and simulation. This may be attributed to the CO model parameters, especially to the transistor model parameters. These models are usually derived for small signal amplifier applications, and may not necessary reflect the higher non-linearity of a CO. 10 Alpha Industries, Inc. [781] Fax [617] sales@alphaind.com

11 Frequency Tuning (MHz) Output Power (dbm) Frequency Devation (MHz) Output Power (dbm) Frequency (meas) Power (meas) Loop Power (simu) aractor oltage () Frequency (simu) Power (simu) DC Power Supply oltage () Frequency (meas) Power (meas) Frequency (simu) Power (simu) Figure 10. Tuning Response Centered at 1750 MHz for CC = 3, AR = 1.5 Figure 11. DC Supply Pushing Response Centered at 1750 MHz for CC = 3, AR = 1.5 The simulated loop power shows constant behavior in the battery range of and rapid degradation above it. This degradation may cause proportional degradation of phase noise according to the Leeson equation. The DC supply pushing response, shown in Figure 11, shows even larger differences between simulated and measured data. The measured slow down of pushing near 2.4 indicates that pushing in the CO may be further minimized by reducing the DC bias current. However, the model supplied by the transistor vendor does not reflect a negative pushing slope. The simulation results shown in Figure 11 were obtained for a modified transistor model, which is available with the PCS CO simulation project file. Figure 12. Measured Phase Noise at 1750 MHz for CC = 3, AR = 1.5 Alpha Industries, Inc. [781] Fax [617] sales@alphaind.com 11

12 List of Available Documents The PCS CO Simulation Project Files for Libra I. The PCS CO Circuit Schematic and PCB Layout for Protel, EDA Client, 1998 version. The PCS CO PCB Gerber Photo-plot Files. CO Related Application Notes APN1004, aractor SPICE Models for RF CO Applications. APN1006, A Colpitts CO for Wide Band (0.95 GHz 2.15 GHz) Set-Top T Tuner Applications. APN1005, A Balanced Wide Band CO for Set-Top T Tuner Applications. APN1007, Switchable Dual-Band 170/420 MHz CO for Handset Cellular Applications. APN1012, CO Designs for Wireless Handset and CAT Set-Top Applications. APN1013, A Differential CO for GSM Handset Applications. 12 Alpha Industries, Inc. [781] Fax [617] sales@alphaind.com

13 易迪拓培训 专注于微波 射频 天线设计人才的培养网址 : 射频和天线设计培训课程推荐 易迪拓培训 ( 由数名来自于研发第一线的资深工程师发起成立, 致力并专注于微波 射频 天线设计研发人才的培养 ; 我们于 2006 年整合合并微波 EDA 网 ( 现已发展成为国内最大的微波射频和天线设计人才培养基地, 成功推出多套微波射频以及天线设计经典培训课程和 ADS HFSS 等专业软件使用培训课程, 广受客户好评 ; 并先后与人民邮电出版社 电子工业出版社合作出版了多本专业图书, 帮助数万名工程师提升了专业技术能力 客户遍布中兴通讯 研通高频 埃威航电 国人通信等多家国内知名公司, 以及台湾工业技术研究院 永业科技 全一电子等多家台湾地区企业 易迪拓培训课程列表 : 射频工程师养成培训课程套装该套装精选了射频专业基础培训课程 射频仿真设计培训课程和射频电路测量培训课程三个类别共 30 门视频培训课程和 3 本图书教材 ; 旨在引领学员全面学习一个射频工程师需要熟悉 理解和掌握的专业知识和研发设计能力 通过套装的学习, 能够让学员完全达到和胜任一个合格的射频工程师的要求 课程网址 : ADS 学习培训课程套装该套装是迄今国内最全面 最权威的 ADS 培训教程, 共包含 10 门 ADS 学习培训课程 课程是由具有多年 ADS 使用经验的微波射频与通信系统设计领域资深专家讲解, 并多结合设计实例, 由浅入深 详细而又全面地讲解了 ADS 在微波射频电路设计 通信系统设计和电磁仿真设计方面的内容 能让您在最短的时间内学会使用 ADS, 迅速提升个人技术能力, 把 ADS 真正应用到实际研发工作中去, 成为 ADS 设计专家... 课程网址 : HFSS 学习培训课程套装该套课程套装包含了本站全部 HFSS 培训课程, 是迄今国内最全面 最专业的 HFSS 培训教程套装, 可以帮助您从零开始, 全面深入学习 HFSS 的各项功能和在多个方面的工程应用 购买套装, 更可超值赠送 3 个月免费学习答疑, 随时解答您学习过程中遇到的棘手问题, 让您的 HFSS 学习更加轻松顺畅 课程网址 : `

14 易迪拓培训 专注于微波 射频 天线设计人才的培养网址 : CST 学习培训课程套装该培训套装由易迪拓培训联合微波 EDA 网共同推出, 是最全面 系统 专业的 CST 微波工作室培训课程套装, 所有课程都由经验丰富的专家授课, 视频教学, 可以帮助您从零开始, 全面系统地学习 CST 微波工作的各项功能及其在微波射频 天线设计等领域的设计应用 且购买该套装, 还可超值赠送 3 个月免费学习答疑 课程网址 : HFSS 天线设计培训课程套装套装包含 6 门视频课程和 1 本图书, 课程从基础讲起, 内容由浅入深, 理论介绍和实际操作讲解相结合, 全面系统的讲解了 HFSS 天线设计的全过程 是国内最全面 最专业的 HFSS 天线设计课程, 可以帮助您快速学习掌握如何使用 HFSS 设计天线, 让天线设计不再难 课程网址 : MHz NFC/RFID 线圈天线设计培训课程套装套装包含 4 门视频培训课程, 培训将 13.56MHz 线圈天线设计原理和仿真设计实践相结合, 全面系统地讲解了 13.56MHz 线圈天线的工作原理 设计方法 设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体操作, 同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试 通过该套课程的学习, 可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹配电路的原理 设计和调试 详情浏览 : 我们的课程优势 : 成立于 2004 年,10 多年丰富的行业经验, 一直致力并专注于微波射频和天线设计工程师的培养, 更了解该行业对人才的要求 经验丰富的一线资深工程师讲授, 结合实际工程案例, 直观 实用 易学 联系我们 : 易迪拓培训官网 : 微波 EDA 网 : 官方淘宝店 : 专注于微波 射频 天线设计人才的培养易迪拓培训官方网址 : 淘宝网店 :

易迪拓培训 专注于微波 射频 天线设计人才的培养网址 :http://www.edatop.com 射频和天线设计培训课程推荐 易迪拓培训 (www.edatop.com) 由数名来自于研发第一线的资深工程师发起成立, 致力并专注于微波 射频 天线设计研发人才的培养 ; 我们于 2006 年整合合并微波 EDA 网 (www.mweda.com), 现已发展成为国内最大的微波射频和天线设计人才培养基地,

More information

ANSYS 在航空航天器电磁兼容、电磁干扰分析中的应

ANSYS 在航空航天器电磁兼容、电磁干扰分析中的应 易迪拓培训 专注于微波 射频 天线设计人才的培养网址 :http://www.edatop.com 射频和天线设计培训课程推荐 易迪拓培训 (www.edatop.com) 由数名来自于研发第一线的资深工程师发起成立, 致力并专注于微波 射频 天线设计研发人才的培养 ; 我们于 2006 年整合合并微波 EDA 网 (www.mweda.com), 现已发展成为国内最大的微波射频和天线设计人才培养基地,

More information

西南交通大学硕士学位论文微带天线的小型化研究姓名 : 邓曦申请学位级别 : 硕士专业 : 电磁场与微波技术指导教师 : 刘运林 20100501 微带天线的小型化研究 作者 : 邓曦 学位授予单位 : 西南交通大学 本文链接 :http://d.g.wanfangdata.com.cn/thesis_y1688108.aspx

More information

西安电子科技大学博士学位论文机载阵列雷达动目标检测与定位方法研究姓名 : 曲毅申请学位级别 : 博士专业 : 信号与信息处理指导教师 : 廖桂生 20090901 机载阵列雷达动目标检测与定位方法研究

More information

usbintr.PDF

usbintr.PDF USB(Universal Serial Bus) USB( ) USB, USB PCI PC USB (host) USB (device) USB 1 PC PC USB PC 2 Plug-and-Play PC Plug-and- Play USB Plug-and-Play 3 PC / USB (USB 2.0 480Mb/s) USB USB 1 1 USB Toplogy USB

More information

易迪拓培训 专注于微波 射频 天线设计人才的培养网址 :http://www.edatop.com 如何学习天线设计 天线设计理论晦涩高深, 让许多工程师望而却步, 然而实际工程或实际工作中在设计天线时却很少用到这些高深晦涩的理论 实际上, 我们只需要懂得最基本的天线和射频基础知识, 借助于 HFSS CST 软件或者测试仪器就可以设计出工作性能良好的各类天线 易迪拓培训 (www.edatop.com)

More information

易迪拓培训 专注于微波 射频 天线设计人才的培养网址 :http://www.edatop.com 如何学习天线设计 天线设计理论晦涩高深, 让许多工程师望而却步, 然而实际工程或实际工作中在设计天线时却很少用到这些高深晦涩的理论 实际上, 我们只需要懂得最基本的天线和射频基础知识, 借助于 HFSS CST 软件或者测试仪器就可以设计出工作性能良好的各类天线 易迪拓培训 (www.edatop.com)

More information

,,: 65,A - 10A, 9, M1A1, 85 %: 148,35 72,1/ 6, 17 % (20 15 %) [1 ] ;1994,, 2 2,;2001, ; , ; ; F - 16 ;2 ;; F - 15 ; ;, :,,,, ,,,, M

,,: 65,A - 10A, 9, M1A1, 85 %: 148,35 72,1/ 6, 17 % (20 15 %) [1 ] ;1994,, 2 2,;2001, ; , ; ; F - 16 ;2 ;; F - 15 ; ;, :,,,, ,,,, M 2004 6 32 3 MODERN DEFENCE TECHNOLOGY J une 2004 Vol. 32 No. 3 Ξ,, (, 264001) :, :,,,,,,4 :; ;; : TN95911 + 7 ; TN957151 :A :10092086X(2004) 0320064205 Present situation, development and enlightenment

More information

untitled

untitled 1 2 3 MTBF 4 5 6 7 8 1 PCB EMC 2 3 FMEA FMEA FMEA FMEA F M E A RPN 1 FMEA 2 3 4 5 6 7 FMEA 4 5 6 7 1 2 3 4 5 FIT 5 FIT 5 FIT 6 6 7 7 3 8 MTBF MTTR FMEA A-availability MTBF-mean time between failure MTTF-mean

More information

Ω Ω 75Ω

Ω Ω 75Ω 18 A A A 0.1 AWG10 0.001 0.7m 1 0.083 m 1 90 RC=/Kρ /P /F N+R RC K ρ / 2 1 1 ρ 2.54 P / 2 F N R 0 A 1. 2. 3. 4. 5. 1.0 0.1 0.05Ω 10 100Ω 75Ω 50Ω 12 100 0.1A 1.0V 1.0A 10V 1.0A 10V I 2 R 100V 50A 100V 1.

More information

PCB Layout using ADS November 29, 2005 PCB Layout using ADS Dr. B. Frank Department of Electrical and Computer Engineering Queen's University Slide 1

PCB Layout using ADS November 29, 2005 PCB Layout using ADS Dr. B. Frank Department of Electrical and Computer Engineering Queen's University Slide 1 Dr. B. Frank Department of Electrical and Computer Engineering Queen's University Slide 1 Motivation Need circuit more reliable than breadboard? Working at RF/microwave frequencies? Printed circuit board

More information

PCB a 2.5mm b 4.0mm A mm W/cm 3 PCB PCB 2.0mm 1.5mm PCB PCB

PCB a 2.5mm b 4.0mm A mm W/cm 3 PCB PCB 2.0mm 1.5mm PCB PCB 1. PCB PCB PCB PCB EMC EMI 2. PCB PCB PCB 3. via Blind via Buried via Through via Component hole Stand off 4. / TS S0902010001 TS SOE0199001 TS SOE0199002 IEC60194 > > > > Printed Circuit

More information

Microsoft PowerPoint L10

Microsoft PowerPoint L10 6.00 CRCUTS AND ELECTRNCS Amplifiers -- Small Signal Model 6.00 Fall 000 Lecture 10 1 Reiew MSFET amp V S R L i DS Saturation discipline operate MSFET only in saturation region Large signal analysis 1.

More information

RFID Transponder operating at MHz

RFID Transponder operating at MHz RF-ID Transponder operating at 13.56 MHz Radio Frequency Identification Systems (RF-ID) are widely used and allow advanced solutions for a variety of applications in the area of authentication, ticketing,

More information

g g,, IFA [6 ] IFA (7),, H, IPFA, L, ; H, E E 1 IFA [8 ], L S [ 8 ], F ( PIFA), 2 L C, L C d ν H, Z0 [ 7 ], E : L C L C Z0 = ( 0 /

g g,, IFA [6 ] IFA (7),, H, IPFA, L, ; H, E E 1 IFA [8 ], L S [ 8 ], F ( PIFA), 2 L C, L C d ν H, Z0 [ 7 ], E : L C L C Z0 = ( 0 / : RFID RFID 1,2, 1,2, 2 (1. 710127 ;2. 518057) : U HF 840 845 M Hz 920 925 M Hz, E F,, E, 850 M Hz 920 M Hz, (VSWR < 2) E F,, :RFID ; IFA ; ; : TN82 :B :10042373X(2009) 102140203 Design of Novel Dual2frequency

More information

APN1013.qxd

APN1013.qxd A Differential VCO Design for GSM Handset Applications Application Note Introduction The differential pair of bipolar transistors is the common building block in modern RF integrated circuits. An advantage

More information

Microsoft Word - AN95007.doc

Microsoft Word - AN95007.doc Understanding VCO Concepts OSCILLATOR FUNDAMENTALS An oscillator circuit can be modeled as shown in Figure 1 as the combination of an amplifier with gain A (jω) and a feedback network β (jω), having frequency-dependent

More information

Design of Dual-Frequency Microstrip Antennas Using a Shorting-Pin Loading - Antennas and Propagation Society International Symposium, IEEE

Design of Dual-Frequency Microstrip Antennas Using a Shorting-Pin Loading - Antennas and Propagation Society International Symposium, IEEE DESIGN OF DUAL-FREQUENCY MICROSTRIP ANTENNA USING A SHORTING-PIN LOADING *Shan-Cheng Pan' and Kin-Lu Wong2 'Department of Electronic Engineering, Yung Ta College of Technology and Commerce, Pingtung. Taiwan,

More information

CAM350 CAM350 CAM350 CAM350 Export Gerber 274D 274X Fire9000 Barco DPF NC Drill Mill Excellon Sieb Meyer IPC D 350 IPC D A Modification CAM/Ger

CAM350 CAM350 CAM350 CAM350 Export Gerber 274D 274X Fire9000 Barco DPF NC Drill Mill Excellon Sieb Meyer IPC D 350 IPC D A Modification CAM/Ger CAM350 CAM350 CAM350 PCB CAM CAM350 CAM350 Fabrication Modules C350-750 C350-460 C350-260 C350-110 C350-050 Import X X X X X Information X X X X X Export X X X X Opt. Modification X X X X Opt. Optimization

More information

The project High Datarate satellite transmission system Design of a space qualifiable transmitter Suited for LEO satellites and other small satellites

The project High Datarate satellite transmission system Design of a space qualifiable transmitter Suited for LEO satellites and other small satellites Satellite Downlink Simulation with VSS including Matlab Models Slide 1 The project High Datarate satellite transmission system Design of a space qualifiable transmitter Suited for LEO satellites and other

More information

DATASHEET SEARCH SITE |

DATASHEET SEARCH SITE | 2 18 GHz Ultra Low Noise Pseudomorphic HEMT Technical Data ATF-3677 Features PHEMT Technology Ultra-Low Noise Figure:.5 db Typical at 12 GHz.3 db Typical at 4 GHz High Associated Gain: 12 db Typical at

More information

Dual-band Dipole Antenna for ISO /ISO Passive RFID Tag Applications

Dual-band Dipole Antenna for ISO /ISO Passive RFID Tag Applications Dual-band Dipole Antenna for ISO 18-6/ISO 18-4 Passive RFID Tag Applications Seunggil Jeon (1), Yeonsik Yu (1), Sungtek Kahng (2), Juderk Park (3), NaeSoo Kim (3), Jaehoon Choi (1) * (1)Department of Electrical

More information

, V m 3,, I p R 1 = ( I p + I 1 ) / R 0 I p, R 1 / 4, R m V d, 1. 1 Doherty MRF6P21190 LDMOS,,, Doherty B Freescale M6P21190 ADS 2 Doherty 3 Doherty,

, V m 3,, I p R 1 = ( I p + I 1 ) / R 0 I p, R 1 / 4, R m V d, 1. 1 Doherty MRF6P21190 LDMOS,,, Doherty B Freescale M6P21190 ADS 2 Doherty 3 Doherty, TN702 A 1009-2552(2007) 03-0045 - 06 Doherty, (, 430074) Doherty WCDMA ADS, 35 (45. 4dBm), ACLR - 55dBc WCDMA ; ; Doherty ; ; PAE Design of linearized Doherty power amplifier GENG Zhi, GUO Wei (Department

More information

Design System Designer RF Analog - Designer Ptolemy Simulator System level - Designer E D A - s Modelsim RTL EDGE GSM WLAN Numeric Ptolemy Timed NC-Ve

Design System Designer RF Analog - Designer Ptolemy Simulator System level - Designer E D A - s Modelsim RTL EDGE GSM WLAN Numeric Ptolemy Timed NC-Ve Content Reprint Advanced Design System for Designer E D A 21 GPRS WCDMA TDS-CDMA IEEE 802.11a IEEE 802.11b IEEE 802.11g PDA CICeNews-23 CIC Agilent Advanced 1 Design System Designer RF Analog - Designer

More information

APPLI002.DOC

APPLI002.DOC SIEGET 25 Silicon Bipolar- Dielectric Resonator Oscillator (DRO) at 10 GHz Oscillators represent the basic microwave energy source for all microwave systems such as radar, communications and navigation.

More information

6 7 EPCOS S+M 4 = å r =21, 7 GHz Q 7 200, MgTiO 3 -CaTiO 3 å r =38 7 GHz Q (Zr Sn)TiO 4 å r = GHz Q Ba(Zr Zn Ta)O 3 å r

6 7 EPCOS S+M 4 = å r =21, 7 GHz Q 7 200, MgTiO 3 -CaTiO 3 å r =38 7 GHz Q (Zr Sn)TiO 4 å r = GHz Q Ba(Zr Zn Ta)O 3 å r 6 Vol.23 No.6 2004 6 ELECTRONIC COMPONENTS & MATERIALS Jun. 2004 1 2 3 4 5 TM28 TN61 A 1001-2028 2004 06-0006-04 Development of Microwave Dielectric Materials and Its Applications ZHANG Jin-tai 1, XU Sai-qing

More information

DSCHA Jun 06

DSCHA Jun 06 CHA3666 RoHS COMPLIANT 6-17GHz Low Noise Amplifier GaAs Monolithic Microwave IC Description The CHA3666 is a two-stage self biased wide band monolithic low noise amplifier. D1 D2 The circuit is manufactured

More information

Microsoft Word - Lecture 24 notes, 322, v2.doc

Microsoft Word - Lecture 24 notes, 322, v2.doc Whites, EE 322 Lecture 24 Page 1 of 10 Lecture 24: Oscillators. Clapp Oscillator. VFO Startup Oscillators are circuits that produce periodic output voltages, such as sinusoids. They accomplish this feat

More information

Varactor SPICE Models for RF VCO Applications Parameter Description Unit Default IS Saturation current (with N, determine the DC characteristics of th

Varactor SPICE Models for RF VCO Applications Parameter Description Unit Default IS Saturation current (with N, determine the DC characteristics of th Varactor SPICE Models for RF VCO Applications Application Note Varactor Equivalent Circuit Model Definitions A simplified equivalent circuit of varactor is shown in Figure 1. This varactor model is useful

More information

Yageo Chip Antenna Sum V doc

Yageo Chip Antenna Sum V doc 1 Yageo - Chip Antenna Version :Step. 2010 Features : Embedded antenna - small antennas with moderate gain and efficiency performance Ultra compact - various sizes (2012, 3012, 3216, 4018, 5010, 5320,

More information

3.1.doc

3.1.doc SMEMA FIDUCIAL MARK STANDARD Standard 3.1 1.0 SCOPE: This SMEMA standard is for fiducial marks. It was developed to facilitate the accurate placement of components on printed circuit boards. SMEMA standards

More information

Microsoft Word - LAB 2 non-linear LNA.doc

Microsoft Word - LAB 2 non-linear LNA.doc LAB 2. Non-linearity in LNA Objective: 1. One-tone test 2. two-tone test 3. Bias circuit design 4. Noise Circle and Input matching 5. Output matching for maximum gain 6. Final matching network design One-tone

More information

RF Balum Transformers integrated circuit is a common application of these devices. Figure 4 shows the first mixer stage and second mixer stage of a re

RF Balum Transformers integrated circuit is a common application of these devices. Figure 4 shows the first mixer stage and second mixer stage of a re Application Note RF Balun Transformers Introduction This application note is designed to help the reader understand how balun transformers can be used in today s RF/Microwave communication applications.

More information

amp_b3.PDF

amp_b3.PDF San Jose State University Department of Electrical Engineering ELECTRICAL ENGINEERING SENIOR PROJECT Microwave Amplifier Design (part 3) by Steve Garcia Jaime Cordoba Inderpreet Obhi December 15, 2003

More information

Balun Design

Balun Design 1 of 6 Balun Design In the design of mixers, push-pull amplifiers, baluns are used to link a symmetrical (balanced) circuit to a asymmetrical (unbalanced) circuit. Baluns are designed to have a precise

More information

1262 PIERS Proceedings, Beijing, China, March 23 27, 2009 with the tag IC, the gap width of the capacitive coupling structure was varied to tune the i

1262 PIERS Proceedings, Beijing, China, March 23 27, 2009 with the tag IC, the gap width of the capacitive coupling structure was varied to tune the i Progress In Electromagnetics Research Symposium, Beijing, China, March 23 27, 2009 1261 A Metal Tag Antenna for Passive UHF RFID Applications Hsien-Wen Liu, Yu-Shu Lin, Kuo-Hsien Wu, and Chang-Fa Yang

More information

HBCU-5710r Dec11

HBCU-5710r Dec11 HSMP-3816 High Linearity PIN Diode Pi Attenuator Using a Diode Quad in Low Cost SOT-2 Package Application Note 262 Introduction Avago Technologies HSMP-3816 consists of four high linearity PIN diodes in

More information

Microsoft PowerPoint - Pres_ansoft_elettronica.ppt

Microsoft PowerPoint - Pres_ansoft_elettronica.ppt 1,5-40 GHz Meander Spiral Antenna Simulation and Design Presenter: Fabrizio Trotta Ansoft Corporation Application Introduction Design Specification Antenna Topology Numerical Method Approach Design Methodology

More information

第1讲-电磁兼容导论.ppt

第1讲-电磁兼容导论.ppt Advanced EMC +62784709 13601024327 hejl@tsinghua.edu.cn 1 1 1.1 1.2 1.3 1.4 1.5 1.6 EMC 2 1 166.111.63.4:1021 emc 303 3 1975 7 14 25 26 50 700 21 4 0 400GHz EMC 1994 25 5 6 1.1 Electromagnetic Compatibility

More information

( ) T arget R ecogn ition),,,,,,, ( IFF, Iden tification F riend o r Foe),,,,,,, ( N CTR, N on2 Cooperative T arget R ecogn ition), (

( ) T arget R ecogn ition),,,,,,, ( IFF, Iden tification F riend o r Foe),,,,,,, ( N CTR, N on2 Cooperative T arget R ecogn ition), ( V o l. 33, N o. 11 N ovem ber, 2008 F ire Contro l and Comm and Contro l 33 11 2008 11 : 100220640 (2008) 1120005203 1, 1, 1, 2, 1 (11, 100072, 21, 100072) :,,,, g :,,, : TN 97111 : A The Iden tif ication

More information

apn1003.qxd

apn1003.qxd A Wideband General Purpose PIN Diode Attenuator Application Note Introduction PIN diode based AGC attenuators are commonly used in many broadband system applications such as: cable or fiberoptic TV, wireless

More information

untitled

untitled ( RF Application list Application Wireless mouse Wireless Keyboard Wireless joystick FRS (Family Radio Service) Remote control Car alarm Home security Cordless phone Video sender Wireless earphone microphone

More information

PowerPoint Presentation

PowerPoint Presentation Sizing Handbook I 6 to 10 10w, w or 5w (3 to 4), w < Note: Port sizing guidelines are not inviolable rules true in all cases. For example, if meeting te eigt and widt requirements outlined result in a

More information

Presentation - Advanced Planar Antenna Designs for Wireless Devices

Presentation - Advanced Planar Antenna Designs for Wireless Devices 2003-11 Ansoft Workshop Advanced Planar Antenna Designs for Wireless Devices 翁金輅 (Kin-Lu Wong) 國立中山大學電機系 Dept. of Electrical Engineering National Sun Yat-Sen University Kaohsiung 80424, Taiwan E-mail:

More information

BranchLine Coupler - Quadrature

BranchLine Coupler - Quadrature of 3 () Branchine oupler - Quadrature Zo Zo λ/4 90 NOTE This device is sensitive to load mismatches. () ange oupler (Quadrature) Output oupled φ90 Broadband coupling 3dB 0dB Quadrature Input λ/4 Directive

More information

Microsoft PowerPoint - Lecture-08.ppt

Microsoft PowerPoint - Lecture-08.ppt Introduction to Algorithms 6.046J/18.401J Lecture 8 Prof. Piotr Indyk Data structures Previous lecture: hash tables Insert, Delete, Search in (expected) constant time Works for integers from {0 m r -1}

More information

Title

Title Broadband Microstrip-Fed Modified Quasi-Yagi Antenna Shih-Yuan Chen and Powen Hsu Department of Electrical Engineering and Graduate Institute of Communication Engineering National Taiwan University Taipei

More information

Microsoft Word - nAN900-04_rev2_1.doc

Microsoft Word - nAN900-04_rev2_1.doc nan900-04 1. General Gerber files for RF layouts have been made for Nordic Semiconductor s nrf905 Single Chip 433/868/915MHz RF Transceiver [1]. A loop antenna for 433MHz has also been made available.

More information

Microsoft PowerPoint - seminaari 26_5_04_antenniteknologiat.ppt

Microsoft PowerPoint - seminaari 26_5_04_antenniteknologiat.ppt Antenna technologies Antenna technologies Current status trends Outlook to different antenna solutions, examples Summary, challenges for the future Current status trends dual-band GSM tri-band GSM GPS

More information

pages.pdf

pages.pdf A Novel Dual-Band Microstrip Antenna for WLAN Application R.J. Lin, M. Ye School of Communication and Information Engineering, Shanghai University, Shanghai 200072, China Keywords: dual-band; microstrip

More information

A Miniature GPS Planar Chip Antenna Integrated with Low Noise Amplifier

A Miniature GPS Planar Chip Antenna Integrated with Low Noise Amplifier A Miniature GPS Planar Chip Antenna Integrated with Low Noise Amplifier 1 Chao-Wei Wang*, Yen-Ming Chen, Chang-Fa Yang Department of Electrical Engineering, National Taiwan University of Science and Technology

More information

Filter Design in Thirty Seconds

Filter Design in Thirty Seconds Application Report SLOA093 December 2001 Filter Design in Thirty Seconds Bruce Carter High Performance Analog ABSTRACT Need a filter fast? No theory, very little math just working filter designs, and in

More information

4.2 DC Bias

4.2 DC Bias 1 of Microwave Bipolar/FET Bias circuits F/Microwave transistors/fet s require some form of circuit to set the correct bias conditions for a particular F performance. There are two main types used an active

More information

A stair-shaped slot antenna for the triple-band WLAN applications

A stair-shaped slot antenna for the triple-band WLAN applications of the constructed prototype at 5800 MHz (center frequency of the 5.8-GHz band), and similar directional radiation patterns are also obtained. Figure 5 shows the measured peak antenna gain for operating

More information

AWT6166_Rev_0.3.PMD

AWT6166_Rev_0.3.PMD FEATURES Integrated Vreg (regulated supply) Harmonic Performance 25 High Efficiency (PAE) at Pmax: GSM850, 54% GSM900, 56% DCS, 53% PCS, 51% +35 GSM850/900 Output Power at 3.5 V +33 DCS/PCS Output Power

More information

TB215.doc

TB215.doc 2 1 C5 10uF +28 V C4 R3 3.9k C8 R5 1k C18 R10 3.9k C23 10uF D1 5.6V D2 5.6V C11 10uF D3 5.6V L6 B P1 10k L3 P2 10k L5 P3 10k L7 B R2 9.1k R4 C6 SP201 C7 T1 R6 9.1k C9 R8 C12 L4 C13 T2 C16 T3 T4a R11 9.1k

More information

Directional Couplers.doc

Directional Couplers.doc Directional ouplers [] THE QUADRATURE (90 ) HYBRID The Hybrid coupler is often made of microstrip or stripline as shown in Figure. The microstrip form is also pictured in Figure 2. These couplers are 3

More information

FSA W Low Voltage Dual DPDT Analog Switch

FSA W Low Voltage Dual DPDT Analog Switch 0.4: Low Voltage Dual DPDT Analog Switch General Description The FSA2467 is a Dual Double Pole Double Throw (DPDT) analog switch. The FSA2467 operates from a single 1.65V to 4.3V supply. The FSA2467 features

More information

CSTHandOut

CSTHandOut CST DESIGN STUDIO TM, CST PARTICLE STUDIO TM - 1 - Linking MATLAB and CST STUDIO USER NOTE This user note is centered on the use of CST MICROWAVE STUDIO (CST MWS) with MATLAB. MATLAB is a scientific computing

More information

Novel 2-D Photonic Bandgap Structure For Microstrip Lines - IEEE Microwa ve and Guided Wave Letters

Novel 2-D Photonic Bandgap Structure For Microstrip Lines - IEEE Microwa
ve and Guided Wave Letters IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 8, NO. 2, FEBRUARY 1998 69 Novel 2-D Photonic Bandgap Structure for Microstrip Lines Vesna Radisic, Student Member, IEEE, Yongxi Qian, Member, IEEE, Roberto

More information

SGS-Apache BQB proposal_04_11_2003

SGS-Apache BQB proposal_04_11_2003 BQB qualification FCC/CE/e-mark/ITA service 2003 Apr. 11, 2003 BQB Qualification Service Apache/SGS Bluetooth Products Qualification Service SIG Cat. A standard be performed since Jan., 2003 All of RF

More information

untitled

untitled Compact Metamaterial High Isolation MIMO Antenna Subsystem Cheng-Jung Lee, Maha Achour, and Ajay Gummalla Rayspan Corporation, San Diego, CA, USA Cheng@rayspan.com Introduction The use of multiple antennas

More information

書名:

書名: 8 I/O Circuit Package 8-2 VLSI / 8.1 I/O Circuit Schematic entry Layout I/O Circuit I/O IC [33] IC µm IC mm Bonding wire Bonding wire µm IC 8-1 Dual In line Package (DIP) Die Bonding Pad Bonding Wire Bonding

More information

lumprlc.fm

lumprlc.fm Ansoft HFSS Engineering Note Lumped RLC Elements in HFSS Version 8 In Ansoft s High Frequency Structure Simulator (HFSS), a specified impedance boundary condition has always referred to field values because

More information

Microsoft Word - SLVU2.8-4 Rev04.doc

Microsoft Word - SLVU2.8-4 Rev04.doc Low Capacitance TVS Array Description The is low capacitance transient voltage suppressor for high speed data interface that designed to protect sensitive electronics from damage or latch-up due to ESD

More information

Microsoft Word - M3_PB_IPJ_Monza3DuraProductBrief_ _R6.doc

Microsoft Word - M3_PB_IPJ_Monza3DuraProductBrief_ _R6.doc UHF Gen 2 RFID Tag Chip (IPJ-P5002-D2) Monza 3 Dura Features High sensitivity coupled with superior interference rejection yields excellent tag performance even when buried deep within a pallet of RF-absorbing

More information

Microsoft Word - Differential Circuit Comparison App note_B.doc

Microsoft Word - Differential Circuit Comparison App note_B.doc Sisonic and ECM in Circuits Date: Author: 20.Jan.2005 Bill Ryan Benefits of Circuits amplifiers are desirable to use in audio applications, especially those where signal levels are very low such as those

More information

New compact six-band internal antenna - Antennas and Wireless Propagation Letters

New compact six-band internal antenna - Antennas and Wireless Propagation Letters IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 3, 2004 295 New Compact Six-Band Internal Antenna Yong-Xin Guo, Member, IEEE, and Hwee Siang Tan Abstract A novel compact six-band internal handset

More information

Progress In Electromagnetics Research Symposium 27, Prague, Czech Republic, August W1 H Feed Line Z L2 L1 W2 X Y Radiating Patch L3 I-Shaped Sl

Progress In Electromagnetics Research Symposium 27, Prague, Czech Republic, August W1 H Feed Line Z L2 L1 W2 X Y Radiating Patch L3 I-Shaped Sl 158 PIERS Proceedings, August 27, Prague, Czech Republic, 27 A Novel Antenna Design for UHF RFID Tag on Metallic Objects Youngman Um 1, Uisheon Kim 1, Wonmo Seong 2, and Jaehoon Choi 1 1 Department of

More information

Full Band Waveguide-to-Microstrip Probe Transitions - Microwave Symposium Digest, 1999 IEEE MTT-S International

Full Band Waveguide-to-Microstrip Probe Transitions - Microwave Symposium Digest, 1999 IEEE MTT-S International THlB-5 Full Band Waveguide-to-Microstrip Probe Transitions Yoke-Choy Leong' and Sander Weinreb2 'Department of Electrical and Computer Engineering University of Massachusetts, Amherst, MA 01003 Jet Propulsion

More information

Balun Design

Balun Design 1 of 6 Balun Design In the design of mixers, push-pull amplifiers, baluns are used to link a symmetrical (balanced) circuit to a asymmetrical (unbalanced) circuit. Baluns are designed to have a precise

More information

Combline Cavity Filter Design in HFSS

Combline Cavity Filter Design in HFSS Presented by Jim Reed of Optimal Designs 3 Pole Cavity Combline Filter to be used in Demonstration for Filter Tuning Simulated / Measured Data for Real World Example, Compliments of Sierra Microwave Technologies

More information

High-Q RF-MEMS Tunable Evanescent-Mode Cavity Filter

High-Q RF-MEMS Tunable Evanescent-Mode Cavity Filter High-Q RF-MEMS Tunable Evanescent-Mode Cavity Filter Sang-June Park, Isak Reines, and Gabriel Rebeiz Qualcomm Incorporated San Diego, CA 92121 University of California San Diego La Jolla, CA 92093 Abstract

More information

Integrated microstrip and rectangular waveguide in planar form - IEEE Microwave and Wireless Components Letters [see also IEEE Microwave and Guided Wave Letters]

Integrated microstrip and rectangular waveguide in planar form - IEEE Microwave and Wireless Components Letters [see also IEEE Microwave and Guided Wave Letters] 68 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 11, NO. 2, FEBRUARY 2001 Integrated Microstrip and Rectangular Waveguide in Planar Form Dominic Deslandes and Ke Wu, Fellow, IEEE Abstract Usually

More information

Hybrid of Monopole and Dipole Antennas for Concurrent 2.4- and 5-GHz WLAN Access Point

Hybrid of Monopole and Dipole Antennas for Concurrent 2.4- and 5-GHz WLAN Access Point Hybrid of Monopole and Dipole Antennas for Concurrent 2.4- and 5-GHz WLAN Access Point Saou-Wen Su 1, Jui-Hung Chou 2 Network Access Strategic Business Unit Lite-On Technology Corp., No. 9, Chien I Road,

More information

iml88-0v C / 8W T Tube EVM - pplication Notes. IC Description The iml88 is a Three Terminal Current Controller (TTCC) for regulating the current flowi

iml88-0v C / 8W T Tube EVM - pplication Notes. IC Description The iml88 is a Three Terminal Current Controller (TTCC) for regulating the current flowi iml88-0v C / 8W T Tube EVM - pplication Notes iml88 0V C 8W T Tube EVM pplication Notes Table of Content. IC Description.... Features.... Package and Pin Diagrams.... pplication Circuit.... PCB Layout

More information

rd 5.7 = = = 1. cm (II-4) fd 9 This is more of what we are looking for. If we would use a frequency of 900 MHz this even reduces to 6.cm (assumed ε r

rd 5.7 = = = 1. cm (II-4) fd 9 This is more of what we are looking for. If we would use a frequency of 900 MHz this even reduces to 6.cm (assumed ε r Printed Dipole Antenna Reto Zingg Abstract In this project a printed dipole antenna is being designed. Printed dipole antennas are of interest, when an electronic product, which is implemented on a printed

More information

untitled

untitled S http://www.mweda.com ADS Momentum Patch Antenna microstrip line circuit high Qbroadside directivity( end-fired antenna) feed in cavityads(advanced Design System) feed in Transmission Line Feed 1 feedfeed

More information

Microsoft PowerPoint - Ch5 The Bipolar Junction Transistor

Microsoft PowerPoint - Ch5 The Bipolar Junction Transistor O2005: Electronics The Bipolar Junction Transistor (BJT) 張大中 中央大學通訊工程系 dcchang@ce.ncu.edu.tw 中央大學通訊系張大中 Electronics, Neamen 3th Ed. 1 Bipolar Transistor Structures N P 17 10 N D 19 10 N D 15 10 中央大學通訊系張大中

More information

Microsoft Word - APMC譛€邨ゆク雁さV2.0.doc

Microsoft Word - APMC譛€邨ゆク雁さV2.0.doc Proceedings of Asia-Pacific Microwave Conference 2006 Wideband Slotline-to-Rectangular Waveguide Transition Using Truncated Bow-Tie Antenna Ruei -Ying Fang and Chun-Long Wang Department of Electronics

More information

Practical RF Printed Circuit Board Design

Practical RF Printed Circuit Board Design PRACTICAL RF PRINTED CIRCUIT BOARD DESIGN Geoff Smithson. Overview The electrical characteristics of the printed circuit board (PCB) used to physically mount and connect the circuit components in a high

More information

DDR2 Signal Quality Analysis on VIA PC Board

DDR2 Signal Quality Analysis on VIA PC Board GDA Technologies, Inc. DDR2 Signal Integrity Version 1.0 DDR2 Signal Quality Analysis Introduction GDA System Engineering has been designing around complex memory subsystems for nearly ten years. As more

More information

HFSS Antenna Design Kit

HFSS Antenna Design Kit Ansoft HFSS Antenna Design Kit Arien Sligar 2007 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Overview of HFSS Antenna Design Kit GUI-based wizard tool Automates geometry creation, solution

More information

Special Materials in CST STUDIO SUITE 2012

Special Materials in CST STUDIO SUITE 2012 Modelling Thin Materials in CST STUDIO SUITE 2012 Lossy Metal Ohmic Sheets Tabulated Surface Impedance Thin Panel Various Material Types Material types Available in which solvers? * FIT TLM *Apart from

More information

192 IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 5, 2006 This method can be applied to all kinds of antennas in any environment and it becomes

192 IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 5, 2006 This method can be applied to all kinds of antennas in any environment and it becomes IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 5, 2006 191 Calculation of Small Antennas Quality Factor Using FDTD Method S. Collardey, A. Sharaiha, Member, IEEE, and K. Mahdjoubi, Member, IEEE Abstract

More information

A low-profile planar monopole antenna for multiband operation of mobile handsets - Antennas and Propagation, IEEE Transactions on

A low-profile planar monopole antenna for multiband operation of mobile handsets - Antennas and Propagation, IEEE Transactions on IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 51, NO. 1, JANUARY 2003 121 A Low-Profile Planar Monopole Antenna for Multiband Operation of Mobile Handsets Kin-Lu Wong, Senior Member, IEEE, Gwo-Yun

More information

3152 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 52, NO. 11, NOVEMBER 2004 (c) Fig. 2. y z plane radiation patterns ofoma computed using FDTD

3152 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 52, NO. 11, NOVEMBER 2004 (c) Fig. 2. y z plane radiation patterns ofoma computed using FDTD IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 52, NO. 11, NOVEMBER 2004 3151 An Omnidirectional Planar Microstrip Antenna Randy Bancroft and Blaine Bateman Abstract A new omnidirectional printed

More information

RFTune2Column.dvi

RFTune2Column.dvi SUBMITTED FOR REVIEW AS A SHORT PAPER TO THE IEEE TRANS. ON MTT, OCTOBER 29, 1999 1 A Varactor Tuned RF Filter Andrew R. Brown, Student Member, IEEE, Gabriel M. Rebeiz, Fellow, IEEE Abstract An electronically

More information

iml v C / 4W Down-Light EVM - pplication Notes. IC Description The iml8683 is a Three Terminal Current Controller (TTCC) for regulating the cur

iml v C / 4W Down-Light EVM - pplication Notes. IC Description The iml8683 is a Three Terminal Current Controller (TTCC) for regulating the cur iml8683-220v C / 4W Down-Light EVM - pplication Notes iml8683 220V C 4W Down Light EVM pplication Notes Table of Content. IC Description... 2 2. Features... 2 3. Package and Pin Diagrams... 2 4. pplication

More information

渐 变 槽 线 天 线 的 研 究 及 其 在 移 动 通 信 基 站 中 的 应 用 作 者 : 沈 薇 学 位 授 予 单 位 : 东 南 大 学 本 文 链 接 :http://d.g.wanfangdata.com.cn/thesis_y1039826.aspx 易 迪 拓 培 训 专 注 于 微 波 射 频 天 线 设 计 人 才 的 培 养 网 址 :http://www.edatop.com

More information

ims2001_TUIF_28_1659_CD.PDF

ims2001_TUIF_28_1659_CD.PDF Bias Circuits for GaAs HBT Power Amplifiers Esko Järvinen, Sami Kalajo, Mikko Matilainen* Nokia Mobile Phones, Itämerenkatu 11-13, FIN-00180, Helsinki, Finland *Nokia Research Center, Itämerenkatu 11-13,

More information

50 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 16, NO. 1, JANUARY 2006 Fig. 2. Geometry of the three-section PSL power divider. Fig. 5. Schem

50 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 16, NO. 1, JANUARY 2006 Fig. 2. Geometry of the three-section PSL power divider. Fig. 5. Schem IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 16, NO. 1, JANUARY 2006 49 A Wideband Compact Parallel-Strip 180 Wilkinson Power Divider for Push Pull Circuitries L. Chiu, Student Member, IEEE, T.

More information

Vortrag Arpad.ppt

Vortrag Arpad.ppt RF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology June 11, 21 Contents Basic Amplifier Concepts Class A,

More information

西 安 电 子 科 技 大 学 硕 士 学 位 论 文 人 体 对 移 动 通 信 手 机 天 线 辐 射 特 性 的 影 响 姓 名 : 郑 婕 申 请 学 位 级 别 : 硕 士 专 业 : 生 物 医 学 工 程 指 导 教 师 : 赵 建 勋 20090101 易 迪 拓 培 训 专 注

More information

Pin Configurations Figure2. Pin Configuration of FS2012 (Top View) Table 1 Pin Description Pin Number Pin Name Description 1 GND 2 FB 3 SW Ground Pin.

Pin Configurations Figure2. Pin Configuration of FS2012 (Top View) Table 1 Pin Description Pin Number Pin Name Description 1 GND 2 FB 3 SW Ground Pin. Features Wide 3.6V to 32V Input Voltage Range Output Adjustable from 0.8V to 30V Maximum Duty Cycle 100% Minimum Drop Out 0.6V Fixed 300KHz Switching Frequency 12A Constant Output Current Capability Internal

More information

iml v C / 0W EVM - pplication Notes. IC Description The iml8683 is a Three Terminal Current Controller (TTCC) for regulating the current flowin

iml v C / 0W EVM - pplication Notes. IC Description The iml8683 is a Three Terminal Current Controller (TTCC) for regulating the current flowin iml8683-220v C / 0W EVM - pplication Notes iml8683 220V C 0W EVM pplication Notes Table of Content. IC Description... 2 2. Features... 2 3. Package and Pin Diagrams... 2 4. pplication Circuit... 3 5. PCB

More information

CBW = Ri BW = - n*gd Table 3. Normalized coupling matrix for filter Wire diameter: 0.075inch I R1 =0.9

CBW = Ri BW = - n*gd Table 3. Normalized coupling matrix for filter Wire diameter: 0.075inch I R1 =0.9 High Performance Helical Resonator Filters Ming Yu and Van Dokas COM DEV Ltd, 155 Sheldon Dr., Cambridge, Ontario, Canada, NIR 7H6 ming.yu@ieee.org Abstract - Complex filter functions are realized using

More information

Triple-band triangular-shaped meander monopole antenna with two coupled lines

Triple-band triangular-shaped meander monopole antenna with two coupled lines TRIPLE-BAND TRIANGULAR-SHAPED MEANDER MONOPOLE ANTENNA WITH TWO COUPLED LINES Horng-Dean Chen Department of Electronic Engineering Cheng-Shiu Institute of Technology Kaohsiung, Taiwan 833, R.O.C. Received

More information

Thus, the antenna has the ability to receive both vertically and horizontally polarized electromagnetic waves, which can be proven beneficial in indoo

Thus, the antenna has the ability to receive both vertically and horizontally polarized electromagnetic waves, which can be proven beneficial in indoo PIFA Planar Inverted F Antenna Iulian Rosu, YO3DAC / VA3IUL http://www.qsl.net/va3iul The Inverted F Antenna (IFA) typically consists of a rectangular planar element located above a ground plane, a short

More information

untitled

untitled Proceedings of the International Conference on Computer and Communication Engineering 28 May 13-15, 28 Kuala Lumpur, Malaysia RF Bandpass Tunable Filter using RF MEMS A.H.M. Zahirul Alam, Md. Rafiqul Islam,

More information