A low-profile planar monopole antenna for multiband operation of mobile handsets - Antennas and Propagation, IEEE Transactions on

Size: px
Start display at page:

Download "A low-profile planar monopole antenna for multiband operation of mobile handsets - Antennas and Propagation, IEEE Transactions on"

Transcription

1 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 51, NO. 1, JANUARY A Low-Profile Planar Monopole Antenna for Multiband Operation of Mobile Handsets Kin-Lu Wong, Senior Member, IEEE, Gwo-Yun Lee, and Tzung-Wern Chiou Abstract A novel planar monopole antenna with a very low profile (antenna height less than 0.04 times the operating wavelength in the free space) and capable of multiband operation is proposed. The proposed antenna has a planar rectangular radiating patch in which a folded slit is inserted at the patch s bottom edge. The folded slit separates the rectangular patch into two subpatches, one smaller inner subpatch encircled by the larger outer one. The proposed antenna is then operated with the inner subpatch resonating as a quarter-wavelength structure and the outer one resonating as both a quarter-wavelength and a half-wavelength structure. The proposed antenna, 12 mm in height and 30 mm in width has been constructed, and the obtained bandwidths cover the global system for mobile communication ( MHz), digital communication system ( MHz), personal communication system ( MHz), and universal mobile telecommunication system ( MHz) bands. Details of the proposed design and obtained experimental results are presented and discussed. Index Terms Antennas, mobile antennas, monopole antennas, multifrequency antennas. I. INTRODUCTION BROAD-BAND or dual-band planar monopole antennas [1] [6] with a reduced antenna height are very attractive for mobile handset antenna applications. For the planar monopole antennas reported in [1] and [2], the radiating element is a circular disc or an elliptical disc, and a very wide bandwidth has been shown. However, the antenna height of such planar monopole antennas is larger than about ( is the operating wavelength in free space), which makes it less attractive to be employed in mobile handsets. To achieve a reduced antenna height for broad-band or dual-band planar monopole antennas, a variety of designs have also been demonstrated [3] [6]. These designs include introducing a shorting pin to the planar monopole antenna [3], fabricating the radiating strip of the monopole antenna on a substrate of very high relative permittivity (about 80) [4], using a stacked planar monopole consisting of a top-loaded element and a parasitic square element [5], modifying the geometry of a bent folded monopole/loop antenna [6]. However, the antenna height for these designs is still greater than. In this paper, we propose a novel planar monopole antenna design with a very low antenna height less than (the total antenna height is only 12 mm for operating at the 900-MHz band). In addition, the proposed antenna is also capable of multiband operation, covering the 900-MHz-band global system for Manuscript received August 11, The authors are with the Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, R.O.C. Digital Object Identifier /TAP Fig. 1. Geometry and dimensions of the proposed low-profile planar monopole antenna for GSM/DCS/PCS/UMTS operation. mobile communication (GSM), 1800-MHz-band digital communication system (DCS), 1900-MHz-band personal communication system (PCS), and 2050-MHz-band universal mobile telecommunication system (UMTS). The proposed design is described in detail in this paper, and experimental results of the constructed prototype are presented and discussed. II. ANTENNA DESIGN Fig. 1 shows the proposed low-profile planar monopole antenna. The radiating element is a rectangular patch with a folded slit inserted at its bottom edge, and is printed on an inexpensive FR4 substrate (thickness 0.4 mm, relative permittivity 4.4) as shown in the figure. A 50- microstrip line is used to feed the monopole antenna, and is printed on the same substrate. On the other side of the substrate, there is a ground plane below the microstrip feed line. This ground plane was selected to be mm in the experiment, which can be considered to be the ground plane of a practical mobile handset. The radiating rectangular patch has dimensions of mm and is placed on top of the ground plane with a distance of 2 mm. The dimensions of the folded inserted slit are shown in the figure. The major effect of the folded slit is to separate the rectangular patch into two subpatches, X/03$ IEEE

2 122 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 51, NO. 1, JANUARY 2003 Fig. 2. Measured and simulated return loss for the proposed antenna. one smaller inner subpatch and one larger outer subpatch. It should be noted that the open end of the folded slit at the patch s bottom edge is placed close to the feed point, and the other end inside the patch is also designed to be close to the feed point. In this case, the smaller inner subpatch is encircled by the outer one, which leads to two possible excited surface current paths inside the rectangular patch. The longer path starts from the feed point and follows the folded slit to the open end of the slit at the patch s bottom edge, while the shorter one is from the feed point to the end of the inner subpatch encircled by the folded slit. It can be seen that the length of the longer path is much greater than the length of the rectangular patch, which makes the fundamental resonant frequency of the proposed antenna greatly lowered. In the proposed design shown in Fig. 1, this length is about 70 mm, which is slightly less than one-quarter wavelength of the operating frequency at 900 MHz. This difference is largely due to the effect of the supporting FR4 substrate, which reduces the resonant length of the radiating element [3]. On the other hand, the length of the shorter path in the proposed design is about 30 mm, which makes it possible for the excitation of a quarter-wavelength resonant mode at about 2000 MHz. This resonant mode incorporating the second-higher (half-wavelength) resonant mode of the longer path, which is expected to be at about 1800 MHz, forms a wide impedance bandwidth covering the bandwidths of the 1800-, 1900-, and 2050-MHz bands for the proposed antenna. A prototype of the proposed antenna shown in Fig. 1 was constructed, and experimental results are shown in Section III. III. EXPERIMENTAL RESULTS AND DISCUSSION Fig. 2 shows the measured return loss of the proposed antenna. It is clearly seen that two wide operating bandwidths are obtained. The lower bandwidth, determined by 1 : 2.5 VSWR, reaches 142 MHz and covers the GSM band ( MHz). On the other hand, the upper band has a bandwidth as large as 565 MHz and covers the DCS ( MHz), PCS ( MHz), and UMTS ( MHz) bands. The measured data in general agree with the simulated results. The excited surface current distributions, obtained from the IE3D simulation, on the radiating patch for the proposed antenna at Fig. 3. Simulated IE3D results of the surface current distributions on the radiating patch for the proposed antenna at 900, 1800, 1900, and 2050 MHz. 900, 1800, 1900, and 2050 MHz are also presented in Fig. 3. For the 900-MHz excitation, a larger surface current distribution is observed for the longer path along the outer subpatch. This suggests that the outer subpatch is the major radiating element for the proposed antenna at the 900-MHz band, and the outer sub-patch is operated as a quarter-wavelength structure as discussed in Section II. For the 1800-, 1900-, and 2050-MHz operation, it is observed that the surface current distribution in the inner subpatch gradually increases. This also indicates that the inner subpatch is the major radiating element for the higher operating frequencies of the antenna s upper band, especially in the 2050-MHz band, and is also operated as a quarter-wavelength structure. As for the lower operating frequencies of the antenna s upper band, it is largely related to the outer subpatch operated as a half-wavelength structure. This can be explained that the current distributions in the outer subpatch are larger for the and 1900-MHz operations than for the 2050-MHz operation. Figs. 4 and 5 plot the measured radiation patterns in the plane (azimuthal direction) and plane (elevation direction) for the proposed antenna at 900, 1800, 1900, and 2050 MHz. Although the obtained radiation patterns are not as good as those of a conventional simple monopole antenna having a very good azimuthal omni-directional pattern and null radiation along the antenna axis, the proposed antenna in general shows a monopole-like radiation pattern. Fig. 6 shows the measured antenna gain against frequency for the proposed antenna. For the 900-MHz band, a peak antenna gain of about 2.9 db is observed,

3 WONG et al.: A LOW-PROFILE PLANAR MONOPOLE ANTENNA FOR MULTIBAND OPERATION OF MOBILE HANDSETS 123 Fig. 4. Measured radiation patterns for the proposed antenna at: (a) 900 MHz and (b) 1800 MHz. Fig. 5. Measured radiation patterns for the proposed antenna at: (a) 1900 MHz and (b) 2050 MHz. with gain variations less than 1.5 db. For the 1800-, 1900-, and 2050-MHz bands, the peak antenna gain observed is 3.0, 3.4, and 3.4 db, respectively, and the gain variations are also less than 1.5 db.

4 124 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 51, NO. 1, JANUARY 2003 (a) (b) (c) (d) Fig. 6. Measured antenna gain for the proposed antenna. (a) The GSM band ( MHz). (b) The DCS band ( MHz). (c) The PCS band ( MHz). (d) The UMTS band ( MHz). IV. CONCLUSION A novel low-profile planar monopole antenna suitable for multiband operation of mobile handsets has been proposed. A prototype of the proposed antenna has been successfully implemented, and the antenna occupies a small area of mm. The obtained bandwidths meet the bandwidth requirements of the GSM, DCS, PCS, and UMTS cellular systems. REFERENCES [1] P. P. Hammoud and F. Colomel, Matching the input impedance of a broadband disc monopole, Electron. Lett., vol. 29, pp , Feb [2] N. P. Agrawall, G. Kumar, and K. P. Ray, Wide-band planar monopole antennas, IEEE Trans. Antennas Propagat., vol. 46, pp , Feb [3] E. Lee, P. S. Hall, and P. Gardner, Compact wideband planar monopole antenna, Electron. Lett., vol. 35, pp , Dec [4] K. F. Tong, K. M. Luk, C. H. Chan, and E. K. N. Yung, A miniature monopole antenna for mobile communications, Microwave Opt. Technol. Lett., vol. 27, pp , Nov [5] W. Dou and W. Y. M. Chia, Small broadband stacked planar monopole, Microwave Opt. Technol. Lett., vol. 27, pp , Nov [6] E. Lee, P. S. Hall, and P. Gardner, Dual band folded monopole/loop antenna for terrestrial communication system, Electron. Lett., vol. 36, pp , Nov From 1986 to 1987, he was a Visiting Scientist with Max-Planck-Institute for Plasma Physics, Munich, Germany. Since 1987, he has been with the Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C., where he became a Professor in From 1994 to 1997, he also served as Chairman of the Electrical Engineering Department, National Sun Yat-Sen University. From 1998 to 1999, he was a Visiting Scholar with the ElectroScience Laboratory, The Ohio State University, Columbus, OH. He has published more than 260 refereed journal papers and numerous conference articles and has graduated 33 Ph.D. students. He also holds 51 patents and has many patents pending. He is author of Design of Nonplanar Microstrip Antennas and Transmission Lines (New York: Wiley, 1999) and Compact and Broadband Microstrip Antennas (New York: Wiley, 2002), and Planar Antennas for Wireless Communications (New York: Wiley, 2003). Dr. Wong received the Outstanding Research Award from the National Science Council of the Republic of China in 1994, 2000, and He also received the Young Scientist Award from URSI in 1993, the Excellent Young Electrical Engineer Award from Chinese Institute of Electrical Engineers in 1998, the Excellent Textbook Award for Microstrip Antenna Experiment (in Chinese) from the Ministry of Education of the Republic of China in 1998, and the Outstanding Research Award from National Sun Yat-Sen University in 1994 and In 2001, he also received the ISI Citation Classic Award for a published paper with a high citation. He has been on the Editorial Board of the IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES and Microwave Optical Technology Letters. He is a Member of the National Committee of the Republic of China for URSI, Microwave Society of the Republic of China, and Chinese Institute of Electrical Engineers. He has also been on the Board of Directors of the Microwave Society of the Republic of China. He is listed in Who s Who of the Republic of China and Marquis Who s Who in the World. Kin-Lu Wong (M 91 SM 97) received the B.S. degree in electrical engineering from the National Taiwan University, Taipei, Taiwan, R.O.C., and the M.S. and Ph.D. degrees in electrical engineering from Texas Tech University, Lubbock, in 1981, 1984, and 1986, respectively. Gwo-Yun Lee was born in Kaohsiung, Taiwan, R.O.C., in She received the B.S. degree in electrical engineering from National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C., in She is currently working toward the Ph.D. degree at the same university. Her current research interests include microstrip antenna theory and design, electromagnetic wave propagation, and RF circuit design.

5 WONG et al.: A LOW-PROFILE PLANAR MONOPOLE ANTENNA FOR MULTIBAND OPERATION OF MOBILE HANDSETS 125 Tzung-Wern Chiou was born in Taipei, Taiwan, R.O.C., in He received the B.S. degree in electrical engineering from the National Taipei Institute of Technology, Taipei, Taiwan, R.O.C., in 1993, and the Ph.D. degree in electrical engineering from the National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C., in His current research interests include printed antenna theory and design, and RF circuit design. Mr. Chiou was a winner of the Student Paper Competition, National Symposium on Telecommunications, Chungli, Taiwan, R.O.C., in He received a graduate student scholarship from Phycomp Taiwan Ltd. in 2001.

6 易迪拓培训 专注于微波 射频 天线设计人才的培养网址 : 射频和天线设计培训课程推荐 易迪拓培训 ( 由数名来自于研发第一线的资深工程师发起成立, 致力并专注于微波 射频 天线设计研发人才的培养 ; 我们于 2006 年整合合并微波 EDA 网 ( 现已发展成为国内最大的微波射频和天线设计人才培养基地, 成功推出多套微波射频以及天线设计经典培训课程和 ADS HFSS 等专业软件使用培训课程, 广受客户好评 ; 并先后与人民邮电出版社 电子工业出版社合作出版了多本专业图书, 帮助数万名工程师提升了专业技术能力 客户遍布中兴通讯 研通高频 埃威航电 国人通信等多家国内知名公司, 以及台湾工业技术研究院 永业科技 全一电子等多家台湾地区企业 易迪拓培训课程列表 : 射频工程师养成培训课程套装该套装精选了射频专业基础培训课程 射频仿真设计培训课程和射频电路测量培训课程三个类别共 30 门视频培训课程和 3 本图书教材 ; 旨在引领学员全面学习一个射频工程师需要熟悉 理解和掌握的专业知识和研发设计能力 通过套装的学习, 能够让学员完全达到和胜任一个合格的射频工程师的要求 课程网址 : ADS 学习培训课程套装该套装是迄今国内最全面 最权威的 ADS 培训教程, 共包含 10 门 ADS 学习培训课程 课程是由具有多年 ADS 使用经验的微波射频与通信系统设计领域资深专家讲解, 并多结合设计实例, 由浅入深 详细而又全面地讲解了 ADS 在微波射频电路设计 通信系统设计和电磁仿真设计方面的内容 能让您在最短的时间内学会使用 ADS, 迅速提升个人技术能力, 把 ADS 真正应用到实际研发工作中去, 成为 ADS 设计专家... 课程网址 : HFSS 学习培训课程套装该套课程套装包含了本站全部 HFSS 培训课程, 是迄今国内最全面 最专业的 HFSS 培训教程套装, 可以帮助您从零开始, 全面深入学习 HFSS 的各项功能和在多个方面的工程应用 购买套装, 更可超值赠送 3 个月免费学习答疑, 随时解答您学习过程中遇到的棘手问题, 让您的 HFSS 学习更加轻松顺畅 课程网址 : `

7 易迪拓培训 专注于微波 射频 天线设计人才的培养网址 : CST 学习培训课程套装该培训套装由易迪拓培训联合微波 EDA 网共同推出, 是最全面 系统 专业的 CST 微波工作室培训课程套装, 所有课程都由经验丰富的专家授课, 视频教学, 可以帮助您从零开始, 全面系统地学习 CST 微波工作的各项功能及其在微波射频 天线设计等领域的设计应用 且购买该套装, 还可超值赠送 3 个月免费学习答疑 课程网址 : HFSS 天线设计培训课程套装套装包含 6 门视频课程和 1 本图书, 课程从基础讲起, 内容由浅入深, 理论介绍和实际操作讲解相结合, 全面系统的讲解了 HFSS 天线设计的全过程 是国内最全面 最专业的 HFSS 天线设计课程, 可以帮助您快速学习掌握如何使用 HFSS 设计天线, 让天线设计不再难 课程网址 : MHz NFC/RFID 线圈天线设计培训课程套装套装包含 4 门视频培训课程, 培训将 13.56MHz 线圈天线设计原理和仿真设计实践相结合, 全面系统地讲解了 13.56MHz 线圈天线的工作原理 设计方法 设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体操作, 同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试 通过该套课程的学习, 可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹配电路的原理 设计和调试 详情浏览 : 我们的课程优势 : 成立于 2004 年,10 多年丰富的行业经验, 一直致力并专注于微波射频和天线设计工程师的培养, 更了解该行业对人才的要求 经验丰富的一线资深工程师讲授, 结合实际工程案例, 直观 实用 易学 联系我们 : 易迪拓培训官网 : 微波 EDA 网 : 官方淘宝店 : 专注于微波 射频 天线设计人才的培养易迪拓培训官方网址 : 淘宝网店 :

易迪拓培训 专注于微波 射频 天线设计人才的培养网址 :http://www.edatop.com 射频和天线设计培训课程推荐 易迪拓培训 (www.edatop.com) 由数名来自于研发第一线的资深工程师发起成立, 致力并专注于微波 射频 天线设计研发人才的培养 ; 我们于 2006 年整合合并微波 EDA 网 (www.mweda.com), 现已发展成为国内最大的微波射频和天线设计人才培养基地,

More information

ANSYS 在航空航天器电磁兼容、电磁干扰分析中的应

ANSYS 在航空航天器电磁兼容、电磁干扰分析中的应 易迪拓培训 专注于微波 射频 天线设计人才的培养网址 :http://www.edatop.com 射频和天线设计培训课程推荐 易迪拓培训 (www.edatop.com) 由数名来自于研发第一线的资深工程师发起成立, 致力并专注于微波 射频 天线设计研发人才的培养 ; 我们于 2006 年整合合并微波 EDA 网 (www.mweda.com), 现已发展成为国内最大的微波射频和天线设计人才培养基地,

More information

西南交通大学硕士学位论文微带天线的小型化研究姓名 : 邓曦申请学位级别 : 硕士专业 : 电磁场与微波技术指导教师 : 刘运林 20100501 微带天线的小型化研究 作者 : 邓曦 学位授予单位 : 西南交通大学 本文链接 :http://d.g.wanfangdata.com.cn/thesis_y1688108.aspx

More information

西安电子科技大学博士学位论文机载阵列雷达动目标检测与定位方法研究姓名 : 曲毅申请学位级别 : 博士专业 : 信号与信息处理指导教师 : 廖桂生 20090901 机载阵列雷达动目标检测与定位方法研究

More information

usbintr.PDF

usbintr.PDF USB(Universal Serial Bus) USB( ) USB, USB PCI PC USB (host) USB (device) USB 1 PC PC USB PC 2 Plug-and-Play PC Plug-and- Play USB Plug-and-Play 3 PC / USB (USB 2.0 480Mb/s) USB USB 1 1 USB Toplogy USB

More information

易迪拓培训 专注于微波 射频 天线设计人才的培养网址 :http://www.edatop.com 如何学习天线设计 天线设计理论晦涩高深, 让许多工程师望而却步, 然而实际工程或实际工作中在设计天线时却很少用到这些高深晦涩的理论 实际上, 我们只需要懂得最基本的天线和射频基础知识, 借助于 HFSS CST 软件或者测试仪器就可以设计出工作性能良好的各类天线 易迪拓培训 (www.edatop.com)

More information

易迪拓培训 专注于微波 射频 天线设计人才的培养网址 :http://www.edatop.com 如何学习天线设计 天线设计理论晦涩高深, 让许多工程师望而却步, 然而实际工程或实际工作中在设计天线时却很少用到这些高深晦涩的理论 实际上, 我们只需要懂得最基本的天线和射频基础知识, 借助于 HFSS CST 软件或者测试仪器就可以设计出工作性能良好的各类天线 易迪拓培训 (www.edatop.com)

More information

Design of Dual-Frequency Microstrip Antennas Using a Shorting-Pin Loading - Antennas and Propagation Society International Symposium, IEEE

Design of Dual-Frequency Microstrip Antennas Using a Shorting-Pin Loading - Antennas and Propagation Society International Symposium, IEEE DESIGN OF DUAL-FREQUENCY MICROSTRIP ANTENNA USING A SHORTING-PIN LOADING *Shan-Cheng Pan' and Kin-Lu Wong2 'Department of Electronic Engineering, Yung Ta College of Technology and Commerce, Pingtung. Taiwan,

More information

,,: 65,A - 10A, 9, M1A1, 85 %: 148,35 72,1/ 6, 17 % (20 15 %) [1 ] ;1994,, 2 2,;2001, ; , ; ; F - 16 ;2 ;; F - 15 ; ;, :,,,, ,,,, M

,,: 65,A - 10A, 9, M1A1, 85 %: 148,35 72,1/ 6, 17 % (20 15 %) [1 ] ;1994,, 2 2,;2001, ; , ; ; F - 16 ;2 ;; F - 15 ; ;, :,,,, ,,,, M 2004 6 32 3 MODERN DEFENCE TECHNOLOGY J une 2004 Vol. 32 No. 3 Ξ,, (, 264001) :, :,,,,,,4 :; ;; : TN95911 + 7 ; TN957151 :A :10092086X(2004) 0320064205 Present situation, development and enlightenment

More information

untitled

untitled 1 2 3 MTBF 4 5 6 7 8 1 PCB EMC 2 3 FMEA FMEA FMEA FMEA F M E A RPN 1 FMEA 2 3 4 5 6 7 FMEA 4 5 6 7 1 2 3 4 5 FIT 5 FIT 5 FIT 6 6 7 7 3 8 MTBF MTTR FMEA A-availability MTBF-mean time between failure MTTF-mean

More information

Ω Ω 75Ω

Ω Ω 75Ω 18 A A A 0.1 AWG10 0.001 0.7m 1 0.083 m 1 90 RC=/Kρ /P /F N+R RC K ρ / 2 1 1 ρ 2.54 P / 2 F N R 0 A 1. 2. 3. 4. 5. 1.0 0.1 0.05Ω 10 100Ω 75Ω 50Ω 12 100 0.1A 1.0V 1.0A 10V 1.0A 10V I 2 R 100V 50A 100V 1.

More information

PCB a 2.5mm b 4.0mm A mm W/cm 3 PCB PCB 2.0mm 1.5mm PCB PCB

PCB a 2.5mm b 4.0mm A mm W/cm 3 PCB PCB 2.0mm 1.5mm PCB PCB 1. PCB PCB PCB PCB EMC EMI 2. PCB PCB PCB 3. via Blind via Buried via Through via Component hole Stand off 4. / TS S0902010001 TS SOE0199001 TS SOE0199002 IEC60194 > > > > Printed Circuit

More information

g g,, IFA [6 ] IFA (7),, H, IPFA, L, ; H, E E 1 IFA [8 ], L S [ 8 ], F ( PIFA), 2 L C, L C d ν H, Z0 [ 7 ], E : L C L C Z0 = ( 0 /

g g,, IFA [6 ] IFA (7),, H, IPFA, L, ; H, E E 1 IFA [8 ], L S [ 8 ], F ( PIFA), 2 L C, L C d ν H, Z0 [ 7 ], E : L C L C Z0 = ( 0 / : RFID RFID 1,2, 1,2, 2 (1. 710127 ;2. 518057) : U HF 840 845 M Hz 920 925 M Hz, E F,, E, 850 M Hz 920 M Hz, (VSWR < 2) E F,, :RFID ; IFA ; ; : TN82 :B :10042373X(2009) 102140203 Design of Novel Dual2frequency

More information

PCB Layout using ADS November 29, 2005 PCB Layout using ADS Dr. B. Frank Department of Electrical and Computer Engineering Queen's University Slide 1

PCB Layout using ADS November 29, 2005 PCB Layout using ADS Dr. B. Frank Department of Electrical and Computer Engineering Queen's University Slide 1 Dr. B. Frank Department of Electrical and Computer Engineering Queen's University Slide 1 Motivation Need circuit more reliable than breadboard? Working at RF/microwave frequencies? Printed circuit board

More information

RFID Transponder operating at MHz

RFID Transponder operating at MHz RF-ID Transponder operating at 13.56 MHz Radio Frequency Identification Systems (RF-ID) are widely used and allow advanced solutions for a variety of applications in the area of authentication, ticketing,

More information

Microsoft PowerPoint L10

Microsoft PowerPoint L10 6.00 CRCUTS AND ELECTRNCS Amplifiers -- Small Signal Model 6.00 Fall 000 Lecture 10 1 Reiew MSFET amp V S R L i DS Saturation discipline operate MSFET only in saturation region Large signal analysis 1.

More information

CAM350 CAM350 CAM350 CAM350 Export Gerber 274D 274X Fire9000 Barco DPF NC Drill Mill Excellon Sieb Meyer IPC D 350 IPC D A Modification CAM/Ger

CAM350 CAM350 CAM350 CAM350 Export Gerber 274D 274X Fire9000 Barco DPF NC Drill Mill Excellon Sieb Meyer IPC D 350 IPC D A Modification CAM/Ger CAM350 CAM350 CAM350 PCB CAM CAM350 CAM350 Fabrication Modules C350-750 C350-460 C350-260 C350-110 C350-050 Import X X X X X Information X X X X X Export X X X X Opt. Modification X X X X Opt. Optimization

More information

Dual-band Dipole Antenna for ISO /ISO Passive RFID Tag Applications

Dual-band Dipole Antenna for ISO /ISO Passive RFID Tag Applications Dual-band Dipole Antenna for ISO 18-6/ISO 18-4 Passive RFID Tag Applications Seunggil Jeon (1), Yeonsik Yu (1), Sungtek Kahng (2), Juderk Park (3), NaeSoo Kim (3), Jaehoon Choi (1) * (1)Department of Electrical

More information

Presentation - Advanced Planar Antenna Designs for Wireless Devices

Presentation - Advanced Planar Antenna Designs for Wireless Devices 2003-11 Ansoft Workshop Advanced Planar Antenna Designs for Wireless Devices 翁金輅 (Kin-Lu Wong) 國立中山大學電機系 Dept. of Electrical Engineering National Sun Yat-Sen University Kaohsiung 80424, Taiwan E-mail:

More information

The project High Datarate satellite transmission system Design of a space qualifiable transmitter Suited for LEO satellites and other small satellites

The project High Datarate satellite transmission system Design of a space qualifiable transmitter Suited for LEO satellites and other small satellites Satellite Downlink Simulation with VSS including Matlab Models Slide 1 The project High Datarate satellite transmission system Design of a space qualifiable transmitter Suited for LEO satellites and other

More information

pages.pdf

pages.pdf A Novel Dual-Band Microstrip Antenna for WLAN Application R.J. Lin, M. Ye School of Communication and Information Engineering, Shanghai University, Shanghai 200072, China Keywords: dual-band; microstrip

More information

, V m 3,, I p R 1 = ( I p + I 1 ) / R 0 I p, R 1 / 4, R m V d, 1. 1 Doherty MRF6P21190 LDMOS,,, Doherty B Freescale M6P21190 ADS 2 Doherty 3 Doherty,

, V m 3,, I p R 1 = ( I p + I 1 ) / R 0 I p, R 1 / 4, R m V d, 1. 1 Doherty MRF6P21190 LDMOS,,, Doherty B Freescale M6P21190 ADS 2 Doherty 3 Doherty, TN702 A 1009-2552(2007) 03-0045 - 06 Doherty, (, 430074) Doherty WCDMA ADS, 35 (45. 4dBm), ACLR - 55dBc WCDMA ; ; Doherty ; ; PAE Design of linearized Doherty power amplifier GENG Zhi, GUO Wei (Department

More information

Design System Designer RF Analog - Designer Ptolemy Simulator System level - Designer E D A - s Modelsim RTL EDGE GSM WLAN Numeric Ptolemy Timed NC-Ve

Design System Designer RF Analog - Designer Ptolemy Simulator System level - Designer E D A - s Modelsim RTL EDGE GSM WLAN Numeric Ptolemy Timed NC-Ve Content Reprint Advanced Design System for Designer E D A 21 GPRS WCDMA TDS-CDMA IEEE 802.11a IEEE 802.11b IEEE 802.11g PDA CICeNews-23 CIC Agilent Advanced 1 Design System Designer RF Analog - Designer

More information

Yageo Chip Antenna Sum V doc

Yageo Chip Antenna Sum V doc 1 Yageo - Chip Antenna Version :Step. 2010 Features : Embedded antenna - small antennas with moderate gain and efficiency performance Ultra compact - various sizes (2012, 3012, 3216, 4018, 5010, 5320,

More information

DATASHEET SEARCH SITE |

DATASHEET SEARCH SITE | 2 18 GHz Ultra Low Noise Pseudomorphic HEMT Technical Data ATF-3677 Features PHEMT Technology Ultra-Low Noise Figure:.5 db Typical at 12 GHz.3 db Typical at 4 GHz High Associated Gain: 12 db Typical at

More information

A stair-shaped slot antenna for the triple-band WLAN applications

A stair-shaped slot antenna for the triple-band WLAN applications of the constructed prototype at 5800 MHz (center frequency of the 5.8-GHz band), and similar directional radiation patterns are also obtained. Figure 5 shows the measured peak antenna gain for operating

More information

6 7 EPCOS S+M 4 = å r =21, 7 GHz Q 7 200, MgTiO 3 -CaTiO 3 å r =38 7 GHz Q (Zr Sn)TiO 4 å r = GHz Q Ba(Zr Zn Ta)O 3 å r

6 7 EPCOS S+M 4 = å r =21, 7 GHz Q 7 200, MgTiO 3 -CaTiO 3 å r =38 7 GHz Q (Zr Sn)TiO 4 å r = GHz Q Ba(Zr Zn Ta)O 3 å r 6 Vol.23 No.6 2004 6 ELECTRONIC COMPONENTS & MATERIALS Jun. 2004 1 2 3 4 5 TM28 TN61 A 1001-2028 2004 06-0006-04 Development of Microwave Dielectric Materials and Its Applications ZHANG Jin-tai 1, XU Sai-qing

More information

1262 PIERS Proceedings, Beijing, China, March 23 27, 2009 with the tag IC, the gap width of the capacitive coupling structure was varied to tune the i

1262 PIERS Proceedings, Beijing, China, March 23 27, 2009 with the tag IC, the gap width of the capacitive coupling structure was varied to tune the i Progress In Electromagnetics Research Symposium, Beijing, China, March 23 27, 2009 1261 A Metal Tag Antenna for Passive UHF RFID Applications Hsien-Wen Liu, Yu-Shu Lin, Kuo-Hsien Wu, and Chang-Fa Yang

More information

New compact six-band internal antenna - Antennas and Wireless Propagation Letters

New compact six-band internal antenna - Antennas and Wireless Propagation Letters IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 3, 2004 295 New Compact Six-Band Internal Antenna Yong-Xin Guo, Member, IEEE, and Hwee Siang Tan Abstract A novel compact six-band internal handset

More information

3.1.doc

3.1.doc SMEMA FIDUCIAL MARK STANDARD Standard 3.1 1.0 SCOPE: This SMEMA standard is for fiducial marks. It was developed to facilitate the accurate placement of components on printed circuit boards. SMEMA standards

More information

Title

Title Broadband Microstrip-Fed Modified Quasi-Yagi Antenna Shih-Yuan Chen and Powen Hsu Department of Electrical Engineering and Graduate Institute of Communication Engineering National Taiwan University Taipei

More information

RF Balum Transformers integrated circuit is a common application of these devices. Figure 4 shows the first mixer stage and second mixer stage of a re

RF Balum Transformers integrated circuit is a common application of these devices. Figure 4 shows the first mixer stage and second mixer stage of a re Application Note RF Balun Transformers Introduction This application note is designed to help the reader understand how balun transformers can be used in today s RF/Microwave communication applications.

More information

第1讲-电磁兼容导论.ppt

第1讲-电磁兼容导论.ppt Advanced EMC +62784709 13601024327 hejl@tsinghua.edu.cn 1 1 1.1 1.2 1.3 1.4 1.5 1.6 EMC 2 1 166.111.63.4:1021 emc 303 3 1975 7 14 25 26 50 700 21 4 0 400GHz EMC 1994 25 5 6 1.1 Electromagnetic Compatibility

More information

Balun Design

Balun Design 1 of 6 Balun Design In the design of mixers, push-pull amplifiers, baluns are used to link a symmetrical (balanced) circuit to a asymmetrical (unbalanced) circuit. Baluns are designed to have a precise

More information

Progress In Electromagnetics Research Symposium 27, Prague, Czech Republic, August W1 H Feed Line Z L2 L1 W2 X Y Radiating Patch L3 I-Shaped Sl

Progress In Electromagnetics Research Symposium 27, Prague, Czech Republic, August W1 H Feed Line Z L2 L1 W2 X Y Radiating Patch L3 I-Shaped Sl 158 PIERS Proceedings, August 27, Prague, Czech Republic, 27 A Novel Antenna Design for UHF RFID Tag on Metallic Objects Youngman Um 1, Uisheon Kim 1, Wonmo Seong 2, and Jaehoon Choi 1 1 Department of

More information

PowerPoint Presentation

PowerPoint Presentation Sizing Handbook I 6 to 10 10w, w or 5w (3 to 4), w < Note: Port sizing guidelines are not inviolable rules true in all cases. For example, if meeting te eigt and widt requirements outlined result in a

More information

Microsoft PowerPoint - Pres_ansoft_elettronica.ppt

Microsoft PowerPoint - Pres_ansoft_elettronica.ppt 1,5-40 GHz Meander Spiral Antenna Simulation and Design Presenter: Fabrizio Trotta Ansoft Corporation Application Introduction Design Specification Antenna Topology Numerical Method Approach Design Methodology

More information

( ) T arget R ecogn ition),,,,,,, ( IFF, Iden tification F riend o r Foe),,,,,,, ( N CTR, N on2 Cooperative T arget R ecogn ition), (

( ) T arget R ecogn ition),,,,,,, ( IFF, Iden tification F riend o r Foe),,,,,,, ( N CTR, N on2 Cooperative T arget R ecogn ition), ( V o l. 33, N o. 11 N ovem ber, 2008 F ire Contro l and Comm and Contro l 33 11 2008 11 : 100220640 (2008) 1120005203 1, 1, 1, 2, 1 (11, 100072, 21, 100072) :,,,, g :,,, : TN 97111 : A The Iden tif ication

More information

amp_b3.PDF

amp_b3.PDF San Jose State University Department of Electrical Engineering ELECTRICAL ENGINEERING SENIOR PROJECT Microwave Amplifier Design (part 3) by Steve Garcia Jaime Cordoba Inderpreet Obhi December 15, 2003

More information

Microsoft Word - AN95007.doc

Microsoft Word - AN95007.doc Understanding VCO Concepts OSCILLATOR FUNDAMENTALS An oscillator circuit can be modeled as shown in Figure 1 as the combination of an amplifier with gain A (jω) and a feedback network β (jω), having frequency-dependent

More information

Hybrid of Monopole and Dipole Antennas for Concurrent 2.4- and 5-GHz WLAN Access Point

Hybrid of Monopole and Dipole Antennas for Concurrent 2.4- and 5-GHz WLAN Access Point Hybrid of Monopole and Dipole Antennas for Concurrent 2.4- and 5-GHz WLAN Access Point Saou-Wen Su 1, Jui-Hung Chou 2 Network Access Strategic Business Unit Lite-On Technology Corp., No. 9, Chien I Road,

More information

Triple-band triangular-shaped meander monopole antenna with two coupled lines

Triple-band triangular-shaped meander monopole antenna with two coupled lines TRIPLE-BAND TRIANGULAR-SHAPED MEANDER MONOPOLE ANTENNA WITH TWO COUPLED LINES Horng-Dean Chen Department of Electronic Engineering Cheng-Shiu Institute of Technology Kaohsiung, Taiwan 833, R.O.C. Received

More information

DSCHA Jun 06

DSCHA Jun 06 CHA3666 RoHS COMPLIANT 6-17GHz Low Noise Amplifier GaAs Monolithic Microwave IC Description The CHA3666 is a two-stage self biased wide band monolithic low noise amplifier. D1 D2 The circuit is manufactured

More information

Microsoft Word - LAB 2 non-linear LNA.doc

Microsoft Word - LAB 2 non-linear LNA.doc LAB 2. Non-linearity in LNA Objective: 1. One-tone test 2. two-tone test 3. Bias circuit design 4. Noise Circle and Input matching 5. Output matching for maximum gain 6. Final matching network design One-tone

More information

untitled

untitled ( RF Application list Application Wireless mouse Wireless Keyboard Wireless joystick FRS (Family Radio Service) Remote control Car alarm Home security Cordless phone Video sender Wireless earphone microphone

More information

BranchLine Coupler - Quadrature

BranchLine Coupler - Quadrature of 3 () Branchine oupler - Quadrature Zo Zo λ/4 90 NOTE This device is sensitive to load mismatches. () ange oupler (Quadrature) Output oupled φ90 Broadband coupling 3dB 0dB Quadrature Input λ/4 Directive

More information

A Miniature GPS Planar Chip Antenna Integrated with Low Noise Amplifier

A Miniature GPS Planar Chip Antenna Integrated with Low Noise Amplifier A Miniature GPS Planar Chip Antenna Integrated with Low Noise Amplifier 1 Chao-Wei Wang*, Yen-Ming Chen, Chang-Fa Yang Department of Electrical Engineering, National Taiwan University of Science and Technology

More information

Microsoft PowerPoint - Lecture-08.ppt

Microsoft PowerPoint - Lecture-08.ppt Introduction to Algorithms 6.046J/18.401J Lecture 8 Prof. Piotr Indyk Data structures Previous lecture: hash tables Insert, Delete, Search in (expected) constant time Works for integers from {0 m r -1}

More information

Microsoft Word - Lecture 24 notes, 322, v2.doc

Microsoft Word - Lecture 24 notes, 322, v2.doc Whites, EE 322 Lecture 24 Page 1 of 10 Lecture 24: Oscillators. Clapp Oscillator. VFO Startup Oscillators are circuits that produce periodic output voltages, such as sinusoids. They accomplish this feat

More information

Microsoft PowerPoint - seminaari 26_5_04_antenniteknologiat.ppt

Microsoft PowerPoint - seminaari 26_5_04_antenniteknologiat.ppt Antenna technologies Antenna technologies Current status trends Outlook to different antenna solutions, examples Summary, challenges for the future Current status trends dual-band GSM tri-band GSM GPS

More information

Novel 2-D Photonic Bandgap Structure For Microstrip Lines - IEEE Microwa ve and Guided Wave Letters

Novel 2-D Photonic Bandgap Structure For Microstrip Lines - IEEE Microwa
ve and Guided Wave Letters IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 8, NO. 2, FEBRUARY 1998 69 Novel 2-D Photonic Bandgap Structure for Microstrip Lines Vesna Radisic, Student Member, IEEE, Yongxi Qian, Member, IEEE, Roberto

More information

3152 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 52, NO. 11, NOVEMBER 2004 (c) Fig. 2. y z plane radiation patterns ofoma computed using FDTD

3152 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 52, NO. 11, NOVEMBER 2004 (c) Fig. 2. y z plane radiation patterns ofoma computed using FDTD IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 52, NO. 11, NOVEMBER 2004 3151 An Omnidirectional Planar Microstrip Antenna Randy Bancroft and Blaine Bateman Abstract A new omnidirectional printed

More information

APPLI002.DOC

APPLI002.DOC SIEGET 25 Silicon Bipolar- Dielectric Resonator Oscillator (DRO) at 10 GHz Oscillators represent the basic microwave energy source for all microwave systems such as radar, communications and navigation.

More information

A compact dual-band dual-polarized patch antenna for 900/1800-MHz cellul ar systems - Antennas and Propagation, IEEE Transactions on

A compact dual-band dual-polarized patch antenna for 900/1800-MHz cellul
ar systems - Antennas and Propagation, IEEE Transactions on 1936 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 51, NO. 8, AUGUST 2003 A Compact Dual-Band Dual-Polarized Patch Antenna for 900/1800-MHz Cellular Systems Tzung-Wern Chiou and Kin-Lu Wong, Senior

More information

untitled

untitled Compact Metamaterial High Isolation MIMO Antenna Subsystem Cheng-Jung Lee, Maha Achour, and Ajay Gummalla Rayspan Corporation, San Diego, CA, USA Cheng@rayspan.com Introduction The use of multiple antennas

More information

HBCU-5710r Dec11

HBCU-5710r Dec11 HSMP-3816 High Linearity PIN Diode Pi Attenuator Using a Diode Quad in Low Cost SOT-2 Package Application Note 262 Introduction Avago Technologies HSMP-3816 consists of four high linearity PIN diodes in

More information

TB215.doc

TB215.doc 2 1 C5 10uF +28 V C4 R3 3.9k C8 R5 1k C18 R10 3.9k C23 10uF D1 5.6V D2 5.6V C11 10uF D3 5.6V L6 B P1 10k L3 P2 10k L5 P3 10k L7 B R2 9.1k R4 C6 SP201 C7 T1 R6 9.1k C9 R8 C12 L4 C13 T2 C16 T3 T4a R11 9.1k

More information

A stair-shaped slot antenna for the triple-band WLAN applications

A stair-shaped slot antenna for the triple-band WLAN applications of the constructed prototype at 5800 MHz (center frequency of the 5.8-GHz band), and similar directional radiation patterns are also obtained. Figure 5 shows the measured peak antenna gain for operating

More information

Full Band Waveguide-to-Microstrip Probe Transitions - Microwave Symposium Digest, 1999 IEEE MTT-S International

Full Band Waveguide-to-Microstrip Probe Transitions - Microwave Symposium Digest, 1999 IEEE MTT-S International THlB-5 Full Band Waveguide-to-Microstrip Probe Transitions Yoke-Choy Leong' and Sander Weinreb2 'Department of Electrical and Computer Engineering University of Massachusetts, Amherst, MA 01003 Jet Propulsion

More information

Cross-slot-coupled microstrip antenna and dielectric resonator antenna for circular polarization - Antennas and Propagation, IEEE Transactions on

Cross-slot-coupled microstrip antenna and dielectric resonator antenna for circular polarization - Antennas and Propagation, IEEE Transactions on IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 4, APRIL 1999 605 Cross-Slot-Coupled Microstrip Antenna and Dielectric Resonator Antenna for Circular Polarization Chih-Yu Huang, Member, IEEE,

More information

Filter Design in Thirty Seconds

Filter Design in Thirty Seconds Application Report SLOA093 December 2001 Filter Design in Thirty Seconds Bruce Carter High Performance Analog ABSTRACT Need a filter fast? No theory, very little math just working filter designs, and in

More information

HFSS Antenna Design Kit

HFSS Antenna Design Kit Ansoft HFSS Antenna Design Kit Arien Sligar 2007 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Overview of HFSS Antenna Design Kit GUI-based wizard tool Automates geometry creation, solution

More information

rd 5.7 = = = 1. cm (II-4) fd 9 This is more of what we are looking for. If we would use a frequency of 900 MHz this even reduces to 6.cm (assumed ε r

rd 5.7 = = = 1. cm (II-4) fd 9 This is more of what we are looking for. If we would use a frequency of 900 MHz this even reduces to 6.cm (assumed ε r Printed Dipole Antenna Reto Zingg Abstract In this project a printed dipole antenna is being designed. Printed dipole antennas are of interest, when an electronic product, which is implemented on a printed

More information

CSTHandOut

CSTHandOut CST DESIGN STUDIO TM, CST PARTICLE STUDIO TM - 1 - Linking MATLAB and CST STUDIO USER NOTE This user note is centered on the use of CST MICROWAVE STUDIO (CST MWS) with MATLAB. MATLAB is a scientific computing

More information

Directional Couplers.doc

Directional Couplers.doc Directional ouplers [] THE QUADRATURE (90 ) HYBRID The Hybrid coupler is often made of microstrip or stripline as shown in Figure. The microstrip form is also pictured in Figure 2. These couplers are 3

More information

Integrated microstrip and rectangular waveguide in planar form - IEEE Microwave and Wireless Components Letters [see also IEEE Microwave and Guided Wave Letters]

Integrated microstrip and rectangular waveguide in planar form - IEEE Microwave and Wireless Components Letters [see also IEEE Microwave and Guided Wave Letters] 68 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 11, NO. 2, FEBRUARY 2001 Integrated Microstrip and Rectangular Waveguide in Planar Form Dominic Deslandes and Ke Wu, Fellow, IEEE Abstract Usually

More information

SGS-Apache BQB proposal_04_11_2003

SGS-Apache BQB proposal_04_11_2003 BQB qualification FCC/CE/e-mark/ITA service 2003 Apr. 11, 2003 BQB Qualification Service Apache/SGS Bluetooth Products Qualification Service SIG Cat. A standard be performed since Jan., 2003 All of RF

More information

AWT6166_Rev_0.3.PMD

AWT6166_Rev_0.3.PMD FEATURES Integrated Vreg (regulated supply) Harmonic Performance 25 High Efficiency (PAE) at Pmax: GSM850, 54% GSM900, 56% DCS, 53% PCS, 51% +35 GSM850/900 Output Power at 3.5 V +33 DCS/PCS Output Power

More information

Thus, the antenna has the ability to receive both vertically and horizontally polarized electromagnetic waves, which can be proven beneficial in indoo

Thus, the antenna has the ability to receive both vertically and horizontally polarized electromagnetic waves, which can be proven beneficial in indoo PIFA Planar Inverted F Antenna Iulian Rosu, YO3DAC / VA3IUL http://www.qsl.net/va3iul The Inverted F Antenna (IFA) typically consists of a rectangular planar element located above a ground plane, a short

More information

Microsoft Word - M3_PB_IPJ_Monza3DuraProductBrief_ _R6.doc

Microsoft Word - M3_PB_IPJ_Monza3DuraProductBrief_ _R6.doc UHF Gen 2 RFID Tag Chip (IPJ-P5002-D2) Monza 3 Dura Features High sensitivity coupled with superior interference rejection yields excellent tag performance even when buried deep within a pallet of RF-absorbing

More information

192 IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 5, 2006 This method can be applied to all kinds of antennas in any environment and it becomes

192 IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 5, 2006 This method can be applied to all kinds of antennas in any environment and it becomes IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 5, 2006 191 Calculation of Small Antennas Quality Factor Using FDTD Method S. Collardey, A. Sharaiha, Member, IEEE, and K. Mahdjoubi, Member, IEEE Abstract

More information

Microsoft Word - nAN900-04_rev2_1.doc

Microsoft Word - nAN900-04_rev2_1.doc nan900-04 1. General Gerber files for RF layouts have been made for Nordic Semiconductor s nrf905 Single Chip 433/868/915MHz RF Transceiver [1]. A loop antenna for 433MHz has also been made available.

More information

Microsoft Word - APMC譛€邨ゆク雁さV2.0.doc

Microsoft Word - APMC譛€邨ゆク雁さV2.0.doc Proceedings of Asia-Pacific Microwave Conference 2006 Wideband Slotline-to-Rectangular Waveguide Transition Using Truncated Bow-Tie Antenna Ruei -Ying Fang and Chun-Long Wang Department of Electronics

More information

Balun Design

Balun Design 1 of 6 Balun Design In the design of mixers, push-pull amplifiers, baluns are used to link a symmetrical (balanced) circuit to a asymmetrical (unbalanced) circuit. Baluns are designed to have a precise

More information

Microsoft Word - SLVU2.8-4 Rev04.doc

Microsoft Word - SLVU2.8-4 Rev04.doc Low Capacitance TVS Array Description The is low capacitance transient voltage suppressor for high speed data interface that designed to protect sensitive electronics from damage or latch-up due to ESD

More information

lumprlc.fm

lumprlc.fm Ansoft HFSS Engineering Note Lumped RLC Elements in HFSS Version 8 In Ansoft s High Frequency Structure Simulator (HFSS), a specified impedance boundary condition has always referred to field values because

More information

untitled

untitled S http://www.mweda.com ADS Momentum Patch Antenna microstrip line circuit high Qbroadside directivity( end-fired antenna) feed in cavityads(advanced Design System) feed in Transmission Line Feed 1 feedfeed

More information

FSA W Low Voltage Dual DPDT Analog Switch

FSA W Low Voltage Dual DPDT Analog Switch 0.4: Low Voltage Dual DPDT Analog Switch General Description The FSA2467 is a Dual Double Pole Double Throw (DPDT) analog switch. The FSA2467 operates from a single 1.65V to 4.3V supply. The FSA2467 features

More information

書名:

書名: 8 I/O Circuit Package 8-2 VLSI / 8.1 I/O Circuit Schematic entry Layout I/O Circuit I/O IC [33] IC µm IC mm Bonding wire Bonding wire µm IC 8-1 Dual In line Package (DIP) Die Bonding Pad Bonding Wire Bonding

More information

Combline Cavity Filter Design in HFSS

Combline Cavity Filter Design in HFSS Presented by Jim Reed of Optimal Designs 3 Pole Cavity Combline Filter to be used in Demonstration for Filter Tuning Simulated / Measured Data for Real World Example, Compliments of Sierra Microwave Technologies

More information

Special Materials in CST STUDIO SUITE 2012

Special Materials in CST STUDIO SUITE 2012 Modelling Thin Materials in CST STUDIO SUITE 2012 Lossy Metal Ohmic Sheets Tabulated Surface Impedance Thin Panel Various Material Types Material types Available in which solvers? * FIT TLM *Apart from

More information

渐 变 槽 线 天 线 的 研 究 及 其 在 移 动 通 信 基 站 中 的 应 用 作 者 : 沈 薇 学 位 授 予 单 位 : 东 南 大 学 本 文 链 接 :http://d.g.wanfangdata.com.cn/thesis_y1039826.aspx 易 迪 拓 培 训 专 注 于 微 波 射 频 天 线 设 计 人 才 的 培 养 网 址 :http://www.edatop.com

More information

4.2 DC Bias

4.2 DC Bias 1 of Microwave Bipolar/FET Bias circuits F/Microwave transistors/fet s require some form of circuit to set the correct bias conditions for a particular F performance. There are two main types used an active

More information

西 安 电 子 科 技 大 学 硕 士 学 位 论 文 人 体 对 移 动 通 信 手 机 天 线 辐 射 特 性 的 影 响 姓 名 : 郑 婕 申 请 学 位 级 别 : 硕 士 专 业 : 生 物 医 学 工 程 指 导 教 师 : 赵 建 勋 20090101 易 迪 拓 培 训 专 注

More information

Paper Title (use style: paper title)

Paper Title (use style: paper title) Printed Multiband Antenna for Mobile and Wireless Communications Cecep Ginanjar Permana Radio Telecommunication and Microwave Laboratory School of Electrical Engineering and Informatics Institut Teknologi

More information

A 2.4 GHZ POLARIZATION-DIVERSITY PLANAR PRINTED DIPOLE ANTENNA FOR WLAN AND WIRELESS COMMUNICATION APPLICATIONS

A 2.4 GHZ POLARIZATION-DIVERSITY PLANAR PRINTED DIPOLE ANTENNA FOR WLAN AND WIRELESS COMMUNICATION APPLICATIONS MICROWAVE JOURNAL REVIEWED TECHNICAL FEATURE EDITORIAL BOARD A 2.4 GHZ POLARIZATION-DIVERSITY PLANAR PRINTED DIPOLE ANTENNA FOR WLAN AND WIRELESS COMMUNICATION APPLICATIONS This article presents the design

More information

3 MIMO 2 l WLAN FIR l0 t l -t l0 l60 l6 T 64 l6 GI 80 0 OFDM 2 64 OFDM OFDM l6 CP CP FFT Viterbi G 2 3 IEEE802.lla CSI ChanneI State Information l GI

3 MIMO 2 l WLAN FIR l0 t l -t l0 l60 l6 T 64 l6 GI 80 0 OFDM 2 64 OFDM OFDM l6 CP CP FFT Viterbi G 2 3 IEEE802.lla CSI ChanneI State Information l GI OFDM-WLAN 1 2 1 2 1 1 1 450002 2 710077 E-mail gjx516@sohu.com IEEE802.11a OFDM-WLAN OFDM-WLAN WLAN 1002-8331- 2004 04-0022-04 A TN925.93 Modeling and Simulation for OFDM-WLAN Systems with Multiple Antennas

More information

untitled

untitled ON THE DESIGN OF ULTRA WIDE BAND ANTENNA BASED ON FRACTAL GEOMETRY Raj Kumar and Pranoti Bansode* Department of Electronics Engg. Defence Institute of Advanced Technology (Deemed University), Girinagar,

More information

Microsoft Word - Differential Circuit Comparison App note_B.doc

Microsoft Word - Differential Circuit Comparison App note_B.doc Sisonic and ECM in Circuits Date: Author: 20.Jan.2005 Bill Ryan Benefits of Circuits amplifiers are desirable to use in audio applications, especially those where signal levels are very low such as those

More information

DDR2 Signal Quality Analysis on VIA PC Board

DDR2 Signal Quality Analysis on VIA PC Board GDA Technologies, Inc. DDR2 Signal Integrity Version 1.0 DDR2 Signal Quality Analysis Introduction GDA System Engineering has been designing around complex memory subsystems for nearly ten years. As more

More information

A broad-band planar quasi-yagi antenna - Antennas and Propagation, IEEE Transactions on

A broad-band planar quasi-yagi antenna - Antennas and Propagation, IEEE Transactions on 1158 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 50, NO. 8, AUGUST 2002 Communications A Broad-Band Planar Quasi-Yagi Antenna Noriaki Kaneda, W. R. Deal, Yongxi Qian, Rod Waterhouse, and Tatsuo

More information

50 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 16, NO. 1, JANUARY 2006 Fig. 2. Geometry of the three-section PSL power divider. Fig. 5. Schem

50 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 16, NO. 1, JANUARY 2006 Fig. 2. Geometry of the three-section PSL power divider. Fig. 5. Schem IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 16, NO. 1, JANUARY 2006 49 A Wideband Compact Parallel-Strip 180 Wilkinson Power Divider for Push Pull Circuitries L. Chiu, Student Member, IEEE, T.

More information

CIAIS et al.: DESIGN OF AN INTERNAL QUAD-BAND ANTENNA FOR MOBILE PHONES 149 antenna-chassis combination, especially maximum bandwidth behavior [8] [11

CIAIS et al.: DESIGN OF AN INTERNAL QUAD-BAND ANTENNA FOR MOBILE PHONES 149 antenna-chassis combination, especially maximum bandwidth behavior [8] [11 148 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 14, NO. 4, APRIL 2004 Design of an Internal Quad-Band Antenna for Mobile Phones Pascal Ciais, Robert Staraj, Georges Kossiavas, and Cyril Luxey

More information

Microsoft Word - IJMOT-VS - Patch Antenna.doc

Microsoft Word - IJMOT-VS - Patch Antenna.doc 115 Suspended Microstrip Patch Antenna for Wireless Applications T.Shanmuganantham, Dr. S. Raghavan Department of Electronics & Communication Engineering National Institute of Technology, Thiruchirappali-620015

More information

High-Q RF-MEMS Tunable Evanescent-Mode Cavity Filter

High-Q RF-MEMS Tunable Evanescent-Mode Cavity Filter High-Q RF-MEMS Tunable Evanescent-Mode Cavity Filter Sang-June Park, Isak Reines, and Gabriel Rebeiz Qualcomm Incorporated San Diego, CA 92121 University of California San Diego La Jolla, CA 92093 Abstract

More information

844 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 17, NO. 12, DECEMBER 2007 Fig. 1. Proposed broadband SIW planar balun. Fig. 2. Electrical fie

844 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 17, NO. 12, DECEMBER 2007 Fig. 1. Proposed broadband SIW planar balun. Fig. 2. Electrical fie IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 17, NO. 12, DECEMBER 2007 843 A Broadband Substrate Integrated Waveguide (SIW) Planar Balun Zhen-Yu Zhang and Ke Wu, Fellow, IEEE Abstract A broadband

More information

Antenna Matching for the TRF7960 RFID Reader

Antenna Matching for the TRF7960 RFID Reader Application Report SLOA135 May 2009 Antenna Matching for the TRF7960 RFID Reader John Schillinger... 1 Introduction This paper describes the design method for determining an antenna matching circuit. While

More information

CBW = Ri BW = - n*gd Table 3. Normalized coupling matrix for filter Wire diameter: 0.075inch I R1 =0.9

CBW = Ri BW = - n*gd Table 3. Normalized coupling matrix for filter Wire diameter: 0.075inch I R1 =0.9 High Performance Helical Resonator Filters Ming Yu and Van Dokas COM DEV Ltd, 155 Sheldon Dr., Cambridge, Ontario, Canada, NIR 7H6 ming.yu@ieee.org Abstract - Complex filter functions are realized using

More information

*P Q RSS &T OO!! " #$% "" " "&! "! (! " "! " "! ) " *! +, -."/0! 1 23! )+4 5! * " 6&73 " F M <6&,3 = ; - <,3 => -&A4">3 %<,3B /0C D E? > 1&>">3 6

*P Q RSS &T OO!!  #$%   &! ! (!  !  ! )  *! +, -./0! 1 23! )+4 5! *  6&73  F M <6&,3 = ; - <,3 => -&A4>3 %<,3B /0C D E? > 1&>>3 6 BE A DCCB 0 12345!627*#8429!:;< :lp~be5l~a 14*@HI/JK I *>20*@FL F4*>@F;6)450*> "MNOPQPNRSOPTUVWTXOSYQWYPPVWYQ@Z[P\WXYQ]YW^PV_WU

More information

Microsoft Word - OFC_bandpass_filter_OFC_final_new

Microsoft Word - OFC_bandpass_filter_OFC_final_new 29 OSA/OFC/NFOEC 29 Bandwidth-Variable Bandpass Filter based on Dispersion Engineered Tapered Fiber with External Polymer Cladding Kuei-Chu Hsu 1, Nan-Kuang Chen 2,3, Sen-Yih Chou 1,4, Shien-Kuei Liaw

More information