Size: px
Start display at page:

Download ""

Transcription

1

2

3 Constant Scalar Curvature Kähler Metrics and Stabilities Li, Chi Supervisor: Prof. Tian, Gang School of Mathematical Sciences, Peking University June, 2007 Submitted in total fulfilment of the requirements for the degree of Master in Pure Mathematics

4

5

6

7 Kähler Kähler-Einstein, Kähler- Einstein.. Futaki : Futaki. Futaki 0., Kähler-Einstein. Tian Kähler-Einstein K-. K- Futaki., Futaki, K. Chow. Donaldson Bergman Chow.. K- K-, Futaki. Donaldson Chow K-., Chow balanced, Chow Donaldson. Donaldson, Bergman. Bergman Hilbert, Donaldson Futaki Chow, Chow K-. Futaki Futaki,..,, Futaki, Bergman

8 ii

9 Abstract One of the major problems in Kähler geometry is the existence of Kähler-Einstein metrics. The existences of Kähler-Einstein metrics with nonpositive scalar curvature have been confirmed. But Kähler-Einstein metrics with positive scalar curvature do not necessarily exist. Futaki defined an important holomorphic invariant: Futaki invariant. The necessary condition for existence is the vanishing of Futaki invariant. Compared with the case of vector bundles, it is conjectured that the existence of Kähler-Einstein metric is equivalent to some kind of stability of the manifold in the Geometric Invariant Theory. Tian first proved that the existence of Kähler-Einstein metric with positive scalar curvature imply K- stability which he defined. In the definition of K-stability, the Futaki invariant plays a fundamental role. More generally, one considers the existence of Kähler metrics with constant scalar curvature. Both the Futaki invariant and K-stability extend to this case. There is also a notion of Chow stability. Donaldson proved that under some condition, the existence of constant scalar curvature metric implies asymptotic stability of the underlying manifold. Both stabilities have convex functionals and weights under group actions. In the case of K-stability, the functional is K- functional and the weight is just the Futaki invariant. Using the calculation of Donaldson, it can be showed that the asymptotic Chow stable implies semi K-stable. In this article, we explain from the definition of Chow stability to the criterion by balanced metrics, and we can get the Chow weight and the functionals which Donaldson used in his papers. We explain the main idea of the proof of Donaldson s theorem and how the expansion of Bergman kernel is used. We can use the Bergman kernel to give the asymptotic expansion of the Hilbert weight, get the algebraic definition of Futaki invariant by Donaldson and the fact that the Futaki invariant is the leading coefficient in the expansion of the Chow weight associated to a 1psg action, thus we explain the result that the asymptotic Chow stable implies semi K-stable. We also use the algebraic definition to give the computation of the Futaki invariant of complete intersections and test that the result is the same as that obtained using localization formula. This article is a summary of what I learned in this subject. Keywords: Constant scalar curvature metrics, Stability, Futaki invariant, Bergman kernel

10 iv

11 Abstract i iii v, 1 Chow balanced 5 Chow Bergman Donaldson Futaki, Hilbert Chow Futaki Hilbert Futaki K K A 35 A A.2 Bott-Chern Dolbeault

12 vi

13 , (, ω) n Kähler,, Kähler 1 ω = g 2π i jdz i d z j i,j g = i,j g i jdz i d z j Ricci c 1 (), 1 1 Ric(ω) = R 2π i jdz i d z j 2 = 2π z i z log det(g k l)dz i d z j j i,j i,j S = i,j g i j R i j = nric(ω) ωn 1 ω n Kähler Kähler-Einstein. Einstein, ω Kähler- Ric(ω) = λω (1.1) λ = 1, 0, 1. λ, c 1 (). c 1 () < 0 Aubin Yau. c 1 () = 0 Yau Calabi.. c 1 () > 0, λ = 1., Kähler-Einstein. Matsushima[16] Kähler-Einstein Aut() reductive. Futaki[10], Kähler-Einstein, 0., Hermitian-Einstein, Hitchin-Kobayashi. Yau Kähler- Einstein. Tian[21] K,. K- Futaki. ω c 1 (), -, h ω C () Ric(ω) ω = 1 h 2π ω, ω S n = ω h ω. ω Kähler-Einstein. Kähler [ω] H 1,1 (, R). φ C (), 1 ω φ = ω + 2π φ P (, ω) = {φ C () ω φ > 0}

14 K (, [ω]) = {ω φ φ P (, ω)} φ P (, ω) S(ω φ ). S S Kähler. V = ωn. S = 1 S(ω)ω n = nc 1()[ω] n 1, [] V [ω] n, [] [ω] H 1,1 (, R) H 2 (, Z), L, c 1 (L) = [ω]. (, L) polarized. h L Hermitian, Ric(h) = 1 2π log e L 2 h e L. φ C (), h φ = he φ, Ric(h φ ) = Ric(h) + 1 2π φ., Hermitian h, ω = Ric(h). L, k, Kodaira. I kl : P(H 0 (, kl) ) (1.2) z {s H 0 (, kl) s(z) = 0} I kl O(1) = kl. H0 (, kl) {s α }, H 0 (, kl) = C N k+1 I {sα} : CP N k (1.3) z [s 0 (z) : : s Nk (z)] CP N k Fubini-Study. {z α }, ω F S = 1 2π log(1 + N k α=1 z α 2 ) (1.4) Kähler 1 k (I {s α}) ω F S. Hermitian h, ω = Ric(h). 1 (I {sα}) 1 ω F S = ω + 2π k N k log s α 2 h k P k (, ω) = {φ = 1 N k k log s α 2 h {s α} H 0 (, kl) } (1.5) k α=0 α=0 K k (, ω) = { 1 k (I {s α}) ω F S {s α } H 0 (, kl) } Tian[20] Kähler ω k K k, {s α } h H 0 (, kl). ω k Bergman., P (, ω) 2

15 , P k (, ω). Kähler : Bergman (plurisubharmonic function)., ω. Donaldson[6] ω k K k, balanced. Zhang[25] balanced Chow. Luo[14], Paul[19]. Donaldson, Chow. Kähler-Einstein balanced..,, properness. Chow, φ C (), C () 0 φ {φ t } Fω(φ) 0 = 1 1 d V dt φ tωφ n t (1.6) 0 ω c 1 (L), F 0 ω Bott-Chern, A.7 {φ t }. K-, K-, Tian[21] Kähler-Einstein properness., Hilbert,.. Kähler,., proper, 0. Futaki,., Chow,, Bergman Donaldson., Futaki,, Futaki,.. Bott-Chern,. 3

16 4

17 Chow balanced Kodaira (1.2), CP N. dim = n, deg = d. d = ωn F S, d V. Chow. Grassmannian Gr(N n 1, CP N ) CP N N n 1, m + 1 = (N n)(n + 1). Q, Plücker I P l : Gr(N n 1, CP N ) P( N n C N+1 ), IP lo(1) = det(q). Z() = {V Gr(N n 1, CP N ) V } Γ() = {(z, V ) Z() z V } Γ(CP N ) = {(z, V ) Gr(N n 1, CP N ) z V } π 1 π Γ() 2 Z() CP N π 1 Γ(CP N ) π 2 Gr(N n 1, CP N ) (2.1) Z() N n 1, π 2. π 1 Gr(N n 2, CP N 1 ), dimz() = dimγ() = dim + dimgr(n n 2, CP N 1 ) = (N n)(n + 1) 1 = m Gr = Gr(N n 1, CP N ). CP N U = CP N n 2 W = CP N n. F (U, W ) = {V Gr(N n 1, CP N ) U V W } = CP 1 U, W, U =, (W ) = d. F (U, V ) d (N n 1), (F (U, W ) Z()) = d. Z() Gr d. f H 0 (Gr, O(d)), Z() = f. O(d) det(q) = O(1) d. f Chow. [f] P[H 0 (Gr, O(d))] Chow. SL(N + 1, C) (CP N, O(1)), (Gr(N n 1, CP N ), O(1)), H 0 (Gr, O(d)) P[H 0 (Gr, O(d))] Chow, f H 0 (Gr, O(d)) SL(N + 1, C), f. Chow, f 0.,,, Hilbert.

18 2.2. f H 0 (Gr, O(d)), Chow f Ch log f 2 Ch = 1 log f 2 h ω m+1 D d Gr F S Gr D = Gr ωm+1 Gr. f 2 h d F S, ω Gr Plücker O(d) Gr Fubini-Study, 1. f Gr, log f 2 h d F S, f. cf 2 Ch = c f 2 Ch. : σ SL(N + 1, C), f σ σ f, f σ σ() Chow. SL(N + 1, C) F (σ) = log f σ 2 Ch (2.2) SU(N + 1), F (σ) S = SL(N + 1, C)/SU(N + 1). F (σ) S. S. sl(n + 1, C) = su(n + 1) + 1su(N + 1), SL(N + 1, C) = SU(N + 1) C σ(e t ) : C SL(N + 1, C). A 1su(N + 1) σ(e t ) = exp(ta) (2.3) A = A, tr(a) = 0 (2.4) Z = (Z 0,, Z N ) C N+1, Z 2 = N α=0 Z α 2. Z [Z] CP N. σ ω F S = ω F S + 1 2π d dt σ ω F S = φ σ φ σ ([Z]) = log 1 2π φ σ, φσ ([Z]) = d σ Z 2 log dt Z (Phong-Sturm[17], S. Paul[19]). d dt log f σ 2 Ch = (n + 1) φ σ (σ ω F S ) n = 2(n + 1) σ Z 2 Z 2 (2.5) = 2 Z σ AσZ σ Z 2 (2.6) σ() Z AZ Z 2 ωn F S (2.7).. Plücker, ω Gr P ( N n C N+1 ) Fubini-Study Gr. Φ σ σ ω Gr = ω Gr + 1 Φ 2π σ. d dt log f σ 2 Ch = 1 1 log f 2 h + 1) D d F S(m t=0 Gr 2π log Φ σ ωgr m ( 0) = (m + 1) 1 Φ σ ωgr m (2.8) D Z() 6

19 CHOW BALANCED Poincaré-Lelong : 1 2π log f 2 h = d F S Z() (2.1) 1 D π 1 π2ω m+1 Gr = ω n+1 F S π 1 π 1 Gr(N n 2, CP N 1 ). t (m + 1) 1 D π 1 π 2( Φ σ ω m Gr) = (n + 1) φ σ ω n η = (m + 1) 1 D π 1 π 2( Φ σ ω m Gr ) (n + 1) φ σ ω n (n,n), η σ(e t ) CP n 0, η, η = 0. (m + 1) 1 Φ σ ωgr m = (m + 1) 1 π D Z() D 2( Φ σ ωgr) m (π 2 ) Γ() = (m + 1) 1 π 1 π D 2( Φ σ ωgr) m = (n + 1) φ σ ωf n S (2.9) 2. (2.8) Z() F (σ) S,. (2.9) Z(),. (N + 1) Hermitian M() M() αβ = t = σ(e t ), (2.7) Z α Zβ Z 2 ωn F S (2.10) d dt log f σ 2 Ch = d (n + 1) d dt F 0 ω F S (φ σ ) = 2(n + 1)tr(M( t )A) (2.11), d V. F (σ) = log f σ 2 Ch = d (n + 1)F 0 ω F S (φ σ ) (2.12) 2.2. tr(m( t )A) t R. O(1), tr(m( t )A) t.. (2.3), d dt tr(m( t)a) = d Z σ AσZ (σ ω dt σ Z 2 F S ) n = 2 ( Z A 2 Z (Z AZ) 2 Z 2 Z 4 σ() 7 1 )ωf n S n 2π Z AZ Z 2 Z AZ Z 2 ω n 1 F (2.13) S

20 . σ. SU(N + 1), A = diag(λ 0,, λ N ), λ α R, N α=0 λ α = 0. (2.3) CP N v, {w α = Z α Z 0 α = 1,, N}, v = N (λ α λ 0 )w α w α α =1 Im(v) Killing, Re(v) = J(Im(v)). N θ A = Z AZ α=0 = λ α Z α 2 Z 2 N α=0 Z (2.14) α 2 ( ), CP N Fubini-Study Kähler, 2Im(v) 1 θ 2π A Hamilton, 2 i Im(v) ω F S = 1 2π dθ A 1 2π θ A = i v ω F S (2.15) Z A 2 Z Z 2 (Z AZ) 2 Z 4 = g F S (v, v) = v 2 = θ A 2 ω F S (2.16) CP N, CP N. v = v T + v T CP N = T T, 1 2π n Z AZ Z Z AZ 2 ω n 1 Z 2 F S = θ A 2 ωf n S = v T 2 ωf n S (2.17) (2.16),(2.17) (2.13) ( 4 ω n F S ) θ A 2 θ A 2 = v 2 v T 2 = v 2 0 (2.18) (2.18) (2.13) 0 v. O(1), tr(m( t )A) t. 3. Z α 2 F S = Z α 2 Z = Z α 2 2 β Z β 2 Z α CP N O(1) Z α 2 F S Fubini-Study. N N N λ 2 α Z α 2 F S ( λ α Z α 2 F S) 2 ( λ α Z α 2 F S) 2 ω F S = α=0 α=0 α=0 N λ α Z α h i i Z α hz α 2 F S α=0 O(1) Fubini-Study. h i i = h Study. (3.7) (3.8). 8 (2.19) g i j, g = g z j z i F S Fubini-

21 CHOW BALANCED (2.11) F (σ) = log f σ 2 Ch SL(N + 1)/SU(N + 1). O(1), F (σ). SL(N + 1)/SU(N + 1), F (σ) 2.4. : (1) Chow, (2) F (σ) SL(N + 1, C)/SU(N + 1) proper, σ ( ), F (σ) +. (3) F (σ) S = SL(N + 1, C)/SU(N + 1), σ S A 1su(N + 1), σ() Z AZ Z 2 ωn F S = tr(m(σ())a) = M (N + 1) (N + 1) Hermitian, M, A 1su(N + 1), tr(ma) = αβ M αβ A βα = balanced, M(). tr(m) = ωf n S = d balanced I N+1 N M() = d N + 1 I N Chow, σ SL(N+1, C)/SU(N+1), σ() balanced. Hilbert. σ(e t ), σ(e t ) Z(). Chow f Z(), σ(e t ) 1 Cf. (2.7), t 0 w = (n + 1) f σ(et ) = e ta f = e tw f θ A ω n+1 F S 9 = (n + 1)tr(M()A) (2.20)

22 Chow, t 0, tr(m( t0 )A) = , t > t 0, tr(m( t )A) > tr(m( t0 )A) = 0 t,. f Chow. P(H 0 (Gr, O(d))) [f ] = lim t σ(e t )[f], f Chow. C Cf, w ch (σ), Chow. Hilbert. w ch (σ) = (n + 1)tr(M( )A) > (Hilbert ). ( ), : SL(N + 1, C) σ : C SL(N + 1, C), w ch (σ) > 0( 0).,. GL(N +1, C)/U(N +1), F (σ) GL(N + 1, C)/U(N + 1). σ GL(N + 1, C), σ = (det(σ)) 1 N+1 σ SL(N + 1, C), (2.5), (2.12) F 0 ω (φ + c) = c + F 0 ω(φ) F (σ) = F ( σ) = d (n + 1)Fω 0 F S (φ σ ) = (n + 1)( d Fω 0 F S (φ σ ) 2d log det(σ)) (2.21) N + 1, A gl(n + 1, C), A = A tr(a) N+1 I N+1 sl(n + 1, C), σ(e t ) = exp(ta). σ(e t ) Chow (n + 1)tr(M( )A) = (n + 1)(tr(M( )A) d tr(a)) (2.22) N

23 Chow 3.1 Bergman polarized (, L, ω). h L Hermitian, ω = Ric(h). h H 0 (, kl), s i H 0 (, kl), i = 1, 2. s 1, s 2 Hilb(hk ) = 1 (s 1, s 2 ) h k(kω) n n! Hilb(h k ) {s α α = 0,, N k }, N k + 1 H 0 (, kl) Bergman B(h k ) N k B(h k )(z) = s α (z) 2 h k 4. P k : Γ(, kl) H 0 (, kl), Γ(, kl). α=0 N k B(h k )(z, w) = s α (z) s α(w) α=0 P k, B(h k )(z) = B(h k )(z, z). B(h k )(z). h B(h k ), B(kω), ω = Ric(h)., B k = B k (h) = B(h k ). B k k. 1 N k B k (z)(kω) n = s α 2 Hilb(h n! k ) = N k + 1 α=0 N k +1. L, k, K +kl, Kodaira, L : H p (, kl) = H p (, Ω n ( K + KL)) = 0, 1 p n Riemann-Roch k H 0 (, kl) N k + 1 = dimh 0 (, kl) = e kc1(l) T d() (3.1) T d() Todd, (c i = c i ()) T d() = 1 + c c2 1 + c 2 + c 1 c 2 + (3.2) 12 24

24 3.1 BERGMAN (3.1) N k + 1 = C 0 k n + C 1 k n 1 + C 0 = c 1(L) n, [] = 1 ω n = V n! n! n! C 1 = 1 2n! nc 1(L) n 1 c 1 (), [] = 1 nric(ω) ω n = V 2n! 2n! V, S S. B k 1 V Sω n = 1 2n! V S B k = a 0 + a 1 k 1 + O(k 2 ) a i. : 3.1. Kähler ω, k C : B k (ω) = a 0 (ω) + a 1 (ω)k 1 + (3.3) r, N 0 N B k (ω) a i (ω)k i Cr () C r,n,ω k N 1 (3.4) i=0 a i (ω) ω. a 0 (ω) = 1, a 1 (ω) = 1 2 S(ω) (3.4), r, N, s ω ( )C s, C r,n,ω ω. 5. Tian [20] Hörmander Peak Section, a 0, C 2. Ruan[18] Bochner C, Lu[12] Tian Peak Section a 1,. Zelditch[24] Szegö, Dai-Liu-Ma[4]. {s α } Kodaira (1.3), k Bergman ω k = 1 k I {s ω α} F S ω F S CP N Fubini-Study., 3.2 (Tian). k, ω k ω. 12

25 CHOW. kl e L, Fubini-Study 1 ω k = 2πk Nk α=0 log s α 2 h 1 k = ω e L 2 2πk log B k h k r, 1 log B k k = 1 log(1 + k O(k 1 )) Cr 0, k P k (, ω) P (, ω).. φ P (, ω), h φ = he φ, Ric(h φ ) = ω φ. H 0 (, kl) Hilb(h φ ), P k (, ω) φ k = 1 N k N k k log s α 2 h = log s k α 2 h + φ = 1 k φ k log B k(h φ ) + φ (3.5) α=0 B k r > 0, φ k C r (ω φ ) φ, φ, ω ω φ C r, φ k C r (ω) φ. α=0 Bergman balanced. 3.2 Donaldson (, L) balanced, H 0 (, kl) {s α }, I {sα}() banlanced. h F S O(1) Fubini-Study, I {s h α} F S, I {s ω n!(n α} F S balanced,. { k +1) V k s α } Hilb(h F S ), N N s α 2 Z α 2 h F S = Z = 1 2 ω F S Bergman α=0 B(ω F S )(z) = N k α=0 α=0 n!(n k + 1) V k s α 2 h F S = n!(n k + 1) V k, h k kl Hermitian B(h k ). {s α } Hilb(h k ), 1 (I {sα}) ω F S = ω hk + 2π B(h k ) = ω hk I {sα}() balanced (, kl) balanced, kl Hermitian h k, Bergman B(h k ). Bergman (3.4) : 13

26 3.2 DONALDSON 3.5. k, (, kl) balanced h k, ω k = 1 k Ric(h k) C ω, ω. Aut(, L), 2.3 F (σ) = d F 0 ω F S (φ σ ) SL(N + 1, C)/SU(N + 1). balanced balanced, 3.6. Aut(, L), (, L) balanced, H 0 (, L) I L () balanced U(N + 1) R. L balanced h, Kähler ω = Ric(h). Donaldson 3.7 (Donaldson[6]). Aut(, L), ω c 1 (L). k, (, kl) balanced, balanced h k, balanced ω k = 1 k Ric(h k) C ω. Donaldson. H 0 (, kl), {s α } Kodaira I {sα}() balanced, M(I {sα}()) αβ = I {sα} () Z α Zβ s α s β 1 Z 2 ωn F S = γ s γ ( 2 2π log γ s γ 2 ) n, M = 0.,. Γ(kL) kl. C () Γ(kL). f C (), R(f) : H 0 (, kl) Γ(kL) s f i i s + fs Γ(kL) N k+1 = (N k +1) {}}{ Γ(kL) Γ(kL) C () Γ(kL) Nk+1. SL(N k + 1, C) Γ(kL) Nk+1. SL(N k + 1, C),. Γ(kL) Nk+1 B = {{s α } {s α } H 0 (, kl) } {s α } B, A 1su(N k + 1), s α s β θ A = θ A,{sα} = A αβ γ s γ 2 14

27 CHOW 1su(N k + 1) τ({s α }) : 1su(N k + 1) Γ(kL) N k+1 A {A αβ s β R(θ A,{sα})s α } = {A αβ s β θ i A i s α θ A s α } 1su(Nk + 1) A, B su = tr(ab) Γ(L) N k+1 {s α}, {s α} {sα} = Re α s αs α 1 β s β ( 2 2π log β s β 2 ) n τ({s α }) τ({s α }) : Γ(kL) N k+1 1su(N k + 1). {s α }, σ SL(N k + 1, C) σ {s α } = {σ β αs β } balanced. σ(t) SL(N k + 1, C)/SU(N k + 1). {s α (t)} = σ(t) {s α }, t = I {sα(t)}(), M(t) = M( t ). d M(t) = M(t) (3.6) dt (3.6) t > 0, M(t) = e t M(0) t,, M( ) = 0. {s α ( )} = σ( ) {s α } balanced. A(t). A(t) = σ(t) 1 d dt σ(t) t, SU(N k + 1), A(t) A = diag(λ 1 (t),, λ Nk (t)). B 1su(N k + 1), d dt tr(m(t)b) = d dt tr(m(t)b) = B d s α s β 1 βα dt γ s γ ( 2 2π log s γ 2 ) n γ = B βα ( λ αs α s β γ s γ s αs β (λ γ s γ, s γ ) 1 2 γ s γ 2 γ s γ )( 2 2π log s γ 2 ) n γ s α s β 1 +B βα γ γ s γ (n 2 2π λ γ s γ 2 1 γ s γ ) ( 2 2π log s γ 2 ) n 1 γ = ( λ αs α B αβ s β 1 γ s θ γ 2 A θ B g i jθ Aθ j i B )( 2π log s γ 2 ) n (3.7) γ (λ α s α θ i = A i s α θ A s α )(B αβ s β θ i B i s α θ B s α ) 1 γ s ( γ 2 2π log s γ 2 ) n γ = τ(t)(a), τ(t)(b) {sα(t)} ( τ(t) = τ({s α (t)})) (3.8) = τ(t) τ(t)(a), B su = tr[((τ(t) τ(t))(a))b] 15

28 3.2 DONALDSON d dt M(t) = τ(t) τ(t)(a). (3.6), (3.6) SL(N k + 1) τ τ(a) = M A(t) = (τ(t) τ(t)) 1 M(t) σ(t) 1 d dt σ(t) = (τ(t) τ(t)) 1 M(t) (3.9) (3.9) [0, ], M(0) (τ(t) τ(t)) 1. Donaldson, Bergman B k Kähler ( nearly balanced ), H 0 (, kl) {s α }, M(0). t > 0, (τ(t) τ(t)) 1, [0, ), (3.9) SL(N k + 1, C), t,. nearly balanced, S(ω φ ) φ, : φ t P (, ω), d dt S(ω φ t ) = d dt (gi j (log det(g)) i j) = g i l φk l g k j R i j ( φ k k) i i = φ i j R i j φ (3.10) = φ i j R i j ( φ ki ki + ( φ j R j ki k ),i ) = φ ki ki + φ j R k i i k,j = φ ij ij + φ i S i (3.11) = φ ij ij + φ i S i (3.12) S Kähler ω, φ S(ω φ ) DS ω δφ = (δφ) ij ij (δφ) ij ij = 0 (δφ) i L. Aut(, L), z i L, DS ω. Donaldson p ω = ω + k i φ i B k (ω) DS ω, p, φ i, k i, i = 2,, p + 1,, balanced. i=1 16

29 Futaki, Hilbert Chow 4.1 Futaki Futaki. S ω, S S. h C () S S = ω h. v, f (ω, v) = v(h)ω n (4.1) i v ω = 0, θ v = θ v (ω) C (), (0, 1) α, 2π 1 i v ω = α + θ v (4.2) α α ī,j = 0, α ī,ī = 0 (4.3) α i,i = 0, Futaki (4.1) f (ω, v) = (S S)θ v ω n (4.4) 4.1. f (ω, v) ω [ω]. f([ω], v).. (Calabi) φ t P (, ω), ω t = ω φt. t h(ω t ) = S(ω t ) S t, (3.10) ḣ φ i j h i j = φ i j R i j φ (4.5) f = φ i j (R i j h i j), Bianchi (R i j h i j),i = R i k k j,i h i i j = R i k k i, j ( h) j = S j (S S) j = 0 (4.6) (R i j h i j), j = 0 (4.7) fωn = φ j ω n (R i j h i j),i = 0, 1 f C () 1 f = f. (4.5) ḣ = φ 1 f + c t

30 4.1 FUTAKI c t. (4.1) t, α i,i = 0, d dt f(ω t, v) = = [(θ i v + α i )( φ 1 f) i + v(h) φ]ω n = [ θ v φ + θ v f + v(h) φ]ω n = [( θ v + v(h)) φ j j + θ φi j v (R i j h i j)]ω n = [( θ v + v(h)) j + (θ v (R i j h i j)) i ] φ j ω n v, v i, j = 0, α i,i = 0 ( θ v ) j = θ v i i j = (v i α i ),i j = v i,i j = v i, ji + v k R k i ji = v i R i j (4.8) (v(h)) j = v i h i j, (θ v (R i j h i j)),i = θ v,i (R i j h i j) ( (4.6)) (4.3), (4.7) d dt f(ω t, v) = (v i θ i v )(R i j h i j) φ j ωt n = (α i (R i j h i j)), j n φωt = 0 6. (A.16) α=0, 4.1, θ v θ v i j = 0, α 0, : (4.4) t, (3.11) d (S S)θ v ωt n = dt = = 0 θ v (ω φ ) = θ v (ω) + φ [( φ ij ij + φ i S i )θ v + (S S)(v( φ) + θ v t φ)]ω n t [ φ ij θ v ij + ((S S)θ v φi ) i ]ω n t, α = 0. v L, (, L). v Lie(Aut(, L)).. (4.4) f (ω, v) = (A.16), (4.8) (ω + θ v ) n (Ric(ω) θ v ) S n + 1 (ω + θ v) n+1 (4.9) ( i v )(ω + 1 2π θ v) = 0, ( i v )(Ric(ω) 1 2π θ v) = 0 18

31 FUTAKI, HILBERT CHOW A.10 f (ω, v) ω [ω] = c 1 (L). f (c 1 (L), v) = f (ω, v). (4.9) Tian, Tian CM CM, Futaki CM. Ding-Tian[5] Futaki (normal). Donaldson[7] Futaki. Hilbert, Futaki, Donaldson Futaki. 4.2 Hilbert Futaki v (, L) C, σ(e t ). S 1 C. C H 0 (, kl) : e t C, s H 0 (, kl), (e t s)(z) = e t s(e t z) (4.10) N k H 0 (, kl) = Cs α (4.11) N k + 1 = dimh 0 (, kl), e t s α = e tλα s α. C H 0 (, kl) N k w k = α=0 {s α } CP N k = P(H 0 (, kl) ), kl CP N k. CP N k {Z α }, {Z α }, s α Z α. C GL(N + 1, C) σ(e t ) = e ta k CN k+1 = H 0 (, kl). C Nk+1, A k = diag( λ 0,, λ Nk ), σ(e t ) = diag(e tλ0,, e tλ N k ) (4.12) α=0 λ α w k = tr(a k ) (4.13) w k. S 1, L S 1 Hermitian h, ω h = Ric(h) > 0. S 1 ω h S 1 h ω h, S 1 H 0 (, kl) Hilb(h k ). λ α 0, (4.11) {s α }. L L v v L, L h Hermitian. L kl v = kl v 19 + kθ v

32 4.2 HILBERT FUTAKI θ v = µ L (v) ( ). L kl v 1 i v ω h = 2π θ v s α = λ α s α, λ α s α = kl s α kθ v s α. v λ α s α 2 h k = (λ αs α, s α ) h k = ( kl v s α + kθ v s α, s α ) h k = v( s α 2 h k) kθ v s α 2 h k kl,, s α, kl v s α = 0. N k N k w k = λ α = λ α s α 2 Hilb(h k ) = 1 λ α s α 2 h n! k(kω h) n α=0 α=0 α = 1 s α n! (v( 2 h k) + kθ v s α 2 h k)(kω h) n α α = 1 θ v (kb k (h) ωh B k (h))(kω h ) n (4.14) n! Bergman (3.3) w k = k n+1 i 1 θ v (a i a i 1 )ωh n (4.15) n! i=0 = ( kn+1 θ v ωh n + kn Sθ v ωh n + ) (4.16) n! 2n! (4.14). σ(e t ) h h σ, ω σ h = σ ω h. s, (4.10), s 2 σ h(z) = σ s(z) 2 h(σ z) = σ s(σ 1 σ z) 2 h(σ z) = (σ σ s 2 h)(z) s α, s β Hilb(σ h k ) = 1 n! = 1 n! = 1 n! (s α, s β ) σ h kσ (kω h ) n σ ((σ s α, σ s β ) h k)σ (kω h ) n (σ s α, σ s β ) h k(kω h ) n ( σ() = ) = σ s α, σ s β Hilb(h k ) Hilb(h) ( s α, s β Hilb(h) ). σ {s α } σ 1. Hilb(σ h k ) = σ 1 Hilb(h k )(σ 1 ) (4.17) (σ 1 ). log det Hilb(σ h k ) = 2 log det σ + log det Hilb(h k ) (4.18) 20

33 FUTAKI, HILBERT CHOW (4.12) (4.13), t w k = d dt log det(σ) = 1 d 2 dt log det Hilb(σ h) (σ h) 1 d dt σ h = 2θ v. (4.14). Hermitian h t = he φt, ω ht = Ric(h t ) > 0. d log det Hilb(h k t ) = tr dt t= ( Hilb(h k 0) 1 d ) dt Hilb(h k t ) t=0 = d N k 1 s α 2 h (kω dt n! k h0 ) n ( {s α } Hilb(h k 0) ) 0 α=0 = 1 N k s α 2 h ( k n! φ + k ωh0 φ)(kωh0 ) n 0 α=0 = 1 φ(kb(h k n! 0) ωh0 B(h k 0)(kω h0 ) n (4.19) Donaldson. O(1) CP 1, P O(1). Kähler = P S 1 π CP 1 L = P S 1 L. CP 1 P S 1 (H 0 (, kl)) = R 0 π O(kL) = IndD k D k = kl kl + ( ) Dirac. w k = c 1 (P S 1 (H 0 (, kl))) = c 1 (IndD k ) Family Riemann-Roch w k = c 1 (IndD k ) = ( e k c1(l) T d(t )) [2] (4.20) T = T 1,0,. ξ S 1. v = Jξ+ 1ξ. Θ Fubini-Study P, CP 1 2, t = 1 1 2π Θ = 2π log det(1 + z 2 ) = 1 π dx dy (1 + x 2 + y 2 ) 2 [t], [CP 1 ] = CP 1 t = 1. c 1 (L) de Rham 1 2π (RL + µ L (ξ)θ) = ω µ L (v)t = ω θ v t (4.21) 21

34 4.2 HILBERT FUTAKI c(t ) det( π RT u(1) (ξ)), c 1 (T ) [ w k = R T u(1) (ξ) = RT ( ξ) T 1,0 Θ = R T 1( v)θ (4.22) Ric(ω) + 1 2π div(v)θ = Ric(ω) + θ vt (4.23) e k (ω θvt) T d ( 1 2π (RT )] 1( v)θ) [2] (4.24) Ω δ γ = α,β R γ δ α βdz α d z β (4.25) (3.2) (4.22) ( 1 T d 2π (RT ) 1( v)θ) (4.24) w k k linear = ( 1 2π tr(ω) + θ vt) (( 1 2π )2 (3tr(Ω) 2 Ω β αω α β)+ 1 2π (6 θ vtr(ω) 2Ω β αv α,β)t)+ w k = i=0 D i k n+1 i (4.26) D 0 = 1 (ω θ v ) n+1 1 = + θ v ) (n + 1)! (n + 1)! (ω n+1 = 1 θ v ω n (4.27) n! D 1 = 1 (ω θ v ) n (Ric(ω) + θ v ) = 1 (ω + θ v ) n (Ric(ω) θ v ) = 1 Sθ v ω n 2n! 2n! 2n! (4.28) D 2 = ( 2π )2 (ω θ v ) n 1 (( 24(n 1)! 2π )2 (3(T r(ω)) 2 Ω β αω α β) + 2π (6 θ vtr(ω) 2Ω β αv α,β)) = 1 θ v ( 1 n! 24 (R α β αγ δ γ δr β 4R β α R α β + 3S 2 ) S 6 )ωn = 1 θ v ( 1 n! 24 ( R 2 4 Ric 2 + 3S 2 ) S 6 )ωn (4.4) (4.27), (4.28) f (c 1 (L), v) = n!(s D 0 2D 1 ) (4.29), Donaldson Futaki. Futaki. 22

35 FUTAKI, HILBERT CHOW 4.2. c. (1) σ(e t ) σ(e ct ), Futaki c. (2) σ(e t ) σ(e t ) e ct, Futaki. 7., (4.26) D i D i = 1 n! θ v b i ω n b i. (4.15), b i = a i a i 1, Bergman, b i. a 2 = b 2 + a 1 = 1 24 ( R 2 4 Ric 2 + 3S 2 ) + S 3 Lu[12]. θ v, Riemann-Roch e kω h T d(rt (h)) L h Bott-Chern ( A.7, ) (h 1 ḣ)(kb k (h) B k (h))(kω h ) n 4.3 (complete intersection)hilbert, Futaki Chow. Futaki Lu[13] 4.1. F d, = {Z = [Z 0, Z 1,..., Z N ] CP N F (Z) = 0} S() = C[Z 0,, Z N ]/(F ) = S k () (F ) F, (F ) = k=0 I k, I k F k. S k () = H 0 (, kh). 0 I k () Sym k ((C ) N+1 ) H 0 (, kh) 0 (4.30) H CP N, c 1 (H) Kähler. K 1 k=0 + [] = K 1 CP N 23

36 4.3 [] = dh, CP N = (N + 1)H, K 1 = (N + 1 d)h. S = (N 1)(N + 1 d) σ(e t ) : C SL(N + 1, C), v σ(e t ). σ(e t ), v v F = µ F σ(e t ) SL(N+1, C), C (C ) N+1 λ = 0. H 0 (, kh) w k Sym k ((C ) N+1 ) I k (). w k = λ k( ) ( k+n N N + 1 λ (k d)( ) k d+n ( ) ) N k d + N + µ N + 1 N = kn N! µ kn 1 µ(n + 1 2d) 2(N 1)! (4.29) (d 1)(N + 1) f (c 1 (H), v) = µ (4.31) N Futaki. F 1, F 2,, F r d 1, d 2,, d r. σ(e t ), = r {F i = 0} i=0 S() = C[Z 0,, Z N ]/(F 1,, F r ) = vf i = µ i F i, i = 1,, r S k () (4.30), w k = λ k( ) k+n r N N + 1 ( 1) α 1 [λ (k (d i 1 + d i2 + + d iα )) ( k (d i1 N + 1 α=1 1 i 1<i 2< <i α r ( ) k (di1 + d i2 + + d iα ) + N +(µ i1 + µ i2 + + µ iα ) ] N r ( ) λ=0 k = ( 1) α 1 (di1 + d i2 + + d iα ) + N (µ i1 + µ i2 + + µ iα ) N α=1 = 1 N! N p=0 k N p 1 i 1<i 2< <i α r p q=0 ( 1) q ( N p + q q k=0 ) +di2 + +diα )+N N ) c p q (N)a q (4.32) c s (N) = j 1 j 2 j s 1 j 1<i 2< <j s N 24

37 FUTAKI, HILBERT CHOW N 2s, a q = c 2 = c 0 = 1, c 1 = 1 i<j N r ( 1) α 1 α=1 N j = j=1 N(N + 1) 2 i j = 1 N(N + 1)(N 1)(3N + 2) 24 1 i 1<i 2< <i α r q < r 1, a q = 0. q = r 1, r : (µ i1 + + µ iα )(d i1 + + d iα ) q a r 1 = ( 1) r 1 (r 1)!(µ 1 d 2 d r + µ 2 d 1 d 3 d r + + µ r d 1 d r 1 ) = r r ( 1) r 1 µ i (r 1)! d i d i i=1 i=1 a r = 1 2 ( 1)r 1 r!((µ µ r )d 1 d r + (µ 1 d 2 d r + + µ r d 1 d r 1 )(d d r )) = 1 µ i 2 ( 1)r 1 r! d i ( µ i + d i ) d i i i i i (4.32) w k = ( kn r+1 N ( 1) r 1 N! r 1 = k N r+1 r r d i (N r + 1)! i=1 i=1 ) ( ) a r 1 + kn r N 1 N(N + 1) [( 1) r 1 N! r 1 2 µ i k N r + 1 d i 2 (N r)! i d i [(N + 1 i d i ) i a r 1 + ( 1) r ( N r µ i d i i µ i ] ) a r ] f (c 1 (H), v) = (N r)(n + 1 i d i) N r + 1 = i d i ( i d i µ i N + 1 i d i N r + 1 i i i µ i d i i µ i d i ) d i [(N + 1 i d i ) i µ i d i i, r = 1, (4.31). σ SL(N + 1, C), (2.20) (4.27), Chow : w ch (σ) = i d i i µ i d i µ i ] Ding-Tian[5] F = Z 0 Z Z 2 Z 3 (Z 2 Z 3 ), σ(e t ) = diag(1, e 3t, e 2t, e 2t ), v σ. K 1 = H.. 4.2(2), f (c 1 (), v) = f (c 1 (H), v). 25

38 4.3 Futaki, σ(e t ) = σ(e 4t ) e 7t = diag(e 7t, e 5t, e t, e t ) SL(4, C) Futaki, ṽ σ. N = 3, d = 3, µ = 3, (4.31) Futaki f (c 1 (H), ṽ) = 8. f (c 1 (), v) = f (c 1 (H), v) = 2.. p 0 = [1, 0, 0, 0]. C 2 /Γ, Γ D 4 SU(2). Γ = 8. π : C 2 (z 1, z 2 ) [1, (z4 1 z2) 4 (z 1 z 2 ), (z2 1 + z2) 2 2, (z 1 z 2 ) 2 ] 4 4 σ(e t ) C 2, (z 1, z 2 ) (e t 2 z1, e t 2 z2 ). π v = 1(z 2 1 z1 + z 2 z2 ). v 5 [1, 0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 1, 1]. Ding-Tian[5] (v 0 ) f (c 1 (), v) = 1 n + 1 z v(z)=0 1 (div z (v)) n+1 Γ z det( v Tz) (4.33) f (c 1 (), v) = 1 3 ( ( 2)3 + 3 ( 1) ) = F = Z 0 Z Z 1 Z Z 3 3, σ(e t ) = diag(1, e 6t, e 3t, e 4t ). K 1 = H. Futaki, σ(e t ) = σ(e 4t ) e 13t = diag(e 13t, e 11t, e t, e 3t ). N = 3, d = 3, µ = 9. (4.31) f (c 1 (H), ṽ) = 24. f (c 1 (), v) = f (c 1 (H), v) = 6. [1, 0, 0, 0]. C 2 /Γ, Γ SU(2). Γ = 24. ( F.Klein Lectures on the Icosahedron ) π : C 2 (z 1, z 2 ) [1, (z z 2 1z z 4 2) 3, 2( 3) 3 4 z1 z 2 (z 4 1 z 4 2), (z z 4 1z z 8 2)] σ(e t ) C 2 (z 1, z 2 ) (e t 2 z1, e t 2 z2 ). π v = 1 2 (z 1 z1 +z 2 z2 ). v 3 [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]. (4.33) f (c 1 (), v) = 1 3 ( ( 5)3 + ( 2) ) =

39 5.1 K K φ P (, ω), K Mabuchi[15], ν ω (φ) = 1 φ t P (, ω) 0 φ. 8. K R K 1 (h)r L,n (h) dt (S(ω φt ) S) d dt φ t ωφ n t S n+1 RL,n+1 (h) Bott-Chern ( φω n φ n φric(ω φ ) ω n φ + S φω n φ) A.7 φ t. L K 1 K 1 L. Tian restricted Bott-Chern. v, v σ(e t ). φ = θ v, d dt ν ω(φ t ) = (S S)θ v ω n = f ([ω], v), σ(e t ) ω = ω + 1 2π φ t, K P (, ω). Chen[2] Kähler K (, [ω]) (metric space). P (, ω) : γ = {φ t }, L(γ) = 1 0 dt φ 2 ωφ n φ φ 2 g φ = φ φ i φi = 0 (5.1) 5.1. ν ω (φ).,.. φ t P (, ω), φ t (5.1), d 2 dt F ω(φ) 0 = ( φ + φ φ)ω 2 2 φ = ( φ φ i φi )ωφ n = 0

40 5.1 K K (3.11) d 2 dt ν ω(φ) = ( φ ij 2 ij + φ i S i + S φ + S φ φ)ω φ n S d2 dt F ω(φ 0 2 t ) = ( φ ij φij S( φ φ i φi ))ωφ n = φ ij φij ωφ n 0 0 φ i j = 0, i φi,. z i Kähler-Einstein. ω c 1 (), { Ric(ω) ω = 1 h 2π ω ω n = (5.2) ehω ωn Kähler-Einstein Monge-Ampere : ω n φ = e hω φ ω n (5.3) (5.3) Euler-Langrange, Ding F ω (φ) = Fω(φ) 0 log( 1 e hω φ ω n ) (5.4) V F 0 ω.. φ t = tφ. F 0 ω(φ) = 1 V 1 0 dt φ(ω + t φ) n n 1 1 n + 1 ( ) n + 1 = i + 1 n j=i ( ) j i ( ) n + 1 φ i + 2 φ ( φ) i ω n 1 i j 1 n ) = 1 φω n 1 V V i=0 = 1 φω n n 1 ( k φ V V n + 1 i φ ( φ) i ω n 1 i i=0 j=i+1 k=i = 1 φω n n 1 n k ( ) φ V V n + 1 φ k ( ( k=0 j=k+1 i φ) i ω k i ) ω n 1 k i=0 = 1 φω n + 1 n 1 n k φ V V n + 1 φ ωφ k ω n 1 k k=0 = 1 φω n + J ω (φ) (5.5) V 28

41 , J ω (φ) = 1 n 1 n 1 n k φ V n + 1 φ ωφ k ω n 1 k 0 k=0 k=0 F 0 ω(φ) 1 V φω n (5.6) Kähler-Ricci, Tian Kähler-Einstein F ω (φ) P (, ω) properness, [21], [22]. ν ω (φ) F ω (φ) cocycle,. 1 ν ω (φ) = n dt 0 = log ωn φ ω n ωn φ + = F ω (φ) + h ω ω n φ(ric(ω φ ) Ric(ω) + Ric(ω) ω + ω ω φ ) ω n 1 φ h ω (ω n ωφ) n + h ωφ ω n φ φω n φ + F 0 ω(φ) F ω (φ) properness ν ω (φ) properness. Tian[21] properness Kähler- Einstein K-. Donaldson[7] K (, L) test configuration : 1. C 2. C L 3. C π : C, C C. t 0, t = π 1 (t), ( t, L t ) (, L). Tian, L = K 1,, 0. Kähler-Einstein. C 0, v. 0, Ding-Tian[5] Futaki f 0 (c 1 (), v). 5.2 (Tian). (, L) K- (K- ),, test configuration, f 0 (c 1 (L), v) ( ). k, kl C test configuration CP N k, CP N k t, C GL(N k + 1, C) σ(e t ) = e ta k. t = σ(e t )(), 0 = lim t 0 t. (4.15) (4.26) tr(a k ) = D 0 k n+1 + D 1 k n + 29

42 5.2 A k 0 v. tr(a k ) 0. A k = A k tr(a k) N k + 1 I N k +1 σ k (e t ) = exp(ta k ) SL(N k +1, C). M k ( 0 ) 0 CP N k M( 0 )(2.10) (4.16) (4.27) tr(m k ( 0 )A k ) = tr(m k ( 0 )) = k n V = k n n!c 0 µ kl (v)ω n k = k n+1 µ L (v)ω n = k n+1 n!d 0 (2.22) σ k Chow ( [9]) ( w ch (σ k ) = (n + 1)tr(M k ( 0 )A k ) = (n + 1) tr(m k ( 0 )A k ) tr(m ) k( 0 ))tr(a k ) N k + 1 ( ) = (n + 1) k n+1 n!d 0 kn n!d 0 (D 0 k n+1 + D 1 k n + ) C 0 k n + C 1 k n 1 + = (n + 1)!(k n C 1D 0 C 0 D 1 C 0 + ) = (n + 1)k n f 0 (c 1 (L), v) + (5.7) k, Chow, w ch (σ k ) > 0, k >> 1. (5.7) f 0 (c 1 (L), v) Chow K-., Donaldson Aut(, L), Chow. (, L) K-. Chow F (σ) = V F 0 ω F S (φ σ ) 5.2 2V log det(σ), σ GL(N + 1, C)/U(N + 1) N + 1 properness.,. CP N, O(1). O(1) Fubini-Study F S. H 0 (, O(1)) Z α. GL(N + 1, C)/U(N + 1) C N+1. H, {s α } H, s V α = s n!(n+1) α. {Z α } {s α} σ s α = σαz β β, U(N + 1), σ GL(N + 1, C)/U(N + 1), 30

43 det(σ) R. Hilb(H) {(Z α, Z β ) H }, det Hilb(H) = det(σ) 2. {s α } O(1) F S(H), s α 2 F S(H) = s α 2 F S N β=0 s β 2 F S = s α 2 F Se φ H (5.8) φ H = log N s β 2 F S = log β β=0 γ σ γ β Z γ 2 F S = log σ Z 2 Z 2 = φ σ F 0 ω, ω F S ω = Ric(h). F 0 ω F S (h), F (σ) F (H) = V F 0 ω(f S(H)) + Fω(F 0 S(H)) = Fω( 0 log F S(H) ) h V log det H (5.9) N + 1 H F (H), H s α balanced. h = F S(H), h O(1) balanced, Hilb(F S(H )) = H, F S(Hilb(h )) = h (5.10) (5.9) P (, ω). Chow (2.22), (2.20), (4.13) (4.14) Chow θ v (h)ωh n V θ v (B(h) ωh B(h))ωh n N + 1 θ v Kähler, φ t, (4.19) : φ P (, ω), F (φ) = V F 0 ω(φ) + V N + 1 log det Hilb(h φ) Hilb(h φ ) = ( s α, s β ) (N + 1), {s α } H 0 (, L). P (, ω) GL(N + 1, C)/U(N + 1). 5.3 (Donaldson[8]). (1) F (φ) balanced, Bergman B(h φ ). (2) F (φ) F (Hilb(h φ )), F (H) F (F S(H)). (3) balanced F (φ).. (1) (4.19) d dt F (φ) = φωφ n V 1 φ(b(h φ ) φ B(h φ ))ωφ n N + 1 n! = V 1 φ(b(h φ ) ωφ B(h φ ) c)ωφ n N + 1 n! 31

44 5.2, Bergman B(h φ ) c = 1 (B(h φ ) ωφ B(h φ ))ωφ n = V (N + 1)n! V φ F (φ), ωφ (B(h φ ) c) = B(h φ ) c., B(h φ ) = c. h φ balanced. (2) {s α } Hilb(h φ ), s V α = s n!(n+1) α. (5.8) s α 2 F S(Hilb(h φ )) = s α 2 h φ N β=0 s β 2 h φ 1 V ( F (Hilb(h φ )) F (φ)) = Fω 0 φ (F S(Hilb(h φ ))) ( Fω ) 0 1 log( s V α 2 h φ )ωφ n ( (5.6)) α log( 1 s V α 2 h φ ωφ) n ( log ) α 1 = log( s α 2 h (N + 1)n! φ ωφ) n = 0, {s α } H, s V α = s n!(n+1) α. F (F S(H)) F V (H) = (log det Hilb(F S(H)) log det(h)) N V log( s α 2 F S(H) (N + 1)n! ωn F S(H) ) α = V log( 1 s V α 2 F S(H) ωn F S(H) ) = 0, N + 1 Hermitian A, (det A) 1 N+1 tr(a) N + 1 α α 1 tr(a) log det A log N + 1 N + 1 (3) balanced H F, (2) (5.10) F (φ) F (Hilb(h φ )) F (H ) = F (F S(H )) = F (h ) 32

45 L kl, k Chow F k (φ) = V k F 0 kω(kφ) + V k N k + 1 log det Hilb(hk φ) φ t P (, φ), (4.19) Bergman ( 3.1), d dt F k(φ) = k φ(kω φ ) n kn V 1 φ(kb(h k N k + 1 n! φ) ωφ B(h k φ))(kω φ ) n = k n+1 φωφ n V k n V k n + 1SV φ(k n kn S(ω φ)k n + )ωφ n = k n φ(s S)ωφ n + O(k n 1 ) (5.7). Bergman, r, s P (, ω) C s+2 φ, F k (φ) = k n ν ω (φ) + O(k n 1 ) (5.11) 5.3 balanced h k F k (φ). 3.7 (5.11), 5.4 (Donaldson[8]). c 1 (L) ω, Aut(, L), ω K., Kähler, Chen-Tian[3] K-. 33

46 5.2 34

47 A A.1 G, EG BG G. EG. G m. G = EG G = (EG )/G, G BG. A.1. H G() = H ( G ), H G ({pt}) = H (BG), {pt}. de Rham. g G, g. ξ g, ξ ξ (, ξ ξ): ξ (x) = d exp(tξ) x dt t=0 S(g ) = i Sym( i g ) g, A() = m i=0 Γ( i T ). S(g ) A(). α S i (g ) A j (), deg α = 2i + j., G S(g ) A(). α S(g ) A() g A(). g G, ξ g, (g α)(ξ) = (g 1 ) (α(ad g 1ξ)). A.2. S(g ) A() G. α S(g ) A() g G, ξ g, α(ad g 1(ξ)) = g α(ξ). A G (). A.3. (d g α)(ξ) = d(α(ξ)) i ξ α(ξ) =: d ξ (α(ξ)),. deg d g α = deg α + 1. A.1. d g A G (), A G () d 2 g = 0.. α G- (Ad g 1ξ) = (g 1 ) ξ d g α G-. (d 2 gα)(ξ) = (di ξ + i ξ d)α(ξ) = L ξ α(ξ) = 0 (A.1)

48 A.1 (A G, d g ), de Rham, H (A G, d g ) de Rham., Chern-Weil. A.4. G M, M η (basic), (horizontal) G, ξ g, i ξm η = 0, g G, g η = η. A(M) bas. 9. M/G,, M/G M. M, A(M) D = h d, h. (A(M) bas, D) = (A(M/G), d). P B G, θ P, Θ. g G f, f(θ) P, B. Chern-Weil CW : S(g ) G A(P ) bas an invariant polynomial f f(θ), Chern-Weil CW : (S(g ) A()) G (A(P )) bas α h(α(θ)) h. g {ξ i }, θ = θ i ξ i. ξ i P, h : A(P ) A(P ) hor ω i (1 θ i i ξi )ω (A.2) A.2. CW d g = D CW. CW, CW : H (A G (), d g ) H (P G ) (A.3) A.3. (P, B) = (EG, BG), (A.3). A.1. G = S 1, BG = CP, = {pt}. CW : C[t] = H (BG). de Rham.,. A.4. CW (S(g ) A()) G = (A(P )) bas A(P G ) R R π =R S(g ) G CW (A(P )) bas = A(B) (A.4) 36

49 A. α (S(g ) A()) G, (A.2) Θ, h(α(θ)) = α(θ) + β f(θ, Θ), β A() dim. CW (α) = h(α(θ)) = α(θ) = ( α)(θ) = CW ( α) Chern-Weil. A.5. E G, G E, G, x, g G, g x : E x E g x. E E G, g G, g E = E. A.3, (A.1), A.6. S(g ) A(, E) 1, s S(g ) A(, E), ( E g s)(ξ) = E (s(ξ)) i ξ (s(ξ)) =: E g (ξ)(s(ξ)) S(g ) A(, E) 2 R E g (ξ) = ( E g (ξ)) 2 + L E ξ L E ξ, s S(g ) A(, E), (L E ξ s)(x) = d dt t=0 exp( tξ) s(exp(tξ) x) s(x) t A.5. (1) R E g G, R E g (S(g ) A(, End(E))) G. (2) (Bianchi ) [ E g, R E g ] = 0.. (1) R E g (ξ) = ( E g (ξ)) 2 + L E ξ = E,2 [ E, i ξ ] + L E ξ = R E + L E ξ E ξ = R E + µ E (ξ) µ E (ξ) = L E ξ E ξ. R E (A 2 () End(E)) G, µ E (S(g ) End(E)) G, (1). (2) g E = E, g(t) = exp(tξ), t, ξ g, [ E, L E ξ ] = 0. Cartan [i ξ, L T ξ ] = [i ξ, di ξ + i ξ d] = 0. [ E g, R E g ](ξ) = [ E g (ξ), ( E g (ξ)) 2 + L E ξ ] = [ E i ξ, L E ξ ] = 0 37

50 A E G, ξ E ξ. E, ξ ξ. ξ V = ξ ξ, s E x, ξ V (s) = µ E (ξ)(s), Bianchi, ξ g [ E, µ E (ξ)] = i ξ R E (A.5) A.2. (1) (, ω), L, L 1 2π L,2 = ω, G (, L), g G, g L = L, g ω = ω. (A.5) dµ L (ξ) = 2π 1 i ξ ω 1 2π µl : g C (). (A.6) (2) E = T. g G, = T Levi-Civita, L = L T., µ T (ξ) = L ξ ξ = ξ Γ(End(T )) (A.5) ξ = i ξ R Γ(T End(T )) Kähler, J. J, J = 0 RJ = JR Jξ = i ξ RJ (A.7) (, g, J) Ric (1,1),, u, v T, (A.7) Ric(u, v) = 1 1 tr(w R(u, v)jw) 2π 2 1 2π d(div Jξ ) = 2i ξ Ric (A.8) ξ = ξ 1,0 + ξ0,1 T C = T 1,0 T 0,1, div(ξ 1,0 ) + div(ξ0,1 ) = div(ξ ) = 0, (A.8) 1 2π div(ξ 1,0 ) = i ξ 1,0 Ric (A.9) E, EG G E EG G, c(eg G E) H even (EG G ). : c(r E g ) = det(1 + Chern-Weil π RE g )

51 A A.6. c(r E g ) (S(g ) A()) G, H G () G E. Chern-Weil CW (A.3), H even (EG G, R), c(r E g ) c(eg G E) A.2 Bott-Chern Dolbeault, E, rke = r. h E Hermitian. h E E. E h,. E {s i }, h = (h ij ) = ((s i, s j ) h ), E (1,0) : θ = h 1 h E (1,1) Θ = dθ + θ θ = h 1 h h 1 h + h 1 h E = E + E T = T (1,0) + T (0,1), E,2 = 0, E,2 = 0, R E = E E + E E = [ E, E ] (A.10) f k+1 (A) = tr(a k ), A gl(r, C). R E h, f k+1 (h) = tr((r E ) k+1 ). Chern-Weil f k (h) (k, k), H k+1,k+1 () h. h t Hermitian, d dt tr(re,k+1 ) = (k + 1)tr(R E,k [ E, d dt E ]) = k tr(r E,k [ E, h 1 ḣ]) = k tr(r E,k h 1 ḣ) tr(r E,k+1 (h 1 )) tr(r E,k+1 (h 0 )) = (k + 1) 1 0 tr(r E,k h 1 ḣ)dt A.7. (k+1) 1 0 tr(re,k h 1 ḣ)dt h 0 h 1 f k+1 Bott-Chern, f k+1 (h 0, h 1 ). A.7. f n+1 (h 0, h 1 ), h 0 h 1.. h t h 0 h 1 Hermitian, h = h s,t = (1 s)h t + s h t. ḣ 39

52 A.2 BOTT-CHERN DOLBEAULT t. R E, E, E R,,, d ds tr(rn h 1 ḣ) = ntr(r n 1 [, 1 dh [, h ds ]]h 1 ḣ) + tr(r n d ds (h 1 ḣ)) = α + ntr(r n 1 1 dh [, h ds ][, h 1 ḣ]) + tr(r n ( d dh dh (h 1 ) [h 1 dt ds ds, h 1 ḣ])) = α + β ntr(r n 1 1 dh h ds [, [, h 1 ḣ]]) + tr(r n d dh (h 1 dt ds )) tr(rn 1 dh [h ds, h 1 ḣ]) = α + β tr([r n 1 dh h ds, h 1 ḣ]) + ntr(r n 1 1 dh h ds [, [, h 1 ḣ]]) + tr(r n d dh (h 1 dt ds )) = α + β + d dt tr(rn h 1 dh ds ) α = ntr(r n 1 1 dh [, h ds h 1 ḣ]), β = ntr(r n 1 1 dh h [, h 1 ḣ]). ds dh ds t=0 = dh ds t=1 = 0, d 1 tr(r n h 1 ḣ)dt = ds d dt tr(rn 1 dh h ds )dt = 0 Dolbeault. G = Aut(), g = Lie(Aut()). A p, () = Γ( n p,q q=0 T ), A p, G () = S(g ) A p, (). g : α A p, G (), v g, ( g α)(v) = ( i v )α(v) ( i v ) 2 = ( i v + i v ) = 0 (A.11) (A p, G (), g ), Dolbeault, H p, G (). 11. de Rham,, G (A.11). v, v E, v Lie(Aut(, E)),, G g Aut(, E) Lie(Aut(, E)). A.6 E g (v) = E i v, R E g (v) = E,2 g + L E v A.8. R E g (v) = E,2 + L E v E v = R E + µ E (v) (A.12) [ E i v, R E g (v)] = 0 (A.13) 40

53 A. [ E i v, Rg E (v)] = [ E i v, ( E i v ) 2 ] + [ E, L E v ] [i v, L E v ] : [ E i v, ( E i v ) 2 ] = [[ E i v, E i v ], E i v ] [ E i v, E i v ] = [ E i v, E ] = R E E v = ( E i v ) 2 (A.10), v (1,0). 0., v, E. E E. E [ E, L E v ] = 0., Cartan L T = di + id, [i v, L E v ] = (A.12), [ E, R E ] = 0, (A.13) [ E, µ E (v)] = i v R E (A.14), f k+1 (h, v) = tr((r E g (v)) k+1 ) = (k + 1)tr(R E,k µ E (v)) A.9. ( i v )f k+1 (h, v) = 0, f k+1 (h, v) H k,k G () h.. (A.13), [ E i v, (R E g (v)) k ] = 0, ( i v )tr((r E g (v)) k ) = 0. h t Hermitian, E t. (A.12) t, (A.10), R E t = E,2 t = [ E, E t ], E E, d dt RE g (v) = [ E i v, E t ] (A.15) d dt f k+1(h t, v) = (k + 1) tr(ṙe g (v)(rg E (v)) k ) = (k + 1)tr([ E i v, E t ](Rg E (v)) k ) = (k + 1) tr([ E i v, E t (Rg E (v)) k ]) ( (A.13)) = (k + 1) ( i v )tr( E t (R E g (v)) k ) = ( i v )β t (v) A.10. f n+1(h, v) h. F (v). A.11. β A() = Γ( i i T ), ( i v )β = 0. 41

54 A.2 BOTT-CHERN DOLBEAULT. β = n p,q=1 = β p,q, ( i v )β = β n,n 1 i v β n+1,n = dβ n,n 1 = 0 w g = Lie(Aut(, E)), g t = exp(tw), h t = gt h, v t = Ad g 1v, f t n+1 (h t, v) = gt (f(h, v t )).?? F (v) = f n+1 (h t, v) = gt f n+1 (h, v t ) = f n+1 (h, v t ) = F (Ad g 1v) t t A.12. v, w Lie(Aut(, E)), F ([w, v]) = 0. A.3. L Kähler (, ω), h Hermitian 1 Ric(h) = ω, (A.14) 2π 1 2π µ L (v) = i v ω (A.16) µ L (v) θ v. h t = he φt Hermitian, Ric(h t ) = Ric(h) + φ t. (A.15) d 1 1 dt (ω + 2π µl (v)) = 2π ( i v ) φ T Kähler L T v, (A.14) (A.15) v = i v R T 1 2π µ L (v) = i v Ric(ω) (A.17) d 1 dt (Ric(ω) µl (v)) = 2π ( i v ) φ C (, L), S 1 C. S 1 L h, ξ, ξ Killing, v = Jξ+ 1ξ 2 C. ξ 1,0 = 1v. µ L (ξ) = 1µ L (v) (A.18) ( ξ) T 1,0 = 1 v (A.19) (A.6) (A.16), (A.9) (A.17). 42

55 A A.4. CP N, L = H. λ α R, 0 α N, λ 0 e tλ0 A =..., σ(t) = exp(ta) =... λ N A σ(t) C N+1, CP N. A σ(t), CP N v, Z = [Z 0, Z 1,, Z N ], {z α = Z α Z 0 ; α = 1,, N} N v = (λ α λ 0 )z α z α α =1 H CP N, C N+1 CP N, [Z] 1 C Z. σ(t) H, H. Z α H, e tλ N 2 F S H Fubini-Study, 2 F S Hermitian L, σ(e t ) Z α = e tλα Z α L v Z α = λ α Z α Z α 2 F S = Z α 2 N Z β 2 β=0 L v Z α = v(log Z α 2 F S)Z α = N λ β Z β 2 β=0 Z N α + λ α Z α Z β 2 β=0 µ L (v)z α = L L v Z α L v Z α = β λ β Z β 2 β Z β 2 Z α Z α L, µ L (v) = β λ β Z β 2 β Z β 2 (A.20) (A.16) ( ) 1 β 2π λ β Z β 2 β Z = i β 2 v ω F S 43

56 A.2 BOTT-CHERN DOLBEAULT A.2 U(N + 1), CP N u(n + 1) ι : CP N u(n + 1) [Z 0,, Z N ] ( ) Zα Z β 1 Z 2 44

57 [1] Berline, N., Getzler, E., Vergne, M.: Heat kernels and Dirac operators, Springer-Verlag Berlin-Heidelberg-New York, 1992 [2] Chen.: The space of Kähler metrics, J. Diff. Geom., 56 (2000), [3] Chen., Tian, G.: Geometry of Kähler-metrics and holomorphic foliation by discs, preprint, DG/ [4] Dai., Liu K., Ma.: On the asymptotic expansion of Bergman kernel, Preprint, DG/ [5] Ding, W. and Tian, G.: Kähler-Einstein metrics and the generalized Futaki invariants. Invent. Math., 110, (1992) [6] Donaldson, S.: Scalar curvature and projective embeddings I, J. Diff. Geom., 59 (2001), [7] Donaldson, S.: Scalar curvature and stability of toric varieties, J. Diff. Geom., 62 (2002), [8] Donaldson, S.: Scalar curvature and projective embeddings II, Preprint DG/ [9] Donaldson, S.: Lower bounds on the Calabi functional, J. Diff. Geom., 70, (2005), [10] Futaki, A.: An obstruction to the existence of Einstein-Kähler metrics. Invent. Math., 73, (1983) [11] Griffith, P. and Harris J., Principles of algebraic geometry, Wiley, New York, 1978 [12] Lu, Z.: On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch. Amer. J. Math. 122 (2000), no. 2, [13] Lu, Z.: On the Futaki invariants of complete intersections, Duke Math. J., Volume 100, Number 2 (1999), [14] Luo, H.: Geometric criterion for Gieseker-Mumford stability of polarized manifolds. J. Diff. Geom., 49(3), , 1998 [15] Mabuchi, T.: K-energy maps integrating Futaki invariants, Tohoku Math. J., 38, (1986)

58 [16] Matsushima, Y.: Sur la structure du group d homeomorphismes analytiques d une certaine varitie Kaehleriennes. Nagoya Math. J., 11, (1957) [17] Phong, D. and Sturm, J.: Stability, energy functionals and Kähler-Einstein metrics, Preprint DG/ [18] Ruan, W., Canonical coordinates and Bergman metrics, Commun. Anal. Geom., 6, , 1998 [19] Paul, S.T.: Geometric analysis of Chow Mumford stability. Adv. Math., 182(2), , 2004 [20] Tian, G.: On a set of polarised Kähler metrics on algebraic manifolds, J. Diff. Geom., 32 (1990) [21] Tian, G.: Kähler-Einstein metrics with positive scalar curvature, Invent. Math., 137 (1997), 1-37 [22] Tian, G.: Bott-Chern forms and geometric stability, Discrete Contin. Dynam. Systems, 6 (2000), 1-39 [23] Tian, G.: Canonical metrics in Kähler geometry, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, 2000 [24] Zelditch, S.: Szegö kernels and a theorem of Tian, Internat. Math. Res. Notice, 6, , 1998 [25] Zhang, S.: Heights and reductions of semi-stable varieties, Compositio Math. 104, ,

59 ,,,!.,,,,..,,,,,,,,,.,.,..

60 48

61

62 50

Ζ # % & ( ) % + & ) / 0 0 1 0 2 3 ( ( # 4 & 5 & 4 2 2 ( 1 ) ). / 6 # ( 2 78 9 % + : ; ( ; < = % > ) / 4 % 1 & % 1 ) 8 (? Α >? Β? Χ Β Δ Ε ;> Φ Β >? = Β Χ? Α Γ Η 0 Γ > 0 0 Γ 0 Β Β Χ 5 Ι ϑ 0 Γ 1 ) & Ε 0 Α

More information

! # % & ( & # ) +& & # ). / 0 ) + 1 0 2 & 4 56 7 8 5 0 9 7 # & : 6/ # ; 4 6 # # ; < 8 / # 7 & & = # < > 6 +? # Α # + + Β # Χ Χ Χ > Δ / < Ε + & 6 ; > > 6 & > < > # < & 6 & + : & = & < > 6+?. = & & ) & >&

More information

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π ! # % & ( ) + (,. /0 +1, 234) % 5 / 0 6/ 7 7 & % 8 9 : / ; 34 : + 3. & < / = : / 0 5 /: = + % >+ ( 4 : 0, 7 : 0,? & % 5. / 0:? : / : 43 : 2 : Α : / 6 3 : ; Β?? : Α 0+ 1,4. Α? + & % ; 4 ( :. Α 6 4 : & %

More information

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 / ! # %& ( %) & +, + % ) # % % ). / 0 /. /10 2 /3. /!. 4 5 /6. /. 7!8! 9 / 5 : 6 8 : 7 ; < 5 7 9 1. 5 /3 5 7 9 7! 4 5 5 /! 7 = /6 5 / 0 5 /. 7 : 6 8 : 9 5 / >? 0 /.? 0 /1> 30 /!0 7 3 Α 9 / 5 7 9 /. 7 Β Χ9

More information

&! +! # ## % & #( ) % % % () ) ( %

&! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % ,. /, / 0 0 1,! # % & ( ) + /, 2 3 4 5 6 7 8 6 6 9 : / ;. ; % % % % %. ) >? > /,,

More information

WL100014ZW.PDF

WL100014ZW.PDF A Z 1 238 H U 1 92 1 2 3 1 1 1 H H H 235 238 92 U 92 U 1.1 2 1 H 3 1 H 3 2 He 4 2 He 6 3 Hi 7 3 Hi 9 4 Be 10 5 B 2 1.113MeV H 1 4 2 He B/ A =7.075MeV 4 He 238 94 Pu U + +5.6MeV 234 92 2 235 U + 200MeV

More information

3978 30866 4 3 43 [] 3 30 4. [] . . 98 .3 ( ) 06 99 85 84 94 06 3 0 3 9 3 0 4 9 4 88 4 05 5 09 5 8 5 96 6 9 6 97 6 05 7 7 03 7 07 8 07 8 06 8 8 9 9 95 9 0 05 0 06 30 0 .5 80 90 3 90 00 7 00 0 3

More information

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7 !! # & ( ) +,. )/ 0 1, 2 ) 3, 4 5. 6 7 87 + 5 1!! # : ;< = > < < ;?? Α Β Χ Β ;< Α? 6 Δ : Ε6 Χ < Χ Α < Α Α Χ? Φ > Α ;Γ ;Η Α ;?? Φ Ι 6 Ε Β ΕΒ Γ Γ > < ϑ ( = : ;Α < : Χ Κ Χ Γ? Ε Ι Χ Α Ε? Α Χ Α ; Γ ;

More information

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 & ! # % & ( ) % + ),. / & 0 1 + 2. 3 ) +.! 4 5 2 2 & 5 0 67 1) 8 9 6.! :. ;. + 9 < = = = = / >? Α ) /= Β Χ Β Δ Ε Β Ε / Χ ΦΓ Χ Η Ι = = = / = = = Β < ( # % & ( ) % + ),. > (? Φ?? Γ? ) Μ

More information

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9, ! # !! )!!! +,./ 0 1 +, 2 3 4, 23 3 5 67 # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, 2 6 65, 2 6 9, 2 3 9, 2 6 9, 2 6 3 5 , 2 6 2, 2 6, 2 6 2, 2 6!!!, 2, 4 # : :, 2 6.! # ; /< = > /?, 2 3! 9 ! #!,!!#.,

More information

ο HOH 104 31 O H 0.9568 A 1 1 109 28 1.01A ο Q C D t z = ρ z 1 1 z t D z z z t Qz = 1 2 z D z 2 2 Cl HCO SO CO 3 4 3 3 4 HCO SO 2 3 65 2 1 F0. 005H SiO0. 032M 0. 38 T4 9 ( K + Na) Ca 6 0 2 7 27 1-9

More information

& & ) ( +( #, # &,! # +., ) # % # # % ( #

& & ) ( +( #, # &,! # +., ) # % # # % ( # ! # % & # (! & & ) ( +( #, # &,! # +., ) # % # # % ( # Ι! # % & ( ) & % / 0 ( # ( 1 2 & 3 # ) 123 #, # #!. + 4 5 6, 7 8 9 : 5 ; < = >?? Α Β Χ Δ : 5 > Ε Φ > Γ > Α Β #! Η % # (, # # #, & # % % %+ ( Ι # %

More information

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ; ! #! % & ( ) +!, + +!. / 0 /, 2 ) 3 4 5 6 7 8 8 8 9 : 9 ;< 9 = = = 4 ) > (/?08 4 ; ; 8 Β Χ 2 ΔΔ2 4 4 8 4 8 4 8 Ε Φ Α, 3Γ Η Ι 4 ϑ 8 4 ϑ 8 4 8 4 < 8 4 5 8 4 4

More information

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. ! # !! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. #! % & & ( ) # (!! /! / + ) & %,/ #! )!! / & # 0 %#,,. /! &! /!! ) 0+(,, # & % ) 1 # & /. / & %! # # #! & & # # #. ).! & #. #,!! 2 34 56 7 86 9

More information

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! # &!! ) ( +, ., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! 2 2 & & 1 3! 3, 4 45!, 2! # 1 # ( &, 2 &, # 7 + 4 3 ) 8. 9 9 : ; 4 ), 1!! 4 4 &1 &,, 2! & 1 2 1! 1! 1 & 2, & 2 & < )4 )! /! 4 4 &! &,

More information

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02 ! # % & ( ) +, ) %,! # % & ( ( ) +,. / / 01 23 01 4, 0/ / 5 0 , ( 6 7 8! 9! (, 4 : : ; 0.!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ 5 3 3 5 3 1 Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / 3 0 0 / < 5 02 Ν!.! %) / 0

More information

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! ! # # % & ( ) ! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) 0 + 1 %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! # ( & & 5)6 %+ % ( % %/ ) ( % & + %/

More information

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π ! # #! % & ( ) % # # +, % #. % ( # / ) % 0 1 + ) % 2 3 3 3 4 5 6 # 7 % 0 8 + % 8 + 9 ) 9 # % : ; + % 5! + )+)#. + + < ) ( # )# < # # % 0 < % + % + < + ) = ( 0 ) # + + # % )#!# +), (? ( # +) # + ( +. #!,

More information

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % #! # # %! # + 5 + # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % ,9 989 + 8 9 % % % % # +6 # % 7, # (% ) ,,? % (, 8> % %9 % > %9 8 % = ΑΒ8 8 ) + 8 8 >. 4. ) % 8 # % =)= )

More information

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 = !! % & ( & ),,., / 0 1. 0 0 3 4 0 5 3 6!! 7 8 9 8!! : ; < = > :? Α 4 8 9 < Β Β : Δ Ε Δ Α = 819 = Γ 8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε 8 9 0 Μ Ε 8 > 9 8 9 = 8 9 = 819 8 9 =

More information

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5,

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5, # # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( 0 2 3 ( & +. 4 / &1 5, !! & 6 7! 6! &1 + 51, (,1 ( 5& (5( (5 & &1 8. +5 &1 +,,( ! (! 6 9/: ;/:! % 7 3 &1 + ( & &, ( && ( )

More information

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε ! #!! % & ( ) +,. /. 0,(,, 2 4! 6! #!!! 8! &! % # & # &! 9 8 9 # : : : : :!! 9 8 9 # #! %! ; &! % + & + & < = 8 > 9 #!!? Α!#!9 Α 8 8!!! 8!%! 8! 8 Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :!

More information

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α Ε! # % & ( )%! & & + %!, (./ 0 1 & & 2. 3 &. 4/. %! / (! %2 % ( 5 4 5 ) 2! 6 2! 2 2. / & 7 2! % &. 3.! & (. 2 & & / 8 2. ( % 2 & 2.! 9. %./ 5 : ; 5. % & %2 2 & % 2!! /. . %! & % &? & 5 6!% 2.

More information

ii

ii i ii iii iv Abstract This senior project is to use compute simulation to accomplish analysis and synthesis of Cam. The object of these focuses on three major partsthe first one is to establish the mathematical

More information

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, )

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) ! # % & # % ( ) & + + !!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) 6 # / 0 1 + ) ( + 3 0 ( 1 1( ) ) ( 0 ) 4 ( ) 1 1 0 ( ( ) 1 / ) ( 1 ( 0 ) ) + ( ( 0 ) 0 0 ( / / ) ( ( ) ( 5 ( 0 + 0 +

More information

Π Ρ! #! % & #! (! )! + %!!. / 0% # 0 2 3 3 4 7 8 9 Δ5?? 5 9? Κ :5 5 7 < 7 Δ 7 9 :5? / + 0 5 6 6 7 : ; 7 < = >? : Α8 5 > :9 Β 5 Χ : = 8 + ΑΔ? 9 Β Ε 9 = 9? : ; : Α 5 9 7 3 5 > 5 Δ > Β Χ < :? 3 9? 5 Χ 9 Β

More information

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! < ! # % ( ) ( +, +. ( / 0 1) ( 2 1 1 + ( 3 4 5 6 7! 89 : ; 8 < ; ; = 9 ; ; 8 < = 9! ; >? 8 = 9 < : ; 8 < ; ; = 9 8 9 = : : ; = 8 9 = < 8 < 9 Α 8 9 =; %Β Β ; ; Χ ; < ; = :; Δ Ε Γ Δ Γ Ι 8 9 < ; ; = < ; :

More information

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η 1 )/ 2 & +! # % & ( ) +, + # # %. /& 0 4 # 5 6 7 8 9 6 : : : ; ; < = > < # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ #

More information

10384 19020101152519 UDC Rayleigh Quasi-Rayleigh Method for computing eigenvalues of symmetric tensors 2 0 1 3 2 0 1 3 2 0 1 3 2013 , 1. 2. [4], [27].,. [6] E- ; [7], Z-. [15]. Ramara G. kolda [1, 2],

More information

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2 ! # %!% # ( % ) + %, ). ) % %(/ / %/!! # %!! 0 1 234 5 6 2 7 8 )9!2: 5; 1? = 4!! > = 5 4? 2 Α 7 72 1 Α!.= = 54?2 72 1 Β. : 2>7 2 1 Χ! # % % ( ) +,.

More information

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι ! # % & ( ) +,& ( + &. / 0 + 1 0 + 1,0 + 2 3., 0 4 2 /.,+ 5 6 / 78. 9: ; < = : > ; 9? : > Α

More information

koji-13.dvi

koji-13.dvi 26 13 1, 2, 3, 4, 5, 6, 7 1 18 1. xy D D = {(x, y) y 2 x 4 y 2,y } x + y2 dxdy D 2 y O 4 x 2. xyz D D = {(x, y, z) x 1, y x 2, z 1, y+ z x} D 3. [, 1] [, 1] (, ) 2 f (1)

More information

stexb08.dvi

stexb08.dvi B 1 1.1 V N 1 H = p 2 i 2m i 1. Z = β =(k B T ) 1. 1 h 3N N! exp( βh)d p 1 d p N d x 1 x N 2. F ( F = k B T log Z ) 3. ( ) F p = V T 1.2 H μ μh μh N H T 1. Z Z 1 N Z 1 Z 2. F S ( ) F S = T 3. U = F + TS

More information

-2 4 - cr 5 - 15 3 5 ph 6.5-8.5 () 450 mg/l 0.3 mg/l 0.1 mg/l 1.0 mg/l 1.0 mg/l () 0.002 mg/l 0.3 mg/l 250 mg/l 250 mg/l 1000 mg/l 1.0 mg/l 0.05 mg/l 0.05 mg/l 0.01 mg/l 0.001 mg/l 0.01 mg/l () 0.05 mg/l

More information

untitled

untitled arctan lim ln +. 6 ( + ). arctan arctan + ln 6 lim lim lim y y ( ln ) lim 6 6 ( + ) y + y dy. d y yd + dy ln d + dy y ln d d dy, dy ln d, y + y y dy dy ln y+ + d d y y ln ( + ) + dy d dy ln d dy + d 7.

More information

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 = ! # % # & ( ) % # ( +, & % # ) % # (. / ). 1 2 3 4! 5 6 4. 7 8 9 4 : 2 ; 4 < = = 2 >9 3? & 5 5 Α Α 1 Β ΧΔ Ε Α Φ 7 Γ 9Η 8 Δ Ι > Δ / ϑ Κ Α Χ Ε ϑ Λ ϑ 2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ!

More information

( ) (! +)! #! () % + + %, +,!#! # # % + +!

( ) (! +)! #! () % + + %, +,!#! # # % + +! !! # % & & & &! # # % ( ) (! +)! #! () % + + %, +,!#! # # % + +! ! %!!.! /, ()!!# 0 12!# # 0 % 1 ( ) #3 % & & () (, 3)! #% % 4 % + +! (!, ), %, (!!) (! 3 )!, 1 4 ( ) % % + % %!%! # # !)! % &! % () (! %

More information

untitled

untitled 4 y l y y y l,, (, ) ' ( ) ' ( ) y, y f ) ( () f f ( ) (l ) t l t lt l f ( t) f ( ) t l f ( ) d (l ) C f ( ) C, f ( ) (l ) L y dy yd π y L y cosθ, π θ : siθ, π yd dy L [ cosθ cosθ siθ siθ ] dθ π π π si

More information

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ ( ! # %! & (!! ) +, %. ( +/ 0 1 2 3. 4 5 6 78 9 9 +, : % % : < = % ;. % > &? 9! ) Α Β% Χ %/ 3. Δ 8 ( %.. + 2 ( Φ, % Γ Η. 6 Γ Φ, Ι Χ % / Γ 3 ϑκ 2 5 6 Χ8 9 9 Λ % 2 Χ & % ;. % 9 9 Μ3 Ν 1 Μ 3 Φ Λ 3 Φ ) Χ. 0

More information

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+ ! #! &!! # () +( +, + ) + (. ) / 0 1 2 1 3 4 1 2 3 4 1 51 0 6. 6 (78 1 & 9!!!! #!! : ;!! ? &! : < < &? < Α!!&! : Χ / #! : Β??. Δ?. ; ;

More information

PowerPoint 演示文稿

PowerPoint 演示文稿 . ttp://www.reej.com 4-9-9 4-9-9 . a b { } a b { }. Φ ϕ ϕ ϕ { } Φ a b { }. ttp://www.reej.com 4-9-9 . ~ ma{ } ~ m m{ } ~ m~ ~ a b but m ~ 4-9-9 4 . P : ; Φ { } { ϕ ϕ a a a a a R } P pa ttp://www.reej.com

More information

A Thesis in Applied Mathematics Surface of second degree in 3-Minkowski space b Sun Yan Supervisor: Professor Liu Huili Northeastern Universit Decembe

A Thesis in Applied Mathematics Surface of second degree in 3-Minkowski space b Sun Yan Supervisor: Professor Liu Huili Northeastern Universit Decembe UDC Minkowski 3 4..7 3 A Thesis in Applied Mathematics Surface of second degree in 3-Minkowski space b Sun Yan Supervisor: Professor Liu Huili Northeastern Universit December 3 : - I - Minkowski Minkowski

More information

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ ! # % & & ( ) +, %. % / 0 / 2 3! # 4 ) 567 68 5 9 9 : ; > >? 3 6 7 : 9 9 7 4! Α = 42 6Β 3 Χ = 42 3 6 3 3 = 42 : 0 3 3 = 42 Δ 3 Β : 0 3 Χ 3 = 42 Χ Β Χ 6 9 = 4 =, ( 9 6 9 75 3 6 7 +. / 9

More information

AU = U λ c 2 c 3 c n C C n,, n U 2 U2 C U 2 = B = b 22 b 23 b 2n b 33 b 3n b nn U = U ( U 2, U AU = = = ( ( U 2 U 2 U AU ( U2 λ λ d 2 d 3 d n b 22 b 2

AU = U λ c 2 c 3 c n C C n,, n U 2 U2 C U 2 = B = b 22 b 23 b 2n b 33 b 3n b nn U = U ( U 2, U AU = = = ( ( U 2 U 2 U AU ( U2 λ λ d 2 d 3 d n b 22 b 2 Jordan, A m? (264(, A A m, A (, P P AP = D, A m = P D m P, P AP 837, Jacobi (, ( Jacobi,, Schur 24 Cayley-Hamilton 25,, A m Schur Jordan 26 Schur : 3 (Schur ( A C n n, U U AU = B, (3 B A n n =, n, n λ

More information

Introduction to Hamilton-Jacobi Equations and Periodic Homogenization

Introduction to Hamilton-Jacobi Equations  and Periodic Homogenization Introduction to Hamilton-Jacobi Equations and Periodic Yu-Yu Liu NCKU Math August 22, 2012 Yu-Yu Liu (NCKU Math) H-J equation and August 22, 2012 1 / 15 H-J equations H-J equations A Hamilton-Jacobi equation

More information

: ; # 7 ( 8 7

: ; # 7 ( 8 7 (! # % & ( ) +,. / +. 0 0 ) 1. 2 3 +4 1/,5,6 )/ ) 7 7 8 9 : ; 7 8 7 # 7 ( 8 7 ; ;! #! % & % ( # ) % + # # #, # % + &! #!. #! # # / 0 ( / / 0! #,. # 0(! #,. # 0!. # 0 0 7 7 < = # ; & % ) (, ) ) ) ) ) )!

More information

Ψ! Θ! Χ Σ! Υ Χ Ω Σ Ξ Ψ Χ Ξ Ζ Κ < < Κ Ζ [Ψ Σ Ξ [ Σ Ξ Χ!! Σ > _ Κ 5 6!< < < 6!< < α Χ Σ β,! Χ! Σ ; _!! Χ! Χ Ζ Σ < Ω <!! ; _!! Χ Υ! Σ!!!! ββ /β χ <

Ψ! Θ! Χ Σ! Υ Χ Ω Σ Ξ Ψ Χ Ξ Ζ Κ < < Κ Ζ [Ψ Σ Ξ [ Σ Ξ Χ!! Σ > _ Κ 5 6!< < < 6!< < α Χ Σ β,! Χ! Σ ; _!! Χ! Χ Ζ Σ < Ω <!! ; _!! Χ Υ! Σ!!!! ββ /β χ < ! # %!! ( (! +,. /0 0 1 2,34 + 5 6 7,3. 7, 8, 2 7 + 1 9 #. 3 : + ; + 5 83 8 % 8 2 ; , 1 1 8 2 =? : + 2 = 2 = Α 1,!. Β 3 + 5 Χ Β Β

More information

untitled

untitled 6.1 ( ) 6.1.1 1. θ (6-1) θ (V w ) V S w (6-) S w (V ) θ n S w 1 θ ns w (6-3) 179 6-1 ( ) ( ) p c pc = pa pw (6-4) p p 1135Pa( a ) p c p w w p a = (6-5) ( ) 6-6 γ pc pw h = = (6-7) c γ γ ψ ψ = pw γ > (6-8)

More information

é SI 12g C = 6 12 = 1 H2( g) + O2( g) H2O( l) + 286kJ ( 1) 2 1 1 H 2( g) + O2( g) H2O( l) H = 286kJ mol ( 2) 2 1 N 2 ( g) + O2( g) NO 2 ( g) 34kJ 2 1 1 N 2 ( g) + O2( g) NO 2 ( g) H = + 34kJ mol 2 1 N

More information

微积分 授课讲义

微积分 授课讲义 2018 10 aiwanjun@sjtu.edu.cn 1201 / 18:00-20:20 213 14:00-17:00 I II Taylor : , n R n : x = (x 1, x 2,..., x n ) R; x, x y ; δ( ) ; ; ; ; ; ( ) ; ( / ) ; ; Ů(P 1,δ) P 1 U(P 0,δ) P 0 Ω P 1: 1.1 ( ). Ω

More information

& &((. ) ( & ) 6 0 &6,: & ) ; ; < 7 ; = = ;# > <# > 7 # 0 7#? Α <7 7 < = ; <

& &((. ) ( & ) 6 0 &6,: & ) ; ; < 7 ; = = ;# > <# > 7 # 0 7#? Α <7 7 < = ; < ! # %& ( )! & +, &. / 0 # # 1 1 2 # 3 4!. &5 (& ) 6 0 0 2! +! +( &) 6 0 7 & 6 8. 9 6 &((. ) 6 4. 6 + ( & ) 6 0 &6,: & )6 0 3 7 ; ; < 7 ; = = ;# > 7 # 0 7#? Α

More information

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P.

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P. () * 3 6 6 3 9 4 3 5 8 6 : 3. () ; () ; (3) (); (4) ; ; (5) ; ; (6) ; (7) (); (8) (, ); (9) ; () ; * Email: huangzh@whu.edu.cn . () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) :

More information

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ ! # % & ( ) +,. / 0 1 + 2. 3 4. 56. / 7 89 8.,6 2 ; # ( ( ; ( ( ( # ? >? % > 64 5 5Α5. Α 8/ 56 5 9. > Β 8. / Χ 8 9 9 5 Δ Ε 5, 9 8 2 3 8 //5 5! Α 8/ 56/ 9. Φ ( < % < ( > < ( %! # ! Β Β? Β ( >?? >?

More information

No. : Bloch 683 µ, Bloch B ω B µ Bloch B ω,0 B µ,0,. Bloch Bloch [6 10]. [5] D n, Bloch Bloch., C,.,. ).1 f B log U n ), f + n ) f Blog., z > 1 e e =

No. : Bloch 683 µ, Bloch B ω B µ Bloch B ω,0 B µ,0,. Bloch Bloch [6 10]. [5] D n, Bloch Bloch., C,.,. ).1 f B log U n ), f + n ) f Blog., z > 1 e e = Vol. 38 018 ) No. J. of Math. PRC) Bloch,,, 310018) : C n Bloch Bloch.,, Bloch. : ; Bloch ; ; ; MR010) : 7B38; 7B33 : O17.56 : A : 055-7797018)0-068-11 1 U n = {z = z 1, z,, z n ) : z i < 1, i = 1,,, n}

More information

UDC

UDC CECS 102:2002 Technical specification for steed structure of light-eight Buildings ith gabled frames 2003 1 Technical specification for steed structure of light-eight Buildings ith gabled frames CECS102:2002

More information

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ ! % & ( ),. / & 0 1 & 2 1 // % & 3 0 4 5 ( 6( ) ( & 7 8 9:! ; < / 4 / 7 = : > : 8 > >? :! 0 1 & 7 8 Α :! 4 Β ( & Β ( ( 5 ) 6 Χ 8 Δ > 8 7:?! < 2 4 & Ε ; 0 Φ & % & 3 0 1 & 7 8 Α?! Γ ), Η % 6 Β% 3 Ι Β ϑ Ι

More information

) ) ) Ο ΛΑ >. & Β 9Α Π Ν6 Γ2 Π6 Φ 2 Μ 5 ΝΒ 8 3 Β 8 Η 5 Φ6 Β 8 Η 5 ΝΒ 8 Φ 9 Α Β 3 6 ΝΒ 8 # # Ε Ο ( & & % ( % ) % & +,. &

) ) ) Ο ΛΑ >. & Β 9Α Π Ν6 Γ2 Π6 Φ 2 Μ 5 ΝΒ 8 3 Β 8 Η 5 Φ6 Β 8 Η 5 ΝΒ 8 Φ 9 Α Β 3 6 ΝΒ 8 # # Ε Ο ( & & % ( % ) % & +,. & !! # % & ( ) +,.% /.0.% 1 2 3 / 5,,3 6 7 6 8 9 6!! : 3 ) ; < < = )> 2?6 8 Α8 > 6 2 Β 3Α9 Α 2 8 Χ Δ < < Ε! ; # < # )Φ 5 Γ Γ 2 96 Η Ι ϑ 0 Β 9 Α 2 8 Β 3 0 Β 9 Β ΦΚ Α 6 8 6 6 Λ 2 5 8 Η Β 9 Α 2 8 2 Μ 6 Ν Α

More information

7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ;

7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ; ! #! % & % ( ) ( +, & %. / & % 0 12 / 1 4 5 5! 6 7 8 7 # 8 7 9 6 8 7! 8 7! 8 7 8 7 8 7 8 7 : 8 728 7 8 7 8 7 8 7 8 7 & 8 7 4 8 7 9 # 8 7 9 ; 8 ; 69 7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β

More information

Chinese Journal of Applied Probability and Statistics Vol.25 No.4 Aug (,, ;,, ) (,, ) 应用概率统计 版权所有, Zhang (2002). λ q(t)

Chinese Journal of Applied Probability and Statistics Vol.25 No.4 Aug (,, ;,, ) (,, ) 应用概率统计 版权所有, Zhang (2002). λ q(t) 2009 8 Chinese Journal of Applied Probability and Statistics Vol.25 No.4 Aug. 2009,, 541004;,, 100124),, 100190), Zhang 2002). λ qt), Kolmogorov-Smirov, Berk and Jones 1979). λ qt).,,, λ qt),. λ qt) 1,.

More information

第9章 排队论

第9章  排队论 9, 9. 9.. Nt () [, t] t Nt () { Nt ( ) t [, T]} t< t< t< t + N ( ( t+ ) i+ N( t) i, N( t) i,, N( t) i N + + N ( ( t ) i ( t ) i ) (9-) { Nt ( ) t [, T)} 9- t t + t, t,, t t t { Nt ( ) t [, T] } t< t,,

More information

1 1 (a) (b) (c) (d) (e) 9 3 4 5 7 1 7 4 2 0 10 4 1 0 6 2 2 7 3 5 4 0 11 4 1 6 7 3 4 2 6 1 12 3 2 6 4 4 7 7 4 0 13 0 3 2 7 5 2 5 7 0 14 2 4 6 0 6 7 2 0 0 15 3 6 5 1 0 7 6 2 5 1 16 4 4 6 0 8 1 2 4 6 17 4

More information

: 29 : n ( ),,. T, T +,. y ij i =, 2,, n, j =, 2,, T, y ij y ij = β + jβ 2 + α i + ɛ ij i =, 2,, n, j =, 2,, T, (.) β, β 2,. jβ 2,. β, β 2, α i i, ɛ i

: 29 : n ( ),,. T, T +,. y ij i =, 2,, n, j =, 2,, T, y ij y ij = β + jβ 2 + α i + ɛ ij i =, 2,, n, j =, 2,, T, (.) β, β 2,. jβ 2,. β, β 2, α i i, ɛ i 2009 6 Chinese Journal of Applied Probability and Statistics Vol.25 No.3 Jun. 2009 (,, 20024;,, 54004).,,., P,. :,,. : O22... (Credibility Theory) 20 20, 80. ( []).,.,,,.,,,,.,. Buhlmann Buhlmann-Straub

More information

Φ2,.. + Φ5Β( 31 (+ 4, 2 (+, Η, 8 ( (2 3.,7,Χ,) 3 :9, 4 (. 3 9 (+, 52, 2 (1 7 8 ΙΜ 12 (5 4 5? ), 7, Χ, ) 3 :9, 4( > (+,,3, ( 1 Η 34 3 )7 1 )? 54

Φ2,.. + Φ5Β( 31 (+ 4, 2 (+, Η, 8 ( (2 3.,7,Χ,) 3 :9, 4 (. 3 9 (+, 52, 2 (1 7 8 ΙΜ 12 (5 4 5? ), 7, Χ, ) 3 :9, 4( > (+,,3, ( 1 Η 34 3 )7 1 )? 54 !! # %& ( ) +, ( ),./0 12,2 34 (+,, 52, 2 (67 8 3., 9: ), ; 5, 4, < 5) ( (, 2 (3 3 1 6 4, (+,,3,0 ( < 58 34 3 )7 1 54 5, 2 2 54, +,. 2 ( :5 ( > 4 ( 37 1, ( 3 4 5? 3 1 (, 9 :), ; 5 4 )1 7 4 )3 5( 34 2 Α

More information

3 = 4 8 = > 8? = 6 + Α Β Χ Δ Ε Φ Γ Φ 6 Η 0 Ι ϑ ϑ 1 Χ Δ Χ ΦΚ Δ 6 Ε Χ 1 6 Φ 0 Γ Φ Γ 6 Δ Χ Γ 0 Ε 6 Δ 0 Ι Λ Χ ΦΔ Χ & Φ Μ Χ Ε ΝΓ 0 Γ Κ 6 Δ Χ 1 0

3 = 4 8 = > 8? = 6 + Α Β Χ Δ Ε Φ Γ Φ 6 Η 0 Ι ϑ ϑ 1 Χ Δ Χ ΦΚ Δ 6 Ε Χ 1 6 Φ 0 Γ Φ Γ 6 Δ Χ Γ 0 Ε 6 Δ 0 Ι Λ Χ ΦΔ Χ & Φ Μ Χ Ε ΝΓ 0 Γ Κ 6 Δ Χ 1 0 / 0 1 0 3!! # % & ( ) ( + % & ( ) &, % &., 45 6!! 7 4 8 4 8 9 : ;< 4 8 3!, 3 9!! 4 8 ; ; 7 3 = 4 8 = > 8? 6 10 1 4 8 = 6 + Α Β Χ Δ Ε Φ Γ Φ 6 Η 0 Ι ϑ ϑ 1 Χ Δ Χ ΦΚ Δ 6 Ε Χ 1 6 Φ 0 Γ Φ Γ 6 Δ Χ Γ 0 Ε 6 Δ 0

More information

Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3 Ε Φ Γ ΕΙΙ 3 Χ 3 Φ 4 Κ? 4 3 Χ Λ Μ 3 Γ Ε Φ ) Μ Ε Φ? 5 : < 6 5 % Λ < 6 5< > 6! 8 8 8! 9 9 9! 9 =! = 9!

Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3 Ε Φ Γ ΕΙΙ 3 Χ 3 Φ 4 Κ? 4 3 Χ Λ Μ 3 Γ Ε Φ ) Μ Ε Φ? 5 : < 6 5 % Λ < 6 5< > 6! 8 8 8! 9 9 9! 9 =! = 9! # %!!! ( ) ( +, +. ( / 0 1) ( 21 1) ( 2 3 / 4!! 5 6 7 7! 8 8 9 : ; < 9 = < < :! : = 9 ; < = 8 9 < < = 9 8 : < >? % > % > % 8 5 6 % 9!9 9 : : : 9 Α % 9 Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3

More information

untitled

untitled 4 6 4 4 ( n ) f( ) = lim n n +, f ( ) = = f( ) = ( ) ( n ) f( ) = lim = lim n = = n n + n + n f ( ), = =,, lim f ( ) = lim = f() = f ( ) y ( ) = t + t+ y = t t +, y = y( ) dy dy dt t t = = = = d d t +

More information

υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ è é é è υυ ν ε ε è α α α α α α α α α τ E h L. ν = λ = h p Ξ v k ν pe nµ Λ ν µ ν µ ε µ π ~ n p n np ~ π N Ξ + p n o o Λ Ξ Ξ SU 3

More information

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9 !! #! % & ( ) +,. / 0 1 2 34 5 6 % & +7 % & 89 % & % & 79 % & : % & < < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ

More information

u -, θ = 0, k gu = 2 ln E v, v -, θ = π 2, k gv = dθ 2 E. 2. r(u, v) = {a cos u cos v, a cos u sin v, a sin u} k g = sin u dv, θ. E = a 2, F = 0, = a

u -, θ = 0, k gu = 2 ln E v, v -, θ = π 2, k gv = dθ 2 E. 2. r(u, v) = {a cos u cos v, a cos u sin v, a sin u} k g = sin u dv, θ. E = a 2, F = 0, = a 202.. : r = r(u, v) u v, dv = 0, = 0, = ; E dv =. ( k gu = Γ 2 k gv = Γ 22 ( dv ) 3 E F E F 2 = Γ 2 2 E E, ) 3 E F 2 = Γ 22 E F 2., F = 0 E F k gu = Γ 2 2 E E = 2EF u EE v + F E u E F 2 2(E F 2 ) E E =

More information

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α # % & ( ) # +,. / 0 1 2 /0 1 0 3 4 # 5 7 8 / 9 # & : 9 ; & < 9 = = ;.5 : < 9 98 & : 9 %& : < 9 2. = & : > 7; 9 & # 3 2

More information

834 Vol G = (V, E), u V = V (G), N(u) = {x x V (G), x u } N (u) = {u} N(u) u. 2.2 F, u V (G), G u N (u) F [10 11], G F -., G m F -, u V (G), G

834 Vol G = (V, E), u V = V (G), N(u) = {x x V (G), x u } N (u) = {u} N(u) u. 2.2 F, u V (G), G u N (u) F [10 11], G F -., G m F -, u V (G), G Vol. 37 ( 2017 ) No. 4 J. of Math. (PRC) 1, 1, 1, 2 (1., 400065) (2., 400067) :, Erdös Harary Klawe s.,,,. : ; ; ; MR(2010) : 05C35; 05C60; 05C75 : O157.5 : A : 0255-7797(2017)04-0833-12 1 1980, Erdös,

More information

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ ! # % & ( ) % + ( ), & ). % & /. % 0 1!! 2 3 4 5# 6 7 8 3 5 5 9 # 8 3 3 2 4 # 3 # # 3 # 3 # 3 # 3 # # # ( 3 # # 3 5 # # 8 3 6 # # # # # 8 5# :;< 6#! 6 =! 6 > > 3 2?0 1 4 3 4! 6 Α 3 Α 2Η4 3 3 2 4 # # >

More information

365 1 4 29 499 940 91 5 16 23 11 16 29 43 81 3 3 4 365 1 4 21 1 4 10 730 = 31466. 10 232 29 773 1457 20 4 365 145 589 1825 7 3.1 47 1825 7 47 27 3303 104 5969 1488

More information

Ⅰ Ⅱ 1 2 Ⅲ Ⅳ

Ⅰ Ⅱ 1 2 Ⅲ Ⅳ Ⅰ Ⅱ 1 2 Ⅲ Ⅳ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

14.dvi

14.dvi ASIAN J. MATH. c 2004 International Press Vol. 8, No., pp. 039 050, March 2004 003 THE EINSTEIN-KÄHLER METRIC WITH EXPLICIT FORMULAS ON SOME NON-HOMOGENEOUS DOMAINS AN WANG, WEIPING YIN, LIYOU ZHANG, AND

More information

《分析化学辞典》_数据处理条目_1.DOC

《分析化学辞典》_数据处理条目_1.DOC 3 4 5 6 7 χ χ m.303 B = f log f log C = m f = = m = f m C = + 3( m ) f = f f = m = f f = n n m B χ α χ α,( m ) H µ σ H 0 µ = µ H σ = 0 σ H µ µ H σ σ α H0 H α 0 H0 H0 H H 0 H 0 8 = σ σ σ = ( n ) σ n σ /

More information

3 4 Ψ Ζ Ζ [, Β 7 7>, Θ0 >8 : Β0 >, 4 Ε2 Ε;, ] Ε 0, 7; :3 7;,.2.;, _ & αε Θ:. 3 8:,, ), β & Φ Η Δ?.. 0?. χ 7 9 Ε >, Δ? Β7 >7 0, Τ 0 ΚΚ 0 χ 79 Ε >, Α Ε

3 4 Ψ Ζ Ζ [, Β 7 7>, Θ0 >8 : Β0 >, 4 Ε2 Ε;, ] Ε 0, 7; :3 7;,.2.;, _ & αε Θ:. 3 8:,, ), β & Φ Η Δ?.. 0?. χ 7 9 Ε >, Δ? Β7 >7 0, Τ 0 ΚΚ 0 χ 79 Ε >, Α Ε (! # # %& ) +,./ 0 & 0 1 2 / & %&( 3! # % & ( ) & +, ), %!,. / 0 1 2. 3 4 5 7 8 9 : 0 2; < 0 => 8?.. >: 7 2 Α 5 Β % Χ7 Δ.Ε8 0Φ2.Γ Φ 5 Η 8 0 Ι 2? : 9 ϑ 7 ϑ0 > 2? 0 7Ε 2?. 0. 2 : Ε 0 9?: 9 Κ. 9 7Λ /.8 720

More information

! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ! 7 7 Δ Δ 2! Χ Δ = Χ! Δ!! =! ; 9 7 Χ Χ Χ <? < Χ 8! Ε (9 Φ Γ 9 7! 9 Δ 99 Φ Γ Χ 9 Δ 9 9 Φ Γ = Δ 9 2

! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ! 7 7 Δ Δ 2! Χ Δ = Χ! Δ!! =! ; 9 7 Χ Χ Χ <? < Χ 8! Ε (9 Φ Γ 9 7! 9 Δ 99 Φ Γ Χ 9 Δ 9 9 Φ Γ = Δ 9 2 ! # % ( % ) +,#./,# 0 1 2 / 1 4 5 6 7 8! 9 9 : ; < 9 9 < ; ?!!#! % ( ) + %,. + ( /, 0, ( 1 ( 2 0% ( ),..# % (., 1 4 % 1,, 1 ), ( 1 5 6 6 # 77 ! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ!

More information

; < 5 6 => 6 % = 5

; < 5 6 => 6 % = 5 ! # % ( ),,. / 0. 1, ) 2 3, 3+ 3 # 4 + % 5 6 67 5 6, 8 8 5 6 5 6 5 6 5 6 5 6 5 9! 7 9 9 6 : 6 ; 7 7 7 < 5 6 => 6 % = 5 Δ 5 6 ; Β ;? # Ε 6 = 6 Α Ε ; ; ; ; Φ Α Α Ε 0 Α Α Α Α Α Α Α Α Α Α Α Α Α Β Α Α Α Α Α

More information

! # %! #! #! # % + &, % % ) %. /! # 0 1

! # %! #! #! # % + &, % % ) %. /! # 0 1 ! # %! #! #! # % + &, % % ) %. /! # 0 1 2 32 % 4! #! # 4 4 2 32 4 4! # 2 32 ! # % 2 5 2 32 % % 6 2 7 8 %! 6 # %3 3 9 % /, 9 % 2 % % 3 #7 9 % 2 8 7 2 % 3 7 7 7 8 7 7 7 7 3 9 8 8 % 3! # 7 12 1191 1 ; % %

More information

# #! ) ( ( +,! %,! ( # # %& % ( ) +! +, +. /

# #! ) ( ( +,! %,! ( # # %& % ( ) +! +, +. / ! ( ) # # % % ( % % %! % % & % # #! ) ( ( +,! %,! ( # # %& % ( ) +! +, +. / 12 23 4 5 6 7 3.! (. ( / ( ) ). 1.12 ( 4 4 % & &!7 % (!!!!, (! % !!! % %!,! ( & (!! 8!!!,!!+!! & !!%! & 9 3 3 :;

More information

Fragmentation Functions: One to Three Shu-yi Wei Advisor: Prof. Zuo-tang Liang Inclusive: Y.K. Song, Z.T. Liang, Phys.Rev.D89,(2014) Semi-inculs

Fragmentation Functions: One to Three Shu-yi Wei Advisor: Prof. Zuo-tang Liang Inclusive: Y.K. Song, Z.T. Liang, Phys.Rev.D89,(2014) Semi-inculs Fragmentation Functions: One to Three Shu-yi Wei Advisor: Prof. Zuo-tang Liang Inclusive: Y.K. Song, Z.T. Liang, Phys.Rev.D89,(2014)014024 Semi-inculsive: K.B. Chen, Y.K. Song, Z.T. Liang, arxiv:1410.4314

More information

9 : : ; 7 % 8

9 : : ; 7 % 8 ! 0 4 1 % # % & ( ) # + #, ( ) + ) ( ). / 2 3 %! 5 6 7! 8 6 7 5 9 9 : 6 7 8 : 17 8 7 8 ; 7 % 8 % 8 ; % % 8 7 > : < % % 7! = = = : = 8 > > ; 7 Ε Β Β % 17 7 :! # # %& & ( ) + %&, %& ) # 8. / 0. 1 2 3 4 5

More information

( )... ds.....

( )... ds..... ...... 3.1.. 3.1.. 3.1: 1775. g a m I a = m G g, (3.1) m I m G. m G /m I. m I = m G (3.2)............. 1 2............ 4.................. 4 ( )... ds..... 3.2 3 3.2 A B. t x. A B. O. t = t 0 A B t......

More information

Ρ 2 % Ε Φ 1 Φ Δ 5 Γ Η Ε Ι ϑ 1 Κ Δ ϑ Ι 5 Δ Ε Κ Β 1 2 Ι 5 Κ Ι 78 Χ > > = > Λ= =!? Λ Λ!???!? Λ?? Χ # > Λ= = >?= =!? Λ?!?!? Λ Λ Α =? Α &<&. >!= = = = = Α

Ρ 2 % Ε Φ 1 Φ Δ 5 Γ Η Ε Ι ϑ 1 Κ Δ ϑ Ι 5 Δ Ε Κ Β 1 2 Ι 5 Κ Ι 78 Χ > > = > Λ= =!? Λ Λ!???!? Λ?? Χ # > Λ= = >?= =!? Λ?!?!? Λ Λ Α =? Α &<&. >!= = = = = Α !! # % # & ( & ) # +, #./. # 0 1 2 / 1 4 5 5!! 6 7 8 9 : ; < => : : >? = ; 7 8 1 5 Α > /? > > = ; 25Β > : ; Χ 2! : ; Χ 2 Χ < Δ : ; Χ < # > : ; # & < > : ; & < & 2 > : ; & 2 6 9!!= 2 Ρ 2 % Ε Φ 1 Φ Δ 5 Γ

More information

第一章.doc

第一章.doc = c < < + + = S = c( ) = k =, k =,,, Λ < < + = 4 = = = = 4 k = k =,,, Λ X R X X = f () X X = f ( ) k = + k =,,, Λ = f () X X f ( ) = = = = n n = an + an +... + a + a a n =a +a +a = a + a + a a n f ( )

More information

: Π Δ 9 Δ 9 Δ 9 7 Θ Μ 9 8 Ρ Σ # = Μ 0 ; 9 < = 5 Λ 6 # = = # Μ Μ 7 Τ Μ = < Μ Μ Ο = Ρ # Ο Ο Ο! Ο 5 6 ;9 5 5Μ Ο 6

: Π Δ 9 Δ 9 Δ 9 7 Θ Μ 9 8 Ρ Σ # = Μ 0 ; 9 < = 5 Λ 6 # = = # Μ Μ 7 Τ Μ = < Μ Μ Ο = Ρ # Ο Ο Ο! Ο 5 6 ;9 5 5Μ Ο 6 ! # % # & ( ) +, #,. # / 0. 0 2 3 4! 5 6 5 6 7 8 5 6 5 6 8 9 : # ; 9 < = 8 = > 5 0? 0 Α 6 Β 7 5ΧΔ ΕΦ 9Γ 6 Η 5+3? 3Ι 3 ϑ 3 6 ΗΚ Η Λ!Κ Η7 Μ ΒΜ 7 Ν!! Ο 8 8 5 9 6 : Π 5 6 8 9 9 5 6 Δ 9 Δ 9 Δ 9 7 Θ Μ 9 8 Ρ

More information

% % %/ + ) &,. ) ) (!

% % %/ + ) &,. ) ) (! ! ( ) + & # % % % %/ + ) &,. ) ) (! 1 2 0 3. 34 0 # & 5 # #% & 6 7 ( ) .)( #. 8!, ) + + < ; & ; & # : 0 9.. 0?. = > /! )( + < 4 +Χ Α # Β 0 Α ) Δ. % ΕΦ 5 1 +. # Ι Κ +,0. Α ϑ. + Ι4 Β Η 5 Γ 1 7 Μ,! 0 1 0

More information

32 G; F ; (1) {X, X(i), i = 1, 2,..., X, (2) {M(t), t α Poisson, t ; (3) {Y, Y (i), i = 1, 2,..., Y, (4) {N(t), t β Poisson, t ; (5) {W (t), t, σ ; (6

32 G; F ; (1) {X, X(i), i = 1, 2,..., X, (2) {M(t), t α Poisson, t ; (3) {Y, Y (i), i = 1, 2,..., Y, (4) {N(t), t β Poisson, t ; (5) {W (t), t, σ ; (6 212 2 Chinese Journal of Applied Probability and Statistics Vol.28 No.1 Feb. 212 Poisson ( 1,, 211; 1 2,3 2 2,, 2197) ( 3,, 2197) Poisson,,.,. : :,,,,. O211.9. 1., ( 1 6]). 4] Cai Poisson,, 6] Fang Luo

More information

Γ Ν Ν, 1 Ο ( Π > Π Θ 5?, ΔΓ 2 ( ΜΡ > Σ 6 = Η 1 Β Δ 1 = Δ Ι Δ 1 4 Χ ΓΗ 5 # Θ Γ Τ Δ Β 4 Δ 4. > 1 Δ 4 Φ? < Ο 9! 9 :; ;! : 9!! Υ9 9 9 ; = 8; = ; =

Γ Ν Ν, 1 Ο ( Π > Π Θ 5?, ΔΓ 2 ( ΜΡ > Σ 6 = Η 1 Β Δ 1 = Δ Ι Δ 1 4 Χ ΓΗ 5 # Θ Γ Τ Δ Β 4 Δ 4. > 1 Δ 4 Φ? < Ο 9! 9 :; ;! : 9!! Υ9 9 9 ; = 8; = ; = ! 0 1 # & ( & ) +! &,. & /.#. & 2 3 4 5 6 7 8 9 : 9 ; < = : > < = 9< 4 ; < = 1 9 ; 3; : : ; : ;? < 5 51 ΑΒ Χ Δ Ε 51 Δ!! 1Φ > = Β Γ Η Α ΒΧ Δ Ε 5 11!! Ι ϑ 5 / Γ 5 Κ Δ Ε Γ Δ 4 Φ Δ Λ< 5 Ε 8 Μ9 6 8 7 9 Γ Ν

More information

Β Χ + Δ Ε /4 10 ) > : > 8 / 332 > 2 / 4 + Φ + Γ 0 4 Η / 8 / 332 / 2 / 4 + # + Ι + ϑ /) 5 >8 /3 2>2 / 4 + ( )( + 8 ; 8 / 8. 8 :

Β Χ + Δ Ε /4 10 ) > : > 8 / 332 > 2 / 4 + Φ + Γ 0 4 Η / 8 / 332 / 2 / 4 + # + Ι + ϑ /) 5 >8 /3 2>2 / 4 + ( )( + 8 ; 8 / 8. 8 : !! # % & % () + (. / 0 ) 1 233 /. / 4 2 0 2 + + 5. 2 / 6 ) 6. 0 ) 7. 8 1 6 / 2 9 2 :+ ; < 8 10 ; + + ( =0 41 6< / >0 7 0?2) 29 + +.. 81 6> Α 29 +8 Β Χ + Δ Ε /4 10 )+ 2 +. 8 1 6 > 2 9 2 : > 8 / 332 > 2

More information

B = F Il 1 = 1 1 φ φ φ B = k I r F Il F k I 2 = l r 2 10 = k 1 1-7 2 1 k = 2 10-7 2 B = ng Il. l U 1 2 mv = qu 2 v = 2qU m = 2 19 3 16. 10 13. 10 / 27 167. 10 5 = 5.0 10 /. r = m ν 1 qb r = m ν qb

More information

1984 1985 2130 1006 366 405 379 324 4601 2327 1169 524 555 440 361 5376 1984 51.4 31.8 56.2 2.6 45.4 28.3 29.8 16.7 44.2 34.9 665.4 10.1 1989 1990 1991 1992 1993 121.1 124.5 116.0 117.9 130.1 81.6

More information

ENGG1410-F Tutorial 6

ENGG1410-F Tutorial 6 Jianwen Zhao Department of Computer Science and Engineering The Chinese University of Hong Kong 1/16 Problem 1. Matrix Diagonalization Diagonalize the following matrix: A = [ ] 1 2 4 3 2/16 Solution The

More information

untitled

untitled 5 55-% 8-8 8-5% - 7 7 U- lim lim u k k k u k k k k ` k u k k lim.7. 8 e e. e www.tighuatutor.com 5 79 755 [ e ] e e [ e ] e e e. --7 - u z dz d d dz u du d 8d d d d dz d d d d. 5-5 A E B BA B E B B BA

More information

. Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )? : Β Ν :) Ε Ν & Ν? ς Ε % ) Ω > % Τ 7 Υ Ν Ν? Π 7 Υ )? Ο 1 Χ Χ Β 9 Ξ Ψ 8 Ψ # #! Ξ ; Ξ > # 8! Ζ! #!! Θ Ξ #!! 8 Θ!

. Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )? : Β Ν :) Ε Ν & Ν? ς Ε % ) Ω > % Τ 7 Υ Ν Ν? Π 7 Υ )? Ο 1 Χ Χ Β 9 Ξ Ψ 8 Ψ # #! Ξ ; Ξ > # 8! Ζ! #!! Θ Ξ #!! 8 Θ! !! # %& + ( ) ),., / 0 12 3, 4 5 6, 7 6 6, 8! 1 9 :; #< = 1 > )& )? Α Β 3 % Χ %? 7) >ΔΒ Χ :% Ε? 9 : ; Φ Η Ι & Κ Λ % 7 Μ Ν?) 1!! 9 % Ο Χ Χ Β Π Θ Π ; Ρ Ρ Ρ Ρ Ρ ; . Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )?

More information

untitled

untitled 6 + a lim = 8, a =. a l. a a + a a a a lim = lim + = e, a a a e = 8 a= l ( 6,, ), 4 y+ z = 8. + y z = ( 6,, ) 4 y z 8 a ( 6,, ) + = = { } i j k 4,,, s = 6 = i+ j k. 4 ( ) ( y ) ( z ) + y z =. + =, () y

More information