JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 6 Dec

Similar documents
JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 5 Oct /35 TU3521 P315.

Fig. 1 Frame calculation model 1 mm Table 1 Joints displacement mm

0 1 / m m 2 ~ 3. 9m 3. 2m 1 / m 23. 6m mm 3 300mm 32. 1% 38. 1% 250mm C60 ~ C50 ~ C40 C

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip

mm ~

cm /s c d 1 /40 1 /4 1 / / / /m /Hz /kn / kn m ~

LaDefense Arch Petronas Towers 2009 CCTV MOMA Newmark Hahn Liu 8 Heredia - Zavoni Barranco 9 Heredia - Zavoni Leyva

m m m ~ mm

successful and it testified the validity of the designing and construction of the excavation engineering in soft soil. Key words subway tunnel

#4 ~ #5 12 m m m 1. 5 m # m mm m Z4 Z5

doc

标题

4 155 earthquake resilient structure 1 Yahya Kurama 2 Bulent Erkmen 3 Jose Restrepo 4 Brian Smith C40 HRB mm mm 125 mm 2

中華民國建築學會第十二屆建築研究成果發表會

Fig. 1 1 Plan of typical floor 2 Fig. 2 Analysis model Table 1 Period results s SATWE ETABS SAP2000 ABAQUS T

mm 110mm BRBF 4 HRB400 14mm mm MPa MPa BRBF BRBF BRB BRBF Fig. 1 1 Dormitory building before and a

m 6. 6m m m ~ m m 4. 0m ~ ~

附件一 摘要格式範例

40 强 度 与 环 境 2010 年 强 烈 的 振 动 和 冲 击 载 荷, 这 就 对 阀 门 管 路 等 部 件 连 接 的 静 密 封 结 构 提 出 了 很 高 的 要 求 某 液 体 火 箭 发 动 机 静 密 封 涉 及 高 压 超 低 温 大 尺 寸 三 个 严 酷 条 件, 具

Landscape Theory & Study 17

Fig. 1 Layout of Zipingpu Concrete Face Rock-fill Dam Fig. 2 Typical section of Zipingpu Concrete Face Rock-fill Dam gal

Torre Mayor Y A09 A m m m g γ

1556 地 理 科 学 进 展 30 卷 他 关 于 农 村 住 房 结 构 与 抗 震 性 能 的 研 究, 则 多 是 从 工 程 抗 灾 的 角 度, 研 究 某 种 构 造 类 型 的 房 屋, 力 图 找 到 传 统 房 屋 的 结 构 失 误 和 新 建 房 屋 中 存 在 的 问 [

b) 350 /t /t /m 2 30 cm 6 mm /m 2 8 mm /m 2. a) c) /m 2. b) c) 2 d) 3.2 a) ( 2) P i (100 kn) N s 16 N s =

m K K K K m Fig. 2 The plan layout of K K segment p

m 2, m 2,,,, 20. 5m,, 4. 6 m 2 3, m, 87200m 2,, ( ) Leoadaly 1 C40, 2200mm 2650mm, 30m, 49000kN 71000kN, 193m, 156m,,, 2 1,

~ 4 mm h 8 60 min 1 10 min N min 8. 7% min 2 9 Tab. 1 1 Test result of modified

% GIS / / Fig. 1 Characteristics of flood disaster variation in suburbs of Shang

g 100mv /g 0. 5 ~ 5kHz 1 YSV8116 DASP 1 N 2. 2 [ M] { x } + [ C] { x } + [ K]{ x } = { f t } 1 M C K 3 M C K f t x t 1 [ H( ω )] = - ω 2

华山山前断裂中段晚第四纪活动的地貌表现及响应

增 刊 谢 小 林, 等. 上 海 中 心 裙 房 深 大 基 坑 逆 作 开 挖 设 计 及 实 践 745 类 型, 水 位 埋 深 一 般 为 地 表 下.0~.7 m 场 地 地 表 以 下 27 m 处 分 布 7 层 砂 性 土, 为 第 一 承 压 含 水 层 ; 9 层 砂 性 土

~ ~ Y 3 X / / mm 400 ~ 700 C40 ~ C ~ 400 C40 ~ C ~

Mnq 1 1 m ANSYS BEAM44 E0 E18 E0' Y Z E18' X Y Z ANSYS C64K C70C70H C /t /t /t /mm /mm /mm C64K

mm-G6 60mm 12

T R 1 t z v 4z 2 + x 2 t = 2 槡 v t z 200 m/s x v ~

SVM OA 1 SVM MLP Tab 1 1 Drug feature data quantization table


Journal of Arid Meteorology Vol. 28 No. 4 Dec a

0 ( steel p late shear wall with slits, SPW S) H itaka [ 1 ],, 1 SPW S:, ;, ;,, SPW S,,,, 1 3,,, SPW S,, SPW S, [ 8 ], SPW S,, 1 1 SPW S Fig. 1 Genera

标题

Microsoft Word - jianzhutu 09-6.doc

H 2 SO ml ml 1. 0 ml C 4. 0 ml - 30 min 490 nm 0 ~ 100 μg /ml Zhao = VρN 100% 1 m V ml ρ g

[6].. (reduced beam section connection, RBS) RBS RBS. 2 /mm A/cm 2 I/cm

~ ~ ~

FZ1.s92

Revit Revit Revit BIM BIM 7-9 3D 1 BIM BIM 6 Revit 0 4D 1 2 Revit Revit 2. 1 Revit Revit Revit Revit 2 2 Autodesk Revit Aut

T 1) 2) ( ) T. T 4 T. R T. T U A doi / THE ANALYSIS ON STATIC CHARACTERISTICS OF CURVED T-BEAMS IN CONS

DB4102-P062-擴頭鋼筋.pdf

1602 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS TQ A Prospect of the structure of oxygen generating

<4D F736F F D20C8EDCDC1B5D8BBF9CDB2BBF9CAD4B2C9C6BDCCA8B5C4CACAD3C3D0D4B7D6CEF6>

79 PKPM2010 /SATWE Midas Civil K mm m kn / m kn /m 2 ZK kn /1. 6 m 200 /1. 6 /5. 55 = kn /

~ ~

SWAN min TITAN Thunder Identification Tracking Analysis SWAN TITAN and Nowcasting 19 TREC Tracking Radar Echo by Correlaction T

- 3 University of Bristol 1.1 FLAC 3D 1 FLAC 3D FLAC 3D 1

[1] Nielsen [2]. Richardson [3] Baldock [4] 0.22 mm 0.32 mm Richardson Zaki. [5-6] mm [7] 1 mm. [8] [9] 5 mm 50 mm [10] [11] [12] -- 40% 50%

A B A 18 A a 2007b

Transcription:

31 6 2011 12 JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 6 Dec. 2011 1000-1301 2011 06-0159 - 08 1 1 1 1 2 1. 150080 2. 100124 1 2 3 P315. 93 TU 43 TU41 A Shaking table test analysis of three-story subway station JING Liping 1 MENG Xianchun 1 SUN Haifeng 1 ZOU Yan 1 LU Bodi 2 1. Institute of Engineering Mechanics China Earthquake Administration Harbin 150080 China 2. College of Architecture and Civil Engineering Beijing University of Technology Beijing 100022 China Abstract The shaking table test of three-story subway station is performed to study the failure mechanism of multistory underground structure in earthquake. Particle concrete is chosen to make the testing model and the reinforced bar is set strictly according to the similarity ratio. A large-scale shear box is developed to reduce the boundary effect. By analysis of acceleration and strain the following conclusions are drawn 1 The failure of underground structure in earthquake is mainly controlled by displacement. 2 As to multi-story underground structure the uppermost story suffers the most severe damage in earthquake. On the contrary the lowest story suffers the slightest damage. 3 Increasing ductility is an effective method to improve the seismic performance of underground structures. Key words shaking table underground structure failure mechanism shear box 9 8 2011-03 - 10 2011-05 - 10 200808022 1963 - E-mail Jing_liping@ 126. com

160 31 1 2 5. 12 3 1995 4 1985 8. 1 5 1923 25 6 1 1. 1 1 1 30 28 1. 922 g /cm 3 G max = 46. 0 MPa λ max = 13. 53% 2 1 Fig. 1 Test model 2 Fig. 2 Shear laminar box 1. 2 3 A 4 Fig. 3 3 4 Strain gauges and acceleration sensors in the structure Fig. 4 Acceleration sensors in the soil

6 161 1. 3 El Centro 25 s 2 1 0. 1 g El Centro 2 0. 6 g El Centro 5 Fig. 5 0. 1g El Centro El Centro ground motion PGA = 0. 1g 6 Fig. 6 0. 6g El Centro El Centro ground motion PGA = 0. 6g 2 2. 1 A4 A7 A9 Aup2 7 0. 1g El Centro 0. 6 g El Centro 1 7 Ab1 A4 A7 A9 Aup 2 Fig. 7 Acceleration time histories at Ab1 A4 A7 A9 and Aup 2

162 31 Table 1 1 0. 1g 0. 6g Acceleration amplification factors vs. locations of monitoring points 0. 1g 0. 6g mm El 0. 1g El 0. 1g El 0. 6g El 0. 6g Ab1 0 0. 095 2 1 0. 524 4 1 A4 370 0. 093 3 0. 979 5 0. 484 2 0. 923 3 A7 670 0. 106 0 1. 113 5 0. 566 4 1. 080 2 A9 970 0. 118 1 1. 240 3 0. 661 5 1. 261 5 Aup2 1500 0. 137 3 1. 441 9 0. 886 0 1. 689 6 Fig. 8 8 Acceleration amplification factors vs. locations of monitoring points 0. 1g 0. 6g 8 2 A4 1 A4 A4 2. 2 - A2 A1-1 A1-2 A1-4 A1 Aup1 A1-1 A1-2 A1-4 3 A2 A1 Aup1 3 9 0. 1g El Centro 0. 6g El Centro 2 Table 2 2 0. 1g 0. 6g Acceleration amplification factors vs. locations of monitoring points 0. 1g 0. 6g mm El 0. 1g El 0. 1g El 0. 6g El 0. 2g A2 370 0. 092 7 0. 973 7 0. 529 3 1. 009 3 A1-1 549 0. 099 9 1. 049 4 0. 524 2 0. 999 6 A1-2 763 0. 111 3 1. 169 1 0. 601 2 1. 146 4 A1-4 107 7 0. 117 8 1. 237 4 0. 677 0 1. 291 0 A1 130 0 0. 118 9 1. 249 0 0. 869 6 1. 658 3 Aup1 150 0 0. 129 9 1. 364 5 0. 785 5 1. 498 0

6 163 Fig. 9 9 A2 A1-4 A1-2 A1-1 A1 Aup1 Acceleration time histories at A2 A1-4 A1-2 A1-1 and Aup1 Fig. 10 10 Acceleration amplification factors vs. locations of monitoring points 0. 1g 0. 6g 10 2 10 2 > > 10 b 0. 6g 0. 6g 2. 3

164 31 0. 1g El Centro 11 Fig. 11 11 Strain time histories at column top in each floor Fig. 12 12 Peak strains vs. locations of monitoring points 0. 1g 0. 6g 12 3 3 Table 3 Peak strains vs. locations 12 3 of monitoring points 0. 1g 0. 6g mm 1 26 13. 15 2 228 10. 55 3 240 20. 69 4 390 26. 63 6 554 48. 02

6 165 > > 2. 4 13 14 1 1 ~ 10 11 ~ 20 21 ~ 30 Fig. 13 13 Column damage in each floor 13 14 Fig. 14 Wall-floor joint damage

166 31 2 14 2 3 1 2 3 1. C / / 7. 2006 39-50. 2. J. 2006 39 6 106-110. 3. D. 2010. 4. C / /. 2004 162-167. 5. M. 2002. 6. J. 1996 29 1 15-24.