标题

Size: px
Start display at page:

Download "标题"

Transcription

1 第 56 卷第 2 期厦门大学学报 ( 自然科学版 ) Vol.56 No 年 3 月 JournalofXiamenUniversity (NaturalScience) Mar.2017 doi: /j.issn 基于功率分配器的大规模信息能量同传系统吞吐率优化 宋要飞, 徐位凯 *, 王 琳 ( 厦门大学信息科学与技术学院, 福建厦门 ) 摘要 : 研究了基于下行无线信息和能量协同传输 (simultaneouswireless-informationandpower-transfer,swipt) 大规模多输入单输出 (multiple-inputandsingle-output,miso) 系统的吞吐率优化问题. 该系统为时分双工 (timedivisionduplex,tdd) 模式, 同时移动站采用先收集后传输的协议. 在下行信噪比 (signal-to-noiseratio,snr) 和移动站的传输功率约束下, 为实现上行吞吐率的最大化, 对功率分配系数和下行传输时间进行了联合优化, 由于该问题为非凸优化问题, 采用基于拉格朗日乘子的梯度算法进行优化. 最后, 通过与单独优化下行传输时间算法的比较, 验证了该联合优化算法的优越性. 关键词 : 多输入单输出系统 ; 无线信息和能量协同传输 ; 先收集后传输协议 ; 功率分配 ; 波束成形 ; 非凸优化问题中图分类号 : TN925 文献标志码 : A 文章编号 : (2017) 近年来, 随着无线应用的快速发展, 为了解决无 线设备能量受限问题, 无线能量传输 (wirelessenergy transfer,wet) 获得了工业界和学术界等众多领域的 [1-2] 关注. 例如,WET 能延长传感节点和一些植入人体 [3] 内的设备的使用寿命. 目前,WET 通常实现的方式是电磁波辐射方式, 而 辐射性的电磁波不仅可以作为能量传输的载体来进行 WET, 也可以作为信息传递的载体实现 WET. 因此, 将 这 2 种技术结合研究已成为学术界新的研究方向, 无线 信息和能量协同传输 (simultaneouswireless-information [4] and power-transfer,swipt) 系统应运而生. 而 [4] Varshbet 等只针对点对点的单天线系统, 研究了无线 [5] 能量和信息并行传输的折中问题.Ng 等研究了基于 SWIPT 的多输入单输出 (multiple-inputandsingle-output,miso) 系统, 提出了一种资源配置算法, 并通过采用半正定规划松弛法解决所提出的非凸优化问题, 来实 现传输功率的最小化. 至于针对能量传输效率的优化, Chen 等也提出了一种资源配置策略, 该策略不仅极 大地提高了能量传输效率, 同时还能保证较高的服务质 量 (qualitȳof-service,qos). 同样地在基于 MISOSWIPT [7] 的系统下,Liu 等通过利用大规模 MISO 系统的信道 矩阵增益, 进一步提高了 WET 的性能. 而在 SWIPT 系统中, 同一接收机不可能同时实 现能量收集和信息接收, 所以出现了信息接收机和能 量接收机分别采用不同的天线来分别接收信息和收 集能量的分离结构, 以及通过时间切换和功率分配的 [8] 共用天线的混合接收机结构.Shi 等进一步研究了 一种基于功率分配接收的多天线 SWIPT 系统, 该系 统采用 MISO 的广播信道. 在多用户通信系统中, SWIPT 系统往往存在着 双远近效应, 即相对于远 离基站 ( 混合中心接入点 ) 的用户, 靠近基站的用户可 收集更多下行能量但却仅需较少的能量用于上行信 息传输, 而远离基站的用户仅能收集较少的能量却需 更多的能量来支持上行信息传输. 针对此效应,Ju [10] 等研究了基于用户公平的能量与信息协同传输的 [11] 调度算法. 此外,Nasir 等给出了在中继系统中关于 SWIPT 的研究. 其中, 针对现有的联合优化功率分配系数和下行 [12] 传输时间的 SWIPT 系统中, 张诚诚等以窄带 MISO 为研究场景, 以功率分裂分离式接收机为基础, 在最小能量收获需求和最低 QoS 需求的约束下, 建立 了一个能效最优数学模型, 并结合凸优化理论 穷举 收稿日期 : 录用日期 : 基金项目 : 国家自然科学基金 ( , ); 欧盟第七研发框架计划 (FP7)(294923) * 通信作者 :xweikai@xmu.edu.cn 引文格式 : 宋要飞, 徐位凯, 王琳. 基于功率分配器的大规模信息能量同传系统吞吐率优化 [J]. 厦门大学学报 ( 自然科学版 ), 2017,56(2): Citation:SONG YF,XU W K,WANGL.Throughputoptimizationforlarge-scalesimultaneouswireless-informationandpowertransfersystemswithpowersplitingreceiver[J].JXiamenUnivNatSci,2017,56(2): (inChinese)

2 272 厦门大学学报 ( 自然科学版 ) 2017 年 法 分式规划理论和一维探索等来求解最优化问题, 并给出了相应的迭代求解算法. 不同于 Chen 等所提出的通过联合优化下行时 间和基站传输功率的能量效率策略, 以及不同于 Shi 等基于 SWIPT 的通过联合优化下行波束成形矢量 和功率分配比来实现基站传输功率的最小化算法, 本 研究基于 MISO SWIPT 系统, 对功率分配比和下行 传输时间进行联合优化实现了上行吞吐率的最大化. 并通过解决该非凸优化问题来得到最优联合解, 最 后, 通过比较单独优化下行传输时间算法与所提的联 合优化算法, 验证了联合优化算法的优越性. 1 建立系统模型 本研究的大规模 MISOSWIPT 系统包括一个基 站和一个移动站, 如图 1 所示. 假设该基站是一个配有 N >1 根天线的可同时传输信息和能量的混合接入 点, 移动站只有 1 根天线且是无源的, 同时假设基站 和移动站完全同步, 且工作在时分双工 (timedivision duplex,tdd) 模式下. 移动站采用基于帧的先收集后传输协议, 帧结构 如图 2 所示. 每一帧采用时分方式分为 2 个阶段 : 1) 基站下行传输阶段, 在该阶段移动站使用功率分配 接收器接收基站发送来的信号, 因此可同时接收来自 基站的信息和能量 ;2) 上行信息传输阶段, 移动站采 用先收集后传输协议, 即利用第一阶段收集的全部能 量支持这一阶段的上行无线信息传输. 并假设在一帧 的传输过程中信道保持不变, 帧长为 T, 单位 s, 为方 便起见, 在文中帧长均采用归一化, 即 T=1. 同时假设基站通过上一帧中从移动站发射到基 站的上行导频信号中估计出上行信道信息, 利用 TDD 系统的信道互易性, 则可假定基站具有完全的下行信 道状态信息. 图 1 一个基于功率分配的下行 MISOSWIPT 系统 Fiġ1 Adownlink MISOSWIPTsystembased 1.1 下行传输阶段 onapowersplitingreceiver 在下行传输阶段中, 首先假设传输时间长度为 τt 图 2 帧结构 Fiġ2 Framestructure (0<τ<1)s. 当发送信号所占带宽足够小时 ( 小于相对带宽 ), 信道可认为是平坦的. 即使是频率选择性衰落信道, 也可采用正交频分复用技术将信道转换为平坦信道. 又因平坦信道的一个频段内的衰变是一个常量, 为计算方便, 本文中假设基站和移动站间的信道为平坦衰落信道. 基站和移动站之间的下行信道矩阵一般 用 βh 表示, 其中 : β 表示信道路径损耗系数 ;h 表 示一个独立瑞利衰落系数矢量, 且满足 N(0,IN ), IN 为 N 阶的单位矩阵,N 为天线个数.β 往往由无线 信号的大尺度衰落模型获得, 由于此处 h 表示无线信道的衰落, 故本文中假设 β 是只与基站到移动站之间的距离有关的量. 设 P 表示基站的下行传输功率 ;w 为相应的下行传输波束成形矢量 ( w 2=1);s 为基带信号, 理想情况下其为独立同分布的圆周对称复高 斯随机变量, 即 s~n(0,1). 则在一个符号周期内, 移动站接收到的复基带信号 z 可表示为 : z= βph H ws+n1. (1) 由于高斯噪声可用具体数学表达式表述, 便于推导分析和运算, 且高斯噪声确实反映了实际信道中的加性噪声情况, 比较真实地代表了信道噪声的特性, 故此处用 n1~n(0,σ 2) 表示移动站接收机的天线噪声. 在 0 接收到信号之后, 移动站利用功率分配器把接收到的信号分成信息解码和能量收集两部分. 从基站接收到的信号功率的 ρ ( 0<ρ<1) 部分被用来信息解码, 其余的作为能量来收集. 在此功率分配过程中, 假设分配电路等消耗的能量较小, 可忽略不计, 则移动站信息解码部分接收的信号 x ID 表示为 : x ID = ρz+n2 = βρph H ws+ ρn1 +n2. (2) 其中,n2~N(0,σ 2 1) 表示信息解码部分的转换噪声. 因此, 在信息解码部分的信噪比 (signal-to-noiseratio, SNR) 可表示为 : RSNR = βρ P h H w 2. (3) ρσ 2 0 +σ 2 1 其中, 式 (3) 的分子和分母分别表示信号和噪声的有效功率. 能量收集部分的接收信号 x EH 可表示为 :

3 第 2 期 宋要飞等 : 基于功率分配器的大规模信息能量同传系统吞吐率优化 273 x EH = 1-ρz= β ( 1-ρ ) Ph H ws+ 1-ρn1. (4) 因此, 在一个帧周期内, 移动站收集的能量 Q 可 表示为 : Q =ξ ( 1-ρ )( βp h H w 2 +σ 2 0)τ. (5) 其中 ξ 表示移动端将接收到的射频信号经过低通滤波 器等转换成直流信号并储存起来的转换效率. 因为噪 声多来源于环境 线路等干扰噪声, 且这些噪声具有 不可控 能量小等特点, 可忽略不计, 故式 (4) 中的 总能量可化简为 : Q =ξ ( 1-ρ ) βp h H w 2 τ. (6) 此时, 假定基站具有完全的下行信道状态信息, 再采用最大比传输 (maximum ratiotransmission, MRT), 不仅能降低接收端的复杂度, 还能使接收机端 获得最大化的 SNR 或者能量. 显然, 当且仅当 w= h h 时, 存在 MRT,Q 能获得最大值, 即 Qmax =ξ ( 1-ρ ) βp h 2 τ. (7) 此时, 下行 SNR 可改写成 RSNR= βρ P h 2. 另外, ρσ 2 0+σ 2 1 假设移动站有足够的存储空间来存储收集的能量, 并 在第 2 阶段, 所有能量都用于上行信息传输. 1.2 上行无线信息传输阶段 在上行无线信息传输阶段, 移动站在 (1-τ)T 内 将下行阶段收集的能量全部用于上行信息传输, 即上 行传输功率为 信号可以表示为 : Qmax (1-τ)T. 因此, 基站接收到的复基带 y= θqmax (1-τ)T gs+n3, (8) 其中 :n3 为信道噪声, 是一个加性高斯白噪声矩阵, 该 矩阵的元素服从独立同分布且满足分布 N(0,σ 2 2);θ g 表示上行移动站到基站之间的传输信道矩阵,θ 表示信道路径损耗系数, 和 β 的意义相同,g 表示一 个独立瑞利衰落系数矢量, 服从 N(0,IN ). 注意, 在 获得完全信道状态信息的 TDD 系统中, 在一个时间 间隔内, 由于信道互易性, 可以认为 g 与 h 完全相等, 又因为移动站只有 1 根天线, 不能采用波束成形方 法, 故其天线增益为 1. 因为基站获得了完全信道状态信息, 所以基站可 利用最大比合并来实现上行传输速率的最大化. 因此, 上行的信息传输速率 R( ρ,τ) 可表示为 : R( ρ,τ)=wlog2 1+ θqmax g 2 è (1-τ)Tσ 2 2 ø = Wlog2 1+ ξβ θ(1-ρ ) τp h 2 g 2 è (1-τ)Tσ 2. (9) 2 ø 其中,W 表示信道带宽, 该式 ( 香农公式 ) 表示高斯噪 声信道下的信息传输速率, 括号内最后一项表示接收 SNR. 在大规模 MISO 系统中, 当基站天线很多时存在 信道硬化作用, 可得极限关系 lim N h 2 N =1,lim N g 2 N =1 [14], 故得 RSNR= βρ PN 和 ( ρ σ Qmax=ξ 2 0+σ 2 1) ( 1-ρ ) βp h 2 τ=ξ ( 1-ρ ) βpnτ, 式 (9) 也可简化为 : R( ρ,τ)= Wlog2 1+ ξβ θ(1-ρ ) τp h 2 g 2 è (1-τ)Tσ 2 2 ø = Wlog2 1+ ξβ θ(1-ρ ) τpn 2 è (1-τ)σ 2. (10) 2 ø 当 N 时, 因括号内的后一项远大于 1, 故常数 1 可 忽略不计,R( ξβθ(1-ρ ) τpn 2 ρ,τ) Wlog2 è (1-τ)σ 2, 而在 2 ø 一个帧传输周期内, 只有 (1-τ)T 时间被用于上行信 息传输, 所以, 上行的平均传输速率 R ( ρ,τ) 可以表 示为 : R( ρ,τ)= ( 1-τ)T a(1-ρ ) τ T Wlog2 è 1-τ ø = a(1-ρ ) τ (1-τ)Wlog2, (11) è 1-τ ø 其中,a= ξβ θpn 2. σ 优化模型与算法 在本节中, 为了实现上行吞吐率的优化, 提出了 功率分配系数 ρ 和下行传输时间 τ 的联合优化算法, 其中约束条件为移动站的 SNR 约束和上行传输功率. 根据以上分析, 该问题可描述为 K1: maxr - ( ρ,τ) (12) s.t.rsnr γ, (13) ρ <1, (14) τ <1, (15) Qmax (1-τ)T Pmax. (16) 其中, 式 (13) 表示下行移动站的 QoS 要求, 考虑到一 般情况下, 移动站有非零的 SNR, 即 γ>0; 式 (16) 表 示对移动站传输功率的约束,Pmax 表示移动站接收 机端要求的最大传输功率. 通过上文分析可知下行 的 SNR 约束条件只与参数 ρ 有关, 而移动基站端的

4 274 厦门大学学报 ( 自然科学版 ) 2017 年 上行传输功率与参数 ρ 和 τ 都有关, 且参数 ρ 和 τ 为 非线性关系, 故基站端的功率约束条件为非线性约 束条件. 为解决此问题 K1, 首先将非线性约束条件转化 成等价的线性约束条件. 式 (13) 可先变形为 ρ ( βpn - γσ 2 0) γσ 2 1, 又因 ρ>0,γσ 2 1>0, 必存在 βpn >γσ 2 0, 式 γσ 2 1 (13) 进一步化简成 ρ ( β PN -γσ 2 0) = ρmin>0. 将此不 等式与式 (14) 联立, 可导出 βpn >γ(σ 2 0+σ 2 1). 另外, 式 (16) 可被转化为不等式 ρ 1- c τ +c, 其中 c= Pmax ξβpn. 但当 1+c- c τ ρmin 时, 结合 ρmin ρ 和式 (14), 只能得到功率约束条件, 式 (16)(SNR 约束条 件, 故不予讨论. 当 1- c τ +c 时 ρmin,τ c (1+c-ρmin) =b. 显然, 因为 0<ρmin<1, 可得 b<1. 因 此, 可联合 τ b 和式 (15) 来简化时间的约束条件. 目标函数 (12) 是优化包括变量 ρ 和 τ 的两个函数 的比值, 这导致了 K1 是一个分式规划问题, 通常来 说, 这是一个非凸优化问题. 受文献 [15] 的启发, 目标 函数 (12) 可改写为 R ( ρ,τ)-r0,r0 表示 ρ 和 τ 分别 等于 K1 问题的最优值 ρ * 和 τ * 时的最大传输率, 即 R0= R( ρ*,τ * )( 注意 : R ( ρ,τ)-r0 0, 当且仅当 ρ=ρ * 和 τ=τ * 时取等号 ). 因此,K1 可以转化为 K2: max R( ρ,τ)-r0 (17) s.t.ρmin ρ, ( 18) ρ <1, (19) τ b. (20) 由文献 [15] 中的引理 6 以及相关证明, 易得 2 R ( ρ,τ) 2 ρ <0 2 R ( 及 ρ,τ) 2 τ <0, 所以 K2 是一个凸优化问题, 而该凸优化问题又可以通过拉格朗日乘子算 法和梯度算法来解决.K2 的拉格朗日对偶函数可表 示为 : L( μ,ν, φ ῤ, τ)= R( ρ,τ)-r0 -μρmin + μρ-νρ +ν+ϕb-ϕτ. (21) 其中 μ 0,ν 0 和 ϕ 0 分别是问题 K2 中的各个约 束条件的拉格朗日乘子. 因为采用拉格朗日乘子算法, 可重新定义一个无约束问题即式 (21), 且这个无约束 问题等价于原问题 K2, 从而将约束问题无约束化. 此 时,K2 可用对偶函数描述为 min max L( μ,ν, ϕ ρ μ,ν, ϕ ῤ, τ). (22),τ 一旦给定 μ, ν 和 ϕ 的值, 最优功率分配系数 ρ * 和最优 WET 传输时间 τ * 可通过以下的 KKT 条件求解 : L( μ,ν, ϕ ῤ, τ) = R( ρ,τ) ρ ρ + μ -ν= - ( 1-τ)W (1-ρ ) ln2 + μ -ν=0, (23) L( μ,ν, ϕ ῤ, τ) = R( ρ,τ) τ τ - ϕ = W 1 a(1-ρ ) τ èτln2 -log2 1-τ ø -ϕ =0. (24) 式 (23) 和式 (24) 中的 μ, ν 和 ϕ 的值可通过梯度算法 来更新, 具体的梯度算法更新方法如下 : μ ( n+1)=[ μ (n)-δ μ ( ρ -ρmin)] +, (25) ν(n+1)=[ν(n)-δν(1-ρ )]+, (26) ϕ ( n+1)=[ ϕ (n)-δ ϕ (b-τ)] +. (27) 其中 :n 表示迭代下标, 且为大于等于 0 的正整数 ; Δ μ,δν 和 Δ ϕ 表示正的迭代步长. 因此, 该联合优化迭 代算法具体描述如下 : 1) 令 n=0, 设 ε>0, 其中 ε 表示的是一个足够小 的正实数. 已知 N,W,P,Pmax,γ, ξ, β,θ,δ μ,δν,δ ϕ, σ 2 0,σ 2 1 和 σ 2 2; 2) 初始化 : 令 μ ( 0)=0,ν(0)=0, ϕ (0)=0ῤ=0, τ=0 和 R0=2000; 和 τ * ; 3) 循环体开始 ; 4) 通过式 (25) (26) 和 (27), 更新 μ, ν 和 ϕ 的值 ; 5) 通过联立式 (23) 和 (24) 求解出最优值 ρ * 6) 判断 : 如果 R ( ρ*,τ * )-R0 >ε, 则有 R0= R( ρ*,τ * ),n =n+1, 返回到第三步继续循环 ; 7) 直到满足 R ( ρ*,τ * )-R0 ε, 迭代 ( 循环 体 ) 结束. 该迭代算法是基于梯度下降的准则, 寻找待求解 问题的极值. 首先将非凸问题转化为凸问题, 再采用该 迭代算法, 因此其可获得全局最优值 ρ * 和 τ *. 3 数值仿真结果 在本节中, 为了验证所提出的优化算法的有效 性, 对提出的优化算法进行了仿真. 仿真参数如下 : W =1kHz, ξ =0.75,P =15 W,σ 2 0=0.1,σ 2 1=0.5 和 σ 2 2=0.5. 另外, 为了方便起见, 假设 β=θ, 同时采用衰 落模型 β=10-2 d -2, 其中 d 表示基站到移动站之间 的路径长度. 在 N =100 和 γ=10db 条件下, 图 3 给出了本文

5 第 2 期 宋要飞等 : 基于功率分配器的大规模信息能量同传系统吞吐率优化 275 中所提出的联合优化算法和传统的 WET 时间单独优 化算法的上行吞吐率对比结果. 在单独优化算法中, 固 定功率分配系数不变, 然后优化 WET 传输时间 τ 以 实现上行吞吐率 RUL = R ( ρ*,τ * ) 的最大化. 从图 3 中, 可以清晰地看出, 当固定功率分配系数满足 ρ= ρmin 时, 所提出的联合优化算法明显优于传统优化算法, 且随着 β 增加,2 种算法的吞吐率之差越来越大. 而当 ρ=1 时, 吞吐量几乎为 0. 这个现象也不难解释 : 当移动站将接收到的信号都用于信息解码部分时, 收 集到的总能量为 0, 所以无法进行上行信息传输, 即 RUL 基本为 0. 因此, 本文中提出的联合优化算法可以 显著地增加 RUL. 图 4 基站天线个数对两个算法的上行吞吐率的性能比较 Fiġ4 Performancecomparisonofthetwooptimization algorithmswithdiferentnumbersofthebasestationantennas 图 3 2 种优化算法的性能比较 Fiġ3 Performancecomparisonof thetwooptimationalgorithms 图 4 分析了基站天线个数对 RUL 的影响. 如图 4 所示, 当 γ=10db 和确定的天线个数 N 时, 所提出的联合优化算法的吞吐率明显大于单独优化算法, 但这两个算法的吞吐率之差却随着 N 增加而变小. 同时还可用看出联合优化算法和单独优化算法随着 N 的变大, 吞吐率在一定程度上都逐渐增大. 且在本系统中, 当 N 超过 110 个时, 上行吞吐率增量基本上趋近于 0. 在实际应用中, 这个结论也有个直观的理解, 当基站的 N 增大时 ( 在一定程度上, 超过一定数量时, 吞吐率会趋于饱和 ), 移动端获得的能量也会增多 ( 利用了大规模天线矩阵增益 ), 那么上行传输速率就会变大. 在联合优化算法中, 当下行约束的 SNR 分别为 γ =6,7,8,9,10dB 时, 图 5 分别给出了联合优化算法的最优值 ρ * τ * RUL 和上行吞吐率 RDL 随 β 改变的变化趋势, 表 1 给出了每一帧周期的总吞吐率 R 随 β 改变的仿真值 (R =RUL +RDL,RDL =τ * Wlog2(1+ RSNR)). 由图 5(a)~(c) 可知, 在联合优化时, 对于固定 的 β, 随着 γ 的增大 ῤ *,τ * 和 RDL 减小. 这里并不同于 单独的 γ 变大时 RDL 变大的直观理解, 这是因为在本 文中 ῤ * 和 τ * 两个变量同时影响 RDL, 且最优下行传 输时间 τ * 占主导作用. 此外, 对比图 5(c) 和 5(d) 可 知,RUL 随着 RDL 变小而变大. 另外, 当 γ 确定时, 基站距离移动站越近, 路径损 耗越小, 即 β 越大, 达到给定的下行 SNR 约束要求所 需的下行传输时间也会减少, 相应地 ρ * 也会减小. 这 正好和图 5(a)~(b) 相符, 即给定一个 γ 时,τ * 和 ρ * 都随着 β 的变大而变小. 而相应地, 此时移动端接收的 能量就越多, 随之上行的平均传输速率将增大, 即 RUL 变大 ( 图 5(d)). 从表 1 可以看出, 当固定一个损耗系数 β 时, 随着 γ 的增大, 总的吞吐率 R 也在增大, 此时 RDL 在减小 RDL ( 图 5(c)), 所以下行传输所占的比例 在逐渐减 è R ø 小, 相应地 RUL 逐渐增大, 满足能量守恒. 4 结论 本研究对帧传输的大规模 MISOSWIPT 系统的 资源分配与吞吐率之间的关系进行了研究. 在下行 SNR 和传输功率的约束条件下, 为了最大化 RUL, 提 出了一种联合优化功率分配系数和下行传输时间的 优化算法, 通过对该非凸联合优化算法的分析与转 化, 利用迭代算法对该联合优化问题进行了求解. 最 后, 通过计算机仿真, 对联合优化算法与单独优化算 法进行了比较. 数值结果表明, 提出的联合优化算法具 有明显的性能优势. 然而, 还有一些问题尚未解决, 比 如不完全信道状态信息 信道衰落类型, 以及天线污

6 276 厦门大学学报 ( 自然科学版 ) 2017 年 图 5 不同 γ 值下的最优值 ρ * 和 τ * 以及上 下行吞吐率的变化趋势 Fiġ5 Theoptimalvaluescomparisonofρ *,τ *,RDLandRUL withdiferentγ 表 1 当 γ 取不同值时, 联合优化算法的总吞吐率 R 的仿真值 Tab.1 ThevaluesofR withdiferentγbasedonthejointoptimationalgorithm γ/db R/(kbit s -1 ) 注 : 表中 0.01~0.10 为 ρ 取值 染等, 对优化算法的选取和优化结果的影响需要进一步的研究. 参考文献 : [1] CARVALHO N B,GEORGIADISA,COSTANZO A,et al.wireless powertransmission:r&d activities within Europe[J].IEEE Transactionson MicrowaveTheoryand Techniques,2014,62(4): [2] LU X,WANG P,NIYATO D,etal.Wirelessnetworks with RFenergyharvesting:acontemporarysurvey[J]. IEEE Communications Surveys & Tutorials,2015,17 (2): [3] VISSER H J,VULLERS R J M.RFenergyharvesting andtransportfor wirelesssensornetworkapplications: principlesandrequirements[j].proceedingsoftheieee, 2013,101(6): [4] VARSHNEY L R.Transportinginformationandenergy simultaneously[c] 2008IEEEInternationalSymposium oninformationtheory.toronto:ieee,2008: [5] NGD W K,SCHOBER R.Resourcealocationforsecure communicationinsystemswithwirelessinformationand powertransfer[c] 2013IEEE Globecom Workshops. Atlanta:IEEE,2013: CHEN X,WANG X,CHEN X.Energȳeficientoptimiza-

7 第 2 期 宋要飞等 : 基于功率分配器的大规模信息能量同传系统吞吐率优化 277 tionforwirelessinformationandpowertransferinlargescalemimosystemsemployingenergybeamforming[j]. IEEE Wireless Communications Leters,2013,2(6): [7] LIU L,ZHANG R,CHUA K C.Secrecy wirelessinformationandpowertransferwith MISO beamforming[c] 2013 IEEE Global Communications Conference. Atlanta:IEEE,2013: [8] ZHOU X,ZHANG R,HO CK.Wirelessinformationand power transfer:architecture design and rate-energy tradeof[j].ieee Transactions on Communications, 2013,61(11): SHIQ,LIU L,XU W,etal.Jointtransmitbeamforming andreceivepowersplitingfor MISO SWIPT systems [J].IEEE Transactions on Wireless Communications, 2014,13(6): [10] JU H,ZHANG R.Throughputmaximizationinwireless powered communication networks [J ]. IEEE TransactionsonWirelessCommunications,2014,13(1): [11] NASIR A A,ZHOU X,DURRANIS,etal.Relaying protocolsforwirelessenergyharvestingandinformation processing[j].ieee Transactionson WirelessCommunications,2013,12(7): [12] 张诚诚. 无线系统中信息与功率联合传输技术的研究 [D]. 北京 : 北京邮电大学,2015. YANG G,HO C K,ZHANG R,etal.Throughputoptimization for massive MIMO systems powered by wirelessenergytransfer[j].ieee Journalon Selected AreasinCommunications,2015,33(8): [14] HOCHWALDB M,MARZETTA T L,TAROKH V. Multiple-antennachannelhardeninganditsimplications forratefeedbackandscheduling[j].ieeetransactions oninformationtheory,2004,50(9): [15] LIJ,ZHANG H,LID,etal.Onthe Performanceof wireless-energȳtransfer-enabled massive MIMO systems with superimposed pilot-aided channel estimation[j].ieee Access,2015,3: ThroughputOptimizationforLarge-scaleSimultaneousWireles-information andpower-transfersystemswithpowersplitingreceiver SONG Yaofei,XU Weikai *,WANGLin (SchoolofInformationScienceandEngineering,XiamenUniversity,Xiamen361005,China) Abstract: Thispaperinvestigatesalarge-scale multiple-inputandsingle-output (MISO)simultaneous wireless-informationand power-transfer(swipt)system,inwhichasingle-antennamobilestation(ms)withapowerspliting(ps)receiverreceivesinformationandenergysimultaneouslyfromthetransmitedsignalbyamulti-antennabasestation (BS).Thissystem worksonthetime divisionduplex (TDD)model,andaharvest-then-transferprotocolisused.Wemaximizetheuplinkthroughputbyjointlyoptimizing PSratioandtransfertimedurationundertheconstraintsofdownlinksignal-to-noiseratio(SNR)requirementandthetransmitpower ofms.forthepurposeofsolvingthenon-convexoptimizationproblem,thelagrangemultiplierandthegradientmethodareapplied. Finaly,bycomparedwiththetraditionalalgorithm,simulationresultsvalidatethesuperiorityoftheproposedjointoptimizationalgorithm. Keywords: multiple-inputsingle-output (MISO);simultaneouswirelessinformationandpower-transfer(SWIPT)system;harvestthen-transferprotocol;powerspiting;energybeamforming;non-convexoptimizationproblem

Ζ # % & ( ) % + & ) / 0 0 1 0 2 3 ( ( # 4 & 5 & 4 2 2 ( 1 ) ). / 6 # ( 2 78 9 % + : ; ( ; < = % > ) / 4 % 1 & % 1 ) 8 (? Α >? Β? Χ Β Δ Ε ;> Φ Β >? = Β Χ? Α Γ Η 0 Γ > 0 0 Γ 0 Β Β Χ 5 Ι ϑ 0 Γ 1 ) & Ε 0 Α

More information

! # % & ( & # ) +& & # ). / 0 ) + 1 0 2 & 4 56 7 8 5 0 9 7 # & : 6/ # ; 4 6 # # ; < 8 / # 7 & & = # < > 6 +? # Α # + + Β # Χ Χ Χ > Δ / < Ε + & 6 ; > > 6 & > < > # < & 6 & + : & = & < > 6+?. = & & ) & >&

More information

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7 !! # & ( ) +,. )/ 0 1, 2 ) 3, 4 5. 6 7 87 + 5 1!! # : ;< = > < < ;?? Α Β Χ Β ;< Α? 6 Δ : Ε6 Χ < Χ Α < Α Α Χ? Φ > Α ;Γ ;Η Α ;?? Φ Ι 6 Ε Β ΕΒ Γ Γ > < ϑ ( = : ;Α < : Χ Κ Χ Γ? Ε Ι Χ Α Ε? Α Χ Α ; Γ ;

More information

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! ! # # % & ( ) ! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) 0 + 1 %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! # ( & & 5)6 %+ % ( % %/ ) ( % & + %/

More information

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, )

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) ! # % & # % ( ) & + + !!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) 6 # / 0 1 + ) ( + 3 0 ( 1 1( ) ) ( 0 ) 4 ( ) 1 1 0 ( ( ) 1 / ) ( 1 ( 0 ) ) + ( ( 0 ) 0 0 ( / / ) ( ( ) ( 5 ( 0 + 0 +

More information

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 & ! # % & ( ) % + ),. / & 0 1 + 2. 3 ) +.! 4 5 2 2 & 5 0 67 1) 8 9 6.! :. ;. + 9 < = = = = / >? Α ) /= Β Χ Β Δ Ε Β Ε / Χ ΦΓ Χ Η Ι = = = / = = = Β < ( # % & ( ) % + ),. > (? Φ?? Γ? ) Μ

More information

&! +! # ## % & #( ) % % % () ) ( %

&! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % ,. /, / 0 0 1,! # % & ( ) + /, 2 3 4 5 6 7 8 6 6 9 : / ;. ; % % % % %. ) >? > /,,

More information

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2 ! # %!% # ( % ) + %, ). ) % %(/ / %/!! # %!! 0 1 234 5 6 2 7 8 )9!2: 5; 1? = 4!! > = 5 4? 2 Α 7 72 1 Α!.= = 54?2 72 1 Β. : 2>7 2 1 Χ! # % % ( ) +,.

More information

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π ! # % & ( ) + (,. /0 +1, 234) % 5 / 0 6/ 7 7 & % 8 9 : / ; 34 : + 3. & < / = : / 0 5 /: = + % >+ ( 4 : 0, 7 : 0,? & % 5. / 0:? : / : 43 : 2 : Α : / 6 3 : ; Β?? : Α 0+ 1,4. Α? + & % ; 4 ( :. Α 6 4 : & %

More information

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 / ! # %& ( %) & +, + % ) # % % ). / 0 /. /10 2 /3. /!. 4 5 /6. /. 7!8! 9 / 5 : 6 8 : 7 ; < 5 7 9 1. 5 /3 5 7 9 7! 4 5 5 /! 7 = /6 5 / 0 5 /. 7 : 6 8 : 9 5 / >? 0 /.? 0 /1> 30 /!0 7 3 Α 9 / 5 7 9 /. 7 Β Χ9

More information

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9, ! # !! )!!! +,./ 0 1 +, 2 3 4, 23 3 5 67 # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, 2 6 65, 2 6 9, 2 3 9, 2 6 9, 2 6 3 5 , 2 6 2, 2 6, 2 6 2, 2 6!!!, 2, 4 # : :, 2 6.! # ; /< = > /?, 2 3! 9 ! #!,!!#.,

More information

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. ! # !! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. #! % & & ( ) # (!! /! / + ) & %,/ #! )!! / & # 0 %#,,. /! &! /!! ) 0+(,, # & % ) 1 # & /. / & %! # # #! & & # # #. ).! & #. #,!! 2 34 56 7 86 9

More information

第 卷 第 期 年 月 半 导 体 学 报! " # $%&'%' $!&' #% #$1 /#1 $'! / ?/ ?/ / 3 0,?/ ) * +!!! '!,!! -. & ' $! '! 4% %&1)/1(7%&)03 (% )

第 卷 第 期 年 月 半 导 体 学 报!  # $%&'%' $!&' #% #$1 /#1 $'! / ?/ ?/ / 3 0,?/ ) * +!!! '!,!! -. & ' $! '! 4% %&1)/1(7%&)03 (% ) 第 卷 第 期 年 月!"# $%&'%' $!&'#%#$1/#1 $'! /18103 2?/03101?/18103 /3 0,?/0301.13 )*+!!! '!,!! -.&' $!'! 4%%&1)/1(7%&)03(%)%&,%*(1&0)%$-0*,%30)17*1*)0(+1(1+&1*+*),)1; &113(%44(10&.0701&0-&00*/)%;()1%-1+%&0)0*1*)%

More information

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! # &!! ) ( +, ., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! 2 2 & & 1 3! 3, 4 45!, 2! # 1 # ( &, 2 &, # 7 + 4 3 ) 8. 9 9 : ; 4 ), 1!! 4 4 &1 &,, 2! & 1 2 1! 1! 1 & 2, & 2 & < )4 )! /! 4 4 &! &,

More information

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ; ! #! % & ( ) +!, + +!. / 0 /, 2 ) 3 4 5 6 7 8 8 8 9 : 9 ;< 9 = = = 4 ) > (/?08 4 ; ; 8 Β Χ 2 ΔΔ2 4 4 8 4 8 4 8 Ε Φ Α, 3Γ Η Ι 4 ϑ 8 4 ϑ 8 4 8 4 < 8 4 5 8 4 4

More information

8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, ; > 8? : 5 4 +? Α > 6 + > 3, > 5 <? 9 5 < =, Β >5

8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, ; > 8? : 5 4 +? Α > 6 + > 3, > 5 <? 9 5 < =, Β >5 0 ( 1 0 % (! # % & ( ) + #,. / / % (! 3 4 5 5 5 3 4,( 7 8 9 /, 9 : 6, 9 5,9 8,9 7 5,9!,9 ; 6 / 9! # %#& 7 8 < 9 & 9 9 : < 5 ( ) 8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, 5 4

More information

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ ! % & ( ),. / & 0 1 & 2 1 // % & 3 0 4 5 ( 6( ) ( & 7 8 9:! ; < / 4 / 7 = : > : 8 > >? :! 0 1 & 7 8 Α :! 4 Β ( & Β ( ( 5 ) 6 Χ 8 Δ > 8 7:?! < 2 4 & Ε ; 0 Φ & % & 3 0 1 & 7 8 Α?! Γ ), Η % 6 Β% 3 Ι Β ϑ Ι

More information

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02 ! # % & ( ) +, ) %,! # % & ( ( ) +,. / / 01 23 01 4, 0/ / 5 0 , ( 6 7 8! 9! (, 4 : : ; 0.!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ 5 3 3 5 3 1 Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / 3 0 0 / < 5 02 Ν!.! %) / 0

More information

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π ! # #! % & ( ) % # # +, % #. % ( # / ) % 0 1 + ) % 2 3 3 3 4 5 6 # 7 % 0 8 + % 8 + 9 ) 9 # % : ; + % 5! + )+)#. + + < ) ( # )# < # # % 0 < % + % + < + ) = ( 0 ) # + + # % )#!# +), (? ( # +) # + ( +. #!,

More information

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 = !! % & ( & ),,., / 0 1. 0 0 3 4 0 5 3 6!! 7 8 9 8!! : ; < = > :? Α 4 8 9 < Β Β : Δ Ε Δ Α = 819 = Γ 8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε 8 9 0 Μ Ε 8 > 9 8 9 = 8 9 = 819 8 9 =

More information

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε ! #!! % & ( ) +,. /. 0,(,, 2 4! 6! #!!! 8! &! % # & # &! 9 8 9 # : : : : :!! 9 8 9 # #! %! ; &! % + & + & < = 8 > 9 #!!? Α!#!9 Α 8 8!!! 8!%! 8! 8 Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :!

More information

3?! ΑΑΑΑ 7 ) 7 3

3?! ΑΑΑΑ 7 ) 7 3 ! # % & ( ) +, #. / 0 # 1 2 3 / 2 4 5 3! 6 ) 7 ) 7 ) 7 ) 7 )7 8 9 9 :5 ; 6< 3?! ΑΑΑΑ 7 ) 7 3 8! Β Χ! Δ!7 7 7 )!> ; =! > 6 > 7 ) 7 ) 7 )

More information

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! < ! # % ( ) ( +, +. ( / 0 1) ( 2 1 1 + ( 3 4 5 6 7! 89 : ; 8 < ; ; = 9 ; ; 8 < = 9! ; >? 8 = 9 < : ; 8 < ; ; = 9 8 9 = : : ; = 8 9 = < 8 < 9 Α 8 9 =; %Β Β ; ; Χ ; < ; = :; Δ Ε Γ Δ Γ Ι 8 9 < ; ; = < ; :

More information

10-03.indd

10-03.indd 1 03 06 12 14 16 18 é 19 21 23 25 28 30 35 40 45 05 22 27 48 49 50 51 2 3 4 é é í 5 é 6 7 8 9 10 11 12 13 14 15 16 17 18 19 é 20 21 22 23 ü ü ü ü ü ü ü ü ü 24 ü 25 26 27 28 29 30 31 32 33 34 35 36 37 38

More information

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η 1 )/ 2 & +! # % & ( ) +, + # # %. /& 0 4 # 5 6 7 8 9 6 : : : ; ; < = > < # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ #

More information

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5,

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5, # # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( 0 2 3 ( & +. 4 / &1 5, !! & 6 7! 6! &1 + 51, (,1 ( 5& (5( (5 & &1 8. +5 &1 +,,( ! (! 6 9/: ;/:! % 7 3 &1 + ( & &, ( && ( )

More information

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι ! # % & ( ) +,& ( + &. / 0 + 1 0 + 1,0 + 2 3., 0 4 2 /.,+ 5 6 / 78. 9: ; < = : > ; 9? : > Α

More information

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ ( ! # %! & (!! ) +, %. ( +/ 0 1 2 3. 4 5 6 78 9 9 +, : % % : < = % ;. % > &? 9! ) Α Β% Χ %/ 3. Δ 8 ( %.. + 2 ( Φ, % Γ Η. 6 Γ Φ, Ι Χ % / Γ 3 ϑκ 2 5 6 Χ8 9 9 Λ % 2 Χ & % ;. % 9 9 Μ3 Ν 1 Μ 3 Φ Λ 3 Φ ) Χ. 0

More information

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 = ! # % # & ( ) % # ( +, & % # ) % # (. / ). 1 2 3 4! 5 6 4. 7 8 9 4 : 2 ; 4 < = = 2 >9 3? & 5 5 Α Α 1 Β ΧΔ Ε Α Φ 7 Γ 9Η 8 Δ Ι > Δ / ϑ Κ Α Χ Ε ϑ Λ ϑ 2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ!

More information

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+ ! #! &!! # () +( +, + ) + (. ) / 0 1 2 1 3 4 1 2 3 4 1 51 0 6. 6 (78 1 & 9!!!! #!! : ;!! ? &! : < < &? < Α!!&! : Χ / #! : Β??. Δ?. ; ;

More information

( ) (! +)! #! () % + + %, +,!#! # # % + +!

( ) (! +)! #! () % + + %, +,!#! # # % + +! !! # % & & & &! # # % ( ) (! +)! #! () % + + %, +,!#! # # % + +! ! %!!.! /, ()!!# 0 12!# # 0 % 1 ( ) #3 % & & () (, 3)! #% % 4 % + +! (!, ), %, (!!) (! 3 )!, 1 4 ( ) % % + % %!%! # # !)! % &! % () (! %

More information

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ ! # % & & ( ) +, %. % / 0 / 2 3! # 4 ) 567 68 5 9 9 : ; > >? 3 6 7 : 9 9 7 4! Α = 42 6Β 3 Χ = 42 3 6 3 3 = 42 : 0 3 3 = 42 Δ 3 Β : 0 3 Χ 3 = 42 Χ Β Χ 6 9 = 4 =, ( 9 6 9 75 3 6 7 +. / 9

More information

标题

标题 第 35 卷第 期西南大学学报 ( 自然科学版 ) 3 年 月 Vol.35 No. JouralofSouthwestUiversity (NaturalScieceEditio) Feb. 3 文章编号 :673 9868(3) 69 4 一类积分型 Meyer-KiḡZeler-Bzier 算子的点态逼近 赵晓娣, 孙渭滨 宁夏大学数学计算机学院, 银川 75 摘要 : 应用一阶 DitziaṉTotik

More information

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α # % & ( ) # +,. / 0 1 2 /0 1 0 3 4 # 5 7 8 / 9 # & : 9 ; & < 9 = = ;.5 : < 9 98 & : 9 %& : < 9 2. = & : > 7; 9 & # 3 2

More information

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α Ε! # % & ( )%! & & + %!, (./ 0 1 & & 2. 3 &. 4/. %! / (! %2 % ( 5 4 5 ) 2! 6 2! 2 2. / & 7 2! % &. 3.! & (. 2 & & / 8 2. ( % 2 & 2.! 9. %./ 5 : ; 5. % & %2 2 & % 2!! /. . %! & % &? & 5 6!% 2.

More information

Π Ρ! #! % & #! (! )! + %!!. / 0% # 0 2 3 3 4 7 8 9 Δ5?? 5 9? Κ :5 5 7 < 7 Δ 7 9 :5? / + 0 5 6 6 7 : ; 7 < = >? : Α8 5 > :9 Β 5 Χ : = 8 + ΑΔ? 9 Β Ε 9 = 9? : ; : Α 5 9 7 3 5 > 5 Δ > Β Χ < :? 3 9? 5 Χ 9 Β

More information

ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν Α Γ Β 1 Α Ο Α : Α 3. / Π Ο 3 Π Θ

ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν Α Γ Β 1 Α Ο Α : Α 3. / Π Ο 3 Π Θ # % & ( ) +,& ( + &. / 0 1 2 3 ( 4 4 5 4 6 7 8 4 6 5 4 9 :.; 8 0/ ( 6 7 > 5?9 > 56 Α / Β Β 5 Χ 5.Δ5 9 Ε 8 Φ 64 4Γ Β / Α 3 Γ Β > 2 ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν 3 3 3 Α3 3

More information

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ ! # % & ( ) % + ( ), & ). % & /. % 0 1!! 2 3 4 5# 6 7 8 3 5 5 9 # 8 3 3 2 4 # 3 # # 3 # 3 # 3 # 3 # # # ( 3 # # 3 5 # # 8 3 6 # # # # # 8 5# :;< 6#! 6 =! 6 > > 3 2?0 1 4 3 4! 6 Α 3 Α 2Η4 3 3 2 4 # # >

More information

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ ! # % & ( ) +,. / 0 1 + 2. 3 4. 56. / 7 89 8.,6 2 ; # ( ( ; ( ( ( # ? >? % > 64 5 5Α5. Α 8/ 56 5 9. > Β 8. / Χ 8 9 9 5 Δ Ε 5, 9 8 2 3 8 //5 5! Α 8/ 56/ 9. Φ ( < % < ( > < ( %! # ! Β Β? Β ( >?? >?

More information

# #! ) ( ( +,! %,! ( # # %& % ( ) +! +, +. /

# #! ) ( ( +,! %,! ( # # %& % ( ) +! +, +. / ! ( ) # # % % ( % % %! % % & % # #! ) ( ( +,! %,! ( # # %& % ( ) +! +, +. / 12 23 4 5 6 7 3.! (. ( / ( ) ). 1.12 ( 4 4 % & &!7 % (!!!!, (! % !!! % %!,! ( & (!! 8!!!,!!+!! & !!%! & 9 3 3 :;

More information

% %! # % & ( ) % # + # # % # # & & % ( #,. %

% %! # % & ( ) % # + # # % # # & & % ( #,. % !!! # #! # % & % %! # % & ( ) % # + # # % # # & & % ( #,. % , ( /0 ) %, + ( 1 ( 2 ) + %, ( 3, ( 123 % & # %, &% % #, % ( ) + & &% & ( & 4 ( & # 4 % #, #, ( ) + % 4 % & &, & & # / / % %, &% ! # #! # # #

More information

吉林大学学报 工学版 244 第 4 卷 复杂 鉴于本文篇幅所限 具体公式可详见参考文 献 7 每帧的动力学方程建立及其解算方法如图 3 所示 图4 滚转角速度与输入量 η 随时间的变化波形 Fig 4 Waveform of roll rate and input η with time changing 图5 Fig 5 滚转角随时间的变化波形 Waveform of roll angle with

More information

& & ) ( +( #, # &,! # +., ) # % # # % ( #

& & ) ( +( #, # &,! # +., ) # % # # % ( # ! # % & # (! & & ) ( +( #, # &,! # +., ) # % # # % ( # Ι! # % & ( ) & % / 0 ( # ( 1 2 & 3 # ) 123 #, # #!. + 4 5 6, 7 8 9 : 5 ; < = >?? Α Β Χ Δ : 5 > Ε Φ > Γ > Α Β #! Η % # (, # # #, & # % % %+ ( Ι # %

More information

%? = Β 2Β 2 2 <Χ Φ Α Γ 7Δ 8 3 Ε & % # %& Η! % & &, &), 1 & % & +&,,. & / 0, & 2 %. % 3 % / % 4 %

%? = Β 2Β 2 2 <Χ Φ Α Γ 7Δ 8 3 Ε & % # %& Η! % & &, &), 1 & % & +&,,. & / 0, & 2 %. % 3 % / % 4 % ! # % # & ) + ),. / 0 1 2 ) 1 2 2 ) 3 4 5 6! 7 8 9&3 78 : & ; =? > > > 7 8 9&3 : = = = Α + =?! %? = Β 2Β 2 2

More information

; < 5 6 => 6 % = 5

; < 5 6 => 6 % = 5 ! # % ( ),,. / 0. 1, ) 2 3, 3+ 3 # 4 + % 5 6 67 5 6, 8 8 5 6 5 6 5 6 5 6 5 6 5 9! 7 9 9 6 : 6 ; 7 7 7 < 5 6 => 6 % = 5 Δ 5 6 ; Β ;? # Ε 6 = 6 Α Ε ; ; ; ; Φ Α Α Ε 0 Α Α Α Α Α Α Α Α Α Α Α Α Α Β Α Α Α Α Α

More information

?.! #! % 66! & () 6 98: +,. / / 0 & & < > = +5 <. ( < Α. 1

?.! #! % 66! & () 6 98: +,. / / 0 & & < > = +5 <. ( < Α. 1 !! # % # & ( & ) # +, #,., # / 0 1. 0 1 3 4 5! 6 7 6 7 67 +18 9 : : : : : : : : : :! : : < : : ?.! #! % 66! & 6 1 1 3 4.5 () 6 98: +,. / / 0 & 0 0 + & 178 5 3 0. = +5

More information

9 : : ; 7 % 8

9 : : ; 7 % 8 ! 0 4 1 % # % & ( ) # + #, ( ) + ) ( ). / 2 3 %! 5 6 7! 8 6 7 5 9 9 : 6 7 8 : 17 8 7 8 ; 7 % 8 % 8 ; % % 8 7 > : < % % 7! = = = : = 8 > > ; 7 Ε Β Β % 17 7 :! # # %& & ( ) + %&, %& ) # 8. / 0. 1 2 3 4 5

More information

Ε? Φ ) ( % &! # +. 2 ( (,

Ε? Φ ) ( % &! # +. 2 ( (, 0 12 ( 1! # # % & ( ) % ( +, & ). % & /. 4 2! 5 # /6 78 7 7 9 9 / 6 7 7 7 9 9 : 7; 7 ; < =% >9>?!#! Α 2 1 9? Β / 6! #Χ Α 7 5 7 Δ 7 / 6 ; Χ < 7? Ε? Φ ) ( % &! # +. 2 (1 5 5 6 5 6 6 4 0 (, [ Β, Η / Β Γ 7

More information

Ⅰ Ⅱ 1 2 Ⅲ Ⅳ

Ⅰ Ⅱ 1 2 Ⅲ Ⅳ Ⅰ Ⅱ 1 2 Ⅲ Ⅳ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

例15

例15 cos > g g lim lim cos lim lim lim g lim ) ) lim lim g ) cos lim lim lim 3 / ) ) y, ) ) y o y y, ) y y y) y o y) ) e, ), ) y arctan y y Ce y) C y ) e y) y ) e g n www.tsinghuatutor.com [ g ] C k n n) n

More information

: ; # 7 ( 8 7

: ; # 7 ( 8 7 (! # % & ( ) +,. / +. 0 0 ) 1. 2 3 +4 1/,5,6 )/ ) 7 7 8 9 : ; 7 8 7 # 7 ( 8 7 ; ;! #! % & % ( # ) % + # # #, # % + &! #!. #! # # / 0 ( / / 0! #,. # 0(! #,. # 0!. # 0 0 7 7 < = # ; & % ) (, ) ) ) ) ) )!

More information

1#

1# ! # % & ( % + #,,. + /# + 0 1#. 2 2 3 4. 2 +! 5 + 6 0 7 #& 5 # 8 % 9 : ; < =# #% > 1?= # = Α 1# Β > Χ50 7 / Δ % # 50& 0 0= % 4 4 ; 2 Ε; %5 Β % &=Φ = % & = # Γ 0 0 Η = # 2 Ι Ι ; 9 Ι 2 2 2 ; 2 ;4 +, ϑ Α5#!

More information

Υ 2 Δ Υ 1 = 1 : Φ Υ 1 Ω 5 ς ) Ν + Φ 5 ς ς Α+ ) Ν Φ 6 Ξ ς Α+ 4 Φ Ψ Ψ + = Ε 6 Ψ Ε Ε Π Υ Α Ε Ω 2? Ε 2 5 Ο ; Μ : 4 1 Ω % Β 3 : ( 6 Γ 4 Ρ 2 Ρ

Υ 2 Δ Υ 1 = 1 : Φ Υ 1 Ω 5 ς ) Ν + Φ 5 ς ς Α+ ) Ν Φ 6 Ξ ς Α+ 4 Φ Ψ Ψ + = Ε 6 Ψ Ε Ε Π Υ Α Ε Ω 2? Ε 2 5 Ο ; Μ : 4 1 Ω % Β 3 : ( 6 Γ 4 Ρ 2 Ρ # % & & ( & ) +,. / 0 11 + 23 4 4 5 6 7 %+ 8 9 : ; 8 < %+ % = 4 )>? > Α ( 8 % 1 1 Β Χ > Χ Δ Χ Β > Ε) > 4 > Ε) Φ Δ 5 Γ + % 8 + %. < 6 & % &. : 5 Η+ % Ι & : 5 &% + 8 ) : 6 %, 6, + % 5 ϑ # & > 2 3 Χ Δ Α ;

More information

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % #! # # %! # + 5 + # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % ,9 989 + 8 9 % % % % # +6 # % 7, # (% ) ,,? % (, 8> % %9 % > %9 8 % = ΑΒ8 8 ) + 8 8 >. 4. ) % 8 # % =)= )

More information

Β # # 6 Χ 7 Χ 3 6 Α 7 6 ; Δ Ε Φ +/ Φ Ε+Γ Δ /Η ; Ι/ ϑκ +Λ, 7 6 1Η Μ/ Φ; # 7 6? =# 7 6 1Η Μ/ Φ; # 7 6Χ Ν 7 6 Ο Μ / ϑγ +Γ 7 ) 6 7 Χ Π + Κ

Β # # 6 Χ 7 Χ 3 6 Α 7 6 ; Δ Ε Φ +/ Φ Ε+Γ Δ /Η ; Ι/ ϑκ +Λ, 7 6 1Η Μ/ Φ; # 7 6? =# 7 6 1Η Μ/ Φ; # 7 6Χ Ν 7 6 Ο Μ / ϑγ +Γ 7 ) 6 7 Χ Π + Κ 2 + 3 2 333 ( + # # & ( & ) +, + +. / 0 1 ( / ( + 5 # 6 7 6 7 8 8 9 : ); < 6 # 7 8 6 7 6 # = 7 # = # > 6? 7 > Α Α Α Α Α Α 6 # 7 > 67 # 8 Β # # 6 Χ 7 Χ 3 6 Α 7 6 ; Δ Ε Φ +/ Φ Ε+Γ 7 6 7 6 + Δ /Η ; Ι/ ϑκ

More information

Φ2,.. + Φ5Β( 31 (+ 4, 2 (+, Η, 8 ( (2 3.,7,Χ,) 3 :9, 4 (. 3 9 (+, 52, 2 (1 7 8 ΙΜ 12 (5 4 5? ), 7, Χ, ) 3 :9, 4( > (+,,3, ( 1 Η 34 3 )7 1 )? 54

Φ2,.. + Φ5Β( 31 (+ 4, 2 (+, Η, 8 ( (2 3.,7,Χ,) 3 :9, 4 (. 3 9 (+, 52, 2 (1 7 8 ΙΜ 12 (5 4 5? ), 7, Χ, ) 3 :9, 4( > (+,,3, ( 1 Η 34 3 )7 1 )? 54 !! # %& ( ) +, ( ),./0 12,2 34 (+,, 52, 2 (67 8 3., 9: ), ; 5, 4, < 5) ( (, 2 (3 3 1 6 4, (+,,3,0 ( < 58 34 3 )7 1 54 5, 2 2 54, +,. 2 ( :5 ( > 4 ( 37 1, ( 3 4 5? 3 1 (, 9 :), ; 5 4 )1 7 4 )3 5( 34 2 Α

More information

Β Χ Χ Α Β Φ Φ ; < # 9 Φ ; < # < % Γ & (,,,, Η Ι + / > ϑ Κ ( < % & Λ Μ # ΝΟ 3 = Ν3 Ο Μ ΠΟ Θ Ρ Μ 0 Π ( % ; % > 3 Κ ( < % >ϑ Κ ( ; 7

Β Χ Χ Α Β Φ Φ ; < # 9 Φ ; < # < % Γ & (,,,, Η Ι + / > ϑ Κ ( < % & Λ Μ # ΝΟ 3 = Ν3 Ο Μ ΠΟ Θ Ρ Μ 0 Π ( % ; % > 3 Κ ( < % >ϑ Κ ( ; 7 ! # % & ( ) +, + )% ). )% / 0 1. 0 3 4 5 6 7 8 7 8 9 : ; < 7 ( % ; =8 9 : ; < ; < > ;, 9 :? 6 ; < 6 5 6 Α Β 5 Δ 5 6 Χ 5 6 5 6 Ε 5 6 Ε 5 5 Β Χ Χ Α Β 7 8 9 Φ 5 6 9 Φ ; < # 9 Φ ; < # 7 8 5 5 < % Γ & (,,,,

More information

9. =?! > = 9.= 9.= > > Η 9 > = 9 > 7 = >!! 7 9 = 9 = Σ >!?? Υ./ 9! = 9 Σ 7 = Σ Σ? Ε Ψ.Γ > > 7? >??? Σ 9

9. =?! > = 9.= 9.= > > Η 9 > = 9 > 7 = >!! 7 9 = 9 = Σ >!?? Υ./ 9! = 9 Σ 7 = Σ Σ? Ε Ψ.Γ > > 7? >??? Σ 9 ! # %& ( %) & +, + % ) # % % )./ 0 12 12 0 3 4 5 ). 12 0 0 61 2 0 7 / 94 3 : ;< = >?? = Α Β Β Β Β. Β. > 9. Δ Δ. Ε % Α % Φ. Β.,,.. Δ : : 9 % Γ >? %? >? Η Ε Α 9 Η = / : 2Ι 2Ι 2Ι 2Ι. 1 ϑ : Κ Λ Μ 9 : Ν Ο 0

More information

ΗΗ Β Η Η Η ϑ ΗΙ ( > ( > 8 Κ Κ 9 Λ! 0 Μ 4 Ν ΟΠ 4 Ν 0 Θ Π < Β < Φ Ρ Σ Ο ΟΦ Ρ Σ ) Ο Τ 4 Μ 4 Ν Π Υ Φ Μ ς 6 7 6Ω : 8? 9 : 8 ; 7 6Ω 1 8? ; 7 : ; 8 ; 9

ΗΗ Β Η Η Η ϑ ΗΙ ( > ( > 8 Κ Κ 9 Λ! 0 Μ 4 Ν ΟΠ 4 Ν 0 Θ Π < Β < Φ Ρ Σ Ο ΟΦ Ρ Σ ) Ο Τ 4 Μ 4 Ν Π Υ Φ Μ ς 6 7 6Ω : 8? 9 : 8 ; 7 6Ω 1 8? ; 7 : ; 8 ; 9 !! # % # & ( & ) #, #,., # / 01. 0 3 4 4!! 5 6 7 6 7 8 9 : 9 ; 6 1 7 < 1? :! ; = >, 8 8 9 ; Α < 1 6 7 Β 6 7 6. Χ : 9 8? 9 ; 7 8? 9 ; = = Δ Ε Φ Γ 5 =!!? ΗΗ Β Η Η Η ϑ ΗΙ ( > ( > 8 Κ Κ 9 Λ! 0 Μ 4 Ν ΟΠ 4 Ν

More information

< = = Β = :?? Β Χ? < = 3 = Β = :? 3? <? 3 =? & =3? & & 6 8 & = Δ =3?3 Ε Φ Γ? = 6Β8 &3 =3?? =? = Η = Φ Η = > Φ Η = Φ Η Φ Η? > Φ Η? Φ Η Η 68 &! # % & (%

< = = Β = :?? Β Χ? < = 3 = Β = :? 3? <? 3 =? & =3? & & 6 8 & = Δ =3?3 Ε Φ Γ? = 6Β8 &3 =3?? =? = Η = Φ Η = > Φ Η = Φ Η Φ Η? > Φ Η? Φ Η Η 68 &! # % & (% !! # % & ( ) ( + % & ( ) &, % &., / 0 # 2 34!! 5 6 7 7 7 8 9 6 8 :! 9! 7 :!!! 6 8 :! 9 6 8 7 ;7 < < = = > = :?? > 6 Α 8 < = = Β = :?? Β Χ? < = 3 = Β = :? 3?

More information

Γ Ν Ν, 1 Ο ( Π > Π Θ 5?, ΔΓ 2 ( ΜΡ > Σ 6 = Η 1 Β Δ 1 = Δ Ι Δ 1 4 Χ ΓΗ 5 # Θ Γ Τ Δ Β 4 Δ 4. > 1 Δ 4 Φ? < Ο 9! 9 :; ;! : 9!! Υ9 9 9 ; = 8; = ; =

Γ Ν Ν, 1 Ο ( Π > Π Θ 5?, ΔΓ 2 ( ΜΡ > Σ 6 = Η 1 Β Δ 1 = Δ Ι Δ 1 4 Χ ΓΗ 5 # Θ Γ Τ Δ Β 4 Δ 4. > 1 Δ 4 Φ? < Ο 9! 9 :; ;! : 9!! Υ9 9 9 ; = 8; = ; = ! 0 1 # & ( & ) +! &,. & /.#. & 2 3 4 5 6 7 8 9 : 9 ; < = : > < = 9< 4 ; < = 1 9 ; 3; : : ; : ;? < 5 51 ΑΒ Χ Δ Ε 51 Δ!! 1Φ > = Β Γ Η Α ΒΧ Δ Ε 5 11!! Ι ϑ 5 / Γ 5 Κ Δ Ε Γ Δ 4 Φ Δ Λ< 5 Ε 8 Μ9 6 8 7 9 Γ Ν

More information

7 < : = >? ; Α 9 Α ;

7 < : = >? ; Α 9 Α ; ! # % # & ( & ) # +, #,., # / (,. 1 2 3 4! 5 6 7 68 7! 9! : 6 7 ; 6 7 ; < 6 5 7 < : = >? 67 6 7 6 7 ; Α 9 Α ; ; < 9 : = Β : Χ7 Δ ) Ε 6 7 4 Φ Δ Γ ) Ε 4 :!Β + Η Χ 6 7 Δ Ι ϑ : 9 < = Β! 6 7 > < Χ Κ5 Κ ( :

More information

9! >: Ε Φ Ε Ε Φ 6 Φ 8! & (, ( ) ( & & 4 %! # +! ; Γ / : ; : < =. ; > = >?.>? < Α. = =.> Β Α > Χ. = > / Δ = 9 5.

9! >: Ε Φ Ε Ε Φ 6 Φ 8! & (, ( ) ( & & 4 %! # +! ; Γ / : ; : < =. ; > = >?.>? < Α. = =.> Β Α > Χ. = > / Δ = 9 5. ! # % & ( # ) & % ( % +, %. +, / #0 & 2 3 4 5 5 6 7 7 8 9 7:5! ; 0< 5 = 8 > 4 4? 754 Α 4 < = Β Χ 3Δ?? 7 8 7 8? 7 8 7 8 7 8 4 5 7 8 7 8 > 4> > 7 8 7 8 7 8 4 : 5 5 : > < 8 6 8 4 5 : 8 4 5 : 9! >: 48 7 8

More information

. Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )? : Β Ν :) Ε Ν & Ν? ς Ε % ) Ω > % Τ 7 Υ Ν Ν? Π 7 Υ )? Ο 1 Χ Χ Β 9 Ξ Ψ 8 Ψ # #! Ξ ; Ξ > # 8! Ζ! #!! Θ Ξ #!! 8 Θ!

. Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )? : Β Ν :) Ε Ν & Ν? ς Ε % ) Ω > % Τ 7 Υ Ν Ν? Π 7 Υ )? Ο 1 Χ Χ Β 9 Ξ Ψ 8 Ψ # #! Ξ ; Ξ > # 8! Ζ! #!! Θ Ξ #!! 8 Θ! !! # %& + ( ) ),., / 0 12 3, 4 5 6, 7 6 6, 8! 1 9 :; #< = 1 > )& )? Α Β 3 % Χ %? 7) >ΔΒ Χ :% Ε? 9 : ; Φ Η Ι & Κ Λ % 7 Μ Ν?) 1!! 9 % Ο Χ Χ Β Π Θ Π ; Ρ Ρ Ρ Ρ Ρ ; . Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )?

More information

Fig1 Theforceappliedtothetrainwhenrunning :w = w j +w q (3) :w = w = w 0 +w j (4) w i 121 基本阻力 w r = 600 R ( N/kN) (8) :R : [2] w s [3] w s =0

Fig1 Theforceappliedtothetrainwhenrunning :w = w j +w q (3) :w = w = w 0 +w j (4) w i 121 基本阻力 w r = 600 R ( N/kN) (8) :R : [2] w s [3] w s =0 31 4 2012 8 JournalofLanzhouJiaotongUniversity Vol31No4 Aug2012 :1001-4373(2012)04-0097-07 * 张友兵 张 波 ( 100073) : 分析了列车运行过程中的受力情况 给出了制动过程中减速度的计算方法 并采用正向 反向两种迭代方式计算列车制动曲线 两种方式计算出的制动曲线一致 证明了计算制动曲线的方法是正确的

More information

% % %/ + ) &,. ) ) (!

% % %/ + ) &,. ) ) (! ! ( ) + & # % % % %/ + ) &,. ) ) (! 1 2 0 3. 34 0 # & 5 # #% & 6 7 ( ) .)( #. 8!, ) + + < ; & ; & # : 0 9.. 0?. = > /! )( + < 4 +Χ Α # Β 0 Α ) Δ. % ΕΦ 5 1 +. # Ι Κ +,0. Α ϑ. + Ι4 Β Η 5 Γ 1 7 Μ,! 0 1 0

More information

) & ( +,! (# ) +. + / & 6!!!.! (!,! (! & 7 6!. 8 / ! (! & 0 6! (9 & 2 7 6!! 3 : ; 5 7 6! ) % (. ()

) & ( +,! (# ) +. + / & 6!!!.! (!,! (! & 7 6!. 8 / ! (! & 0 6! (9 & 2 7 6!! 3 : ; 5 7 6! ) % (. () ! # % & & &! # % &! ( &! # )! ) & ( +,! (# ) +. + / 0 1 2 3 4 4 5 & 6!!!.! (!,! (! & 7 6!. 8 / 6 7 6 8! (! & 0 6! (9 & 2 7 6!! 3 : ; 5 7 6! ) % (. () , 4 / 7!# + 6 7 1 1 1 0 7!.. 6 1 1 2 1 3

More information

Β Χ + Δ Ε /4 10 ) > : > 8 / 332 > 2 / 4 + Φ + Γ 0 4 Η / 8 / 332 / 2 / 4 + # + Ι + ϑ /) 5 >8 /3 2>2 / 4 + ( )( + 8 ; 8 / 8. 8 :

Β Χ + Δ Ε /4 10 ) > : > 8 / 332 > 2 / 4 + Φ + Γ 0 4 Η / 8 / 332 / 2 / 4 + # + Ι + ϑ /) 5 >8 /3 2>2 / 4 + ( )( + 8 ; 8 / 8. 8 : !! # % & % () + (. / 0 ) 1 233 /. / 4 2 0 2 + + 5. 2 / 6 ) 6. 0 ) 7. 8 1 6 / 2 9 2 :+ ; < 8 10 ; + + ( =0 41 6< / >0 7 0?2) 29 + +.. 81 6> Α 29 +8 Β Χ + Δ Ε /4 10 )+ 2 +. 8 1 6 > 2 9 2 : > 8 / 332 > 2

More information

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9 !! #! % & ( ) +,. / 0 1 2 34 5 6 % & +7 % & 89 % & % & 79 % & : % & < < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ

More information

4 4 4 4 4 4! # % & ( # ) )! ) & +!. # / 0! + 1 & % / 0 2 & #. 3 0 5. 6 7 8 0 4 0 0 # 9 : ; < 9 = >9? Α = Β Χ Δ6 Ε9 8 & 9 : # 7 6 Φ = Γ Η Ι 0 ϑ 9 7 Κ 1 Λ 7 Κ % ΓΗ Δ 9 Η ΕΔ 9 = ;

More information

Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3 Ε Φ Γ ΕΙΙ 3 Χ 3 Φ 4 Κ? 4 3 Χ Λ Μ 3 Γ Ε Φ ) Μ Ε Φ? 5 : < 6 5 % Λ < 6 5< > 6! 8 8 8! 9 9 9! 9 =! = 9!

Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3 Ε Φ Γ ΕΙΙ 3 Χ 3 Φ 4 Κ? 4 3 Χ Λ Μ 3 Γ Ε Φ ) Μ Ε Φ? 5 : < 6 5 % Λ < 6 5< > 6! 8 8 8! 9 9 9! 9 =! = 9! # %!!! ( ) ( +, +. ( / 0 1) ( 21 1) ( 2 3 / 4!! 5 6 7 7! 8 8 9 : ; < 9 = < < :! : = 9 ; < = 8 9 < < = 9 8 : < >? % > % > % 8 5 6 % 9!9 9 : : : 9 Α % 9 Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3

More information

15-03.indd

15-03.indd 1 02 07 09 13 18 24 32 37 42 53 59 66 70 06 12 17 23 36 52 65 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 fl fi fi 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 σ σ σ α α 36 37 38 39 40 41 42 43 44

More information

: Π Δ 9 Δ 9 Δ 9 7 Θ Μ 9 8 Ρ Σ # = Μ 0 ; 9 < = 5 Λ 6 # = = # Μ Μ 7 Τ Μ = < Μ Μ Ο = Ρ # Ο Ο Ο! Ο 5 6 ;9 5 5Μ Ο 6

: Π Δ 9 Δ 9 Δ 9 7 Θ Μ 9 8 Ρ Σ # = Μ 0 ; 9 < = 5 Λ 6 # = = # Μ Μ 7 Τ Μ = < Μ Μ Ο = Ρ # Ο Ο Ο! Ο 5 6 ;9 5 5Μ Ο 6 ! # % # & ( ) +, #,. # / 0. 0 2 3 4! 5 6 5 6 7 8 5 6 5 6 8 9 : # ; 9 < = 8 = > 5 0? 0 Α 6 Β 7 5ΧΔ ΕΦ 9Γ 6 Η 5+3? 3Ι 3 ϑ 3 6 ΗΚ Η Λ!Κ Η7 Μ ΒΜ 7 Ν!! Ο 8 8 5 9 6 : Π 5 6 8 9 9 5 6 Δ 9 Δ 9 Δ 9 7 Θ Μ 9 8 Ρ

More information

) ( ) ( ) ( # ) ( <> ) ( ) ( ) < ( #6 Α! Χ, % Δ Χ 8 % Χ < 8 > Χ 3 Β,Α Α, 8 Χ? 8 > 8 % > # # < > # # # < > 8 8 8, Χ? 8 Ε % <> Ε 8 Φ 4> ( < 8 Φ # Χ, Χ!

) ( ) ( ) ( # ) ( <> ) ( ) ( ) < ( #6 Α! Χ, % Δ Χ 8 % Χ < 8 > Χ 3 Β,Α Α, 8 Χ? 8 > 8 % > # # < > # # # < > 8 8 8, Χ? 8 Ε % <> Ε 8 Φ 4> ( < 8 Φ # Χ, Χ! !! 3! # % & ( ) +, ) + #. / 0 / 1 / 2 % 4 5 ) ( ) ( 6, 67 8 & ( + )4 9 ( : ; 2 ) ( ) < ( ) 8 ( 2 ) ( 5 2 = ( 2 # >? ) ( ) ( ) ( # ) ( ) ( ) ( ) < ( #6 Α! Χ, % Δ Χ 8 % Χ < 8 > Χ 3 Β,Α Α, 8 Χ? 8 > 8 %

More information

= Β Χ Δ

= Β Χ Δ , 0! # %! & ( ) +! % &. / 1 2 3 4 56 6 5 8 9 8 5 86 2 3 : 5 : 5 5 5: ; < = : 5 5 % >6 ; 5 8 98 58? : 2 3 4 56 6 68 5 8 Α 1 6 5 5 = Β Χ Δ ; 2 3 Ε9 58 8 98 5 86 65 5 5 5: : 2 3 Α Φ 5 65 Α Γ 5 5: Η 5? 9 :

More information

()! +! ), +. / %! ) (! ,4! 9 ) ) ) (! ) ) ) % & 0 ( % & 0 : % & 9 2! 7 : 1 % ; < ) ) 2 = >? ) : ) ), (), Α, Β,,!! ( ) )

()! +! ), +. / %! ) (! ,4! 9 ) ) ) (! ) ) ) % & 0 ( % & 0 : % & 9 2! 7 : 1 % ; < ) ) 2 = >? ) : ) ), (), Α, Β,,!! ( ) ) !! # % % #! & % ()! +! ), +. / %! ) 0 1 2 (! 3 4 5 5 5 7 5 8,4! 9 ) ) ) (! ) ) ) % & 0 ( 3 4 5 5 5 % & 0 : % & 9 2! 7 : 1 % ; < ) ) 2 = >? ) : ) ), (), Α, Β,,!! ( ) ) % ) ) ) ), 0 ) ) ), Χ % Δ! 2 ; ( #!

More information

; 9 : ; ; 4 9 : > ; : = ; ; :4 ; : ; 9: ; 9 : 9 : 54 =? = ; ; ; : ;

; 9 : ; ; 4 9 : > ; : = ; ; :4 ; : ; 9: ; 9 : 9 : 54 =? = ; ; ; : ; ! # % & ( ) ( +, +. ( /0!) ( 1!2!) ( 3 4 5 2 4 7 8 9: ; 9 < : = ; ; 54 ; = ; ; 75 ; # ; 9 : ; 9 : ; ; 9: ; ; 9 : ; ; 4 9 : > ; : = ; ; :4 ; : ; 9: ; 9 : 9 : 54 =? = ; ; ; 54 9 9: ; ;

More information

y 1 = 槡 P 1 1h T 1 1f 1 s 1 + 槡 P 1 2g T 1 2 interference 2f 2 s y 2 = 槡 P 2 2h T 2 2f 2 s 2 + 槡 P 2 1g T 2 1 interference 1f 1 s + n n

y 1 = 槡 P 1 1h T 1 1f 1 s 1 + 槡 P 1 2g T 1 2 interference 2f 2 s y 2 = 槡 P 2 2h T 2 2f 2 s 2 + 槡 P 2 1g T 2 1 interference 1f 1 s + n n 37 1 Vol 37 No 1 2013 1 Journal of Jiangxi Normal UniversityNatural Science Jan 2013 1000-5862201301-0037-05 MISO 郭荣新, 袁继昌 361021 2 RVQ 2 MISO 3 TN 911 7 A 0 MIMO 2 MISO 3 MIMOnetwork MIMO 3GPP LTE-A 2

More information

& &((. ) ( & ) 6 0 &6,: & ) ; ; < 7 ; = = ;# > <# > 7 # 0 7#? Α <7 7 < = ; <

& &((. ) ( & ) 6 0 &6,: & ) ; ; < 7 ; = = ;# > <# > 7 # 0 7#? Α <7 7 < = ; < ! # %& ( )! & +, &. / 0 # # 1 1 2 # 3 4!. &5 (& ) 6 0 0 2! +! +( &) 6 0 7 & 6 8. 9 6 &((. ) 6 4. 6 + ( & ) 6 0 &6,: & )6 0 3 7 ; ; < 7 ; = = ;# > 7 # 0 7#? Α

More information

3 = 4 8 = > 8? = 6 + Α Β Χ Δ Ε Φ Γ Φ 6 Η 0 Ι ϑ ϑ 1 Χ Δ Χ ΦΚ Δ 6 Ε Χ 1 6 Φ 0 Γ Φ Γ 6 Δ Χ Γ 0 Ε 6 Δ 0 Ι Λ Χ ΦΔ Χ & Φ Μ Χ Ε ΝΓ 0 Γ Κ 6 Δ Χ 1 0

3 = 4 8 = > 8? = 6 + Α Β Χ Δ Ε Φ Γ Φ 6 Η 0 Ι ϑ ϑ 1 Χ Δ Χ ΦΚ Δ 6 Ε Χ 1 6 Φ 0 Γ Φ Γ 6 Δ Χ Γ 0 Ε 6 Δ 0 Ι Λ Χ ΦΔ Χ & Φ Μ Χ Ε ΝΓ 0 Γ Κ 6 Δ Χ 1 0 / 0 1 0 3!! # % & ( ) ( + % & ( ) &, % &., 45 6!! 7 4 8 4 8 9 : ;< 4 8 3!, 3 9!! 4 8 ; ; 7 3 = 4 8 = > 8? 6 10 1 4 8 = 6 + Α Β Χ Δ Ε Φ Γ Φ 6 Η 0 Ι ϑ ϑ 1 Χ Δ Χ ΦΚ Δ 6 Ε Χ 1 6 Φ 0 Γ Φ Γ 6 Δ Χ Γ 0 Ε 6 Δ 0

More information

08-01.indd

08-01.indd 1 02 04 08 14 20 27 31 35 40 43 51 57 60 07 26 30 39 50 56 65 65 67 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ω ρ ε 23 λ ω < 1 ω < 1 ω > 0 24 25 26 27 28 29 30 31 ρ 1 ρ σ b a x x i +3 x i

More information

: ; 8 Β < : Β Δ Ο Λ Δ!! Μ Ν : ; < 8 Λ Δ Π Θ 9 : Θ = < : ; Δ < 46 < Λ Ρ 0Σ < Λ 0 Σ % Θ : ;? : : ; < < <Δ Θ Ν Τ Μ Ν? Λ Λ< Θ Ν Τ Μ Ν : ; ; 6 < Λ 0Σ 0Σ >

: ; 8 Β < : Β Δ Ο Λ Δ!! Μ Ν : ; < 8 Λ Δ Π Θ 9 : Θ = < : ; Δ < 46 < Λ Ρ 0Σ < Λ 0 Σ % Θ : ;? : : ; < < <Δ Θ Ν Τ Μ Ν? Λ Λ< Θ Ν Τ Μ Ν : ; ; 6 < Λ 0Σ 0Σ > ! # %& ( +, &. / ( 0 # 1# % & # 2 % & 4 5 67! 8 9 : ; < 8 = > 9? 8 < 9? Α,6 ΒΧ : Δ 8Ε 9 %: ; < ; ; Δ Φ ΓΗ Ιϑ 4 Κ6 : ; < < > : ; : ;!! Β : ; 8 Β < : Β Δ Ο Λ Δ!! Μ Ν : ; < 8 Λ Δ Π Θ 9 : Θ = < : ; Δ < 46

More information

3 4 Ψ Ζ Ζ [, Β 7 7>, Θ0 >8 : Β0 >, 4 Ε2 Ε;, ] Ε 0, 7; :3 7;,.2.;, _ & αε Θ:. 3 8:,, ), β & Φ Η Δ?.. 0?. χ 7 9 Ε >, Δ? Β7 >7 0, Τ 0 ΚΚ 0 χ 79 Ε >, Α Ε

3 4 Ψ Ζ Ζ [, Β 7 7>, Θ0 >8 : Β0 >, 4 Ε2 Ε;, ] Ε 0, 7; :3 7;,.2.;, _ & αε Θ:. 3 8:,, ), β & Φ Η Δ?.. 0?. χ 7 9 Ε >, Δ? Β7 >7 0, Τ 0 ΚΚ 0 χ 79 Ε >, Α Ε (! # # %& ) +,./ 0 & 0 1 2 / & %&( 3! # % & ( ) & +, ), %!,. / 0 1 2. 3 4 5 7 8 9 : 0 2; < 0 => 8?.. >: 7 2 Α 5 Β % Χ7 Δ.Ε8 0Φ2.Γ Φ 5 Η 8 0 Ι 2? : 9 ϑ 7 ϑ0 > 2? 0 7Ε 2?. 0. 2 : Ε 0 9?: 9 Κ. 9 7Λ /.8 720

More information

! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ! 7 7 Δ Δ 2! Χ Δ = Χ! Δ!! =! ; 9 7 Χ Χ Χ <? < Χ 8! Ε (9 Φ Γ 9 7! 9 Δ 99 Φ Γ Χ 9 Δ 9 9 Φ Γ = Δ 9 2

! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ! 7 7 Δ Δ 2! Χ Δ = Χ! Δ!! =! ; 9 7 Χ Χ Χ <? < Χ 8! Ε (9 Φ Γ 9 7! 9 Δ 99 Φ Γ Χ 9 Δ 9 9 Φ Γ = Δ 9 2 ! # % ( % ) +,#./,# 0 1 2 / 1 4 5 6 7 8! 9 9 : ; < 9 9 < ; ?!!#! % ( ) + %,. + ( /, 0, ( 1 ( 2 0% ( ),..# % (., 1 4 % 1,, 1 ), ( 1 5 6 6 # 77 ! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ!

More information

Δ 6 Ε Φ Φ 9 > : : Γ Γ Η : 8 Κ 9 : > % Α%Β Β 8 6 Β 8 6 Κ Ι > ϑ, ϑ Λ, 1ϑ (, Β ϑ 9 9 Μ = >+? Β = ; ΕΝ Ν1Ο Κ Λ 69 Α% 0 8

Δ 6 Ε Φ Φ 9 > : : Γ Γ Η : 8 Κ 9 : > % Α%Β Β 8 6 Β 8 6 Κ Ι > ϑ, ϑ Λ, 1ϑ (, Β ϑ 9 9 Μ = >+? Β = ; ΕΝ Ν1Ο Κ Λ 69 Α% 0 8 # % # & ( ) +, #,. # / 0 1. 0 3 4 15 6 7 8 9 6 : ; < ; = > + < : 10? 8 6 9 > Α 6;1? Β () % & & #,, # 3 Χ / 3. & / 0 1 4 + & & 5&, 6, 0 % & 1 ) 3, ) 7, 1 5 & %& 4 1 58 + 9 : + 9. ;.8 9< 5 1 9 Δ 6 Ε Φ 1

More information

! + + / > / + / + > > > +, + &+ 0.? Α Β Χ Β / Δ Δ Α Β Χ Β + & , + ΕΦ (?Γ Η.Δ. + Ι + 1 %+ : +, 5+ + ; +, + Ι + : + ; ϑ + ;! + + Ι & + & ϑ

! + + / > / + / + > > > +, + &+ 0.? Α Β Χ Β / Δ Δ Α Β Χ Β + & , + ΕΦ (?Γ Η.Δ. + Ι + 1 %+ : +, 5+ + ; +, + Ι + : + ; ϑ + ;! + + Ι & + & ϑ ! # % & () +, () (+. / & # % & () (+ () + 0 1 & ) + + + 2 2 2 1 / & 2 3 ( + (+ 41 ( + 15. / + 6 7 / 5 1 + 1 + 8 8 1/, 4 9 + : 6 ; < ; 6 ; = 9 04 ; 6 ; 49 / &+ > + > + >,+ & &+ / > ! + + / > / + / + > >

More information

7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ;

7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ; ! #! % & % ( ) ( +, & %. / & % 0 12 / 1 4 5 5! 6 7 8 7 # 8 7 9 6 8 7! 8 7! 8 7 8 7 8 7 8 7 : 8 728 7 8 7 8 7 8 7 8 7 & 8 7 4 8 7 9 # 8 7 9 ; 8 ; 69 7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β

More information

, & % # & # # & % & + # & # # # & # % #,

, & % # & # # & % & + # & # # # & # % #, ! # #! % # & # & & ( ( # ) % , & % # & # # & % & + # & # # # & # % #, # % % # % # ) % # % % # % # # % # % # + # % ( ( # % & & & & & & % & & # % # % & & % % % . % # / & & # 0 ) & # % & % ( # # & & & # #

More information

!? > 7 > 7 > 7 Ε ! Α Φ Φ Γ Η Ι Γ / 2 ; Γ / 4 Δ : 4 ϑ / 4 # Η Γ Κ 2 Η 4 Δ 4 Α 5 Α 8 Λ Ηϑ Μ Α Α 4!! Ο. /3 :/Π : Θ Γ 2 ; Γ / 4 Ρ Α

!? > 7 > 7 > 7 Ε ! Α Φ Φ Γ Η Ι Γ / 2 ; Γ / 4 Δ : 4 ϑ / 4 # Η Γ Κ 2 Η 4 Δ 4 Α 5 Α 8 Λ Ηϑ Μ Α Α 4!! Ο. /3 :/Π : Θ Γ 2 ; Γ / 4 Ρ Α !! # % & % ( ) ) + # %, #. /,. / 1 2 3 4 5! 6 /7! 7 8 7 /7 8 7! 7 /7 9 : ; < = ; >? 7 4 4 4 Α Β Χ 9 > 7 4 ΔΑΕ 6 4 Β Β!4 /7 9! 7? 87 ; !? > 7 > 7 > 7 Ε 4 8 5 8! Α Φ Φ Γ Η Ι Γ / 2 ; Γ / 4 Δ : 4 ϑ / 4 # Η

More information

Ρ Ρ. / / Γ 9 < 3 2 Ν Α Β Χ Ν Γ Μ 9 ΚΚ 8 Ν 8 9 +? 9 ϑ, = Γ Ν 9 8 : = = Χ 6 ΚΚ 6 6 Γ : Π = Χ Ε 8 = Χ < Μ Π = Χ % < 8 8 : = < Κ <

Ρ Ρ. / / Γ 9 < 3 2 Ν Α Β Χ Ν Γ Μ 9 ΚΚ 8 Ν 8 9 +? 9 ϑ, = Γ Ν 9 8 : = = Χ 6 ΚΚ 6 6 Γ : Π = Χ Ε 8 = Χ < Μ Π = Χ % < 8 8 : = < Κ < ! # % & # ( )(! &! & +, +,. / 0. 1. +.,. / 2 + 3,.3 +, + 3, 3 2 3 5 / 3 6 + # 6 7, 30 3 3. 3 / / 0. 2 / 3 2 6 % 8 9 : ; 7 < 8 = 6 > 8 6? 6 8 8 8 Α Β 6 6 = 8 Χ 9 8 Δ = + 8 Ε 7 Α

More information

84 / ! / ! 9 9 9!! 9 : ; < = 1 //< & >!! ? : ; <. 1 //< &! Α

84 / ! / ! 9 9 9!! 9 : ; < = 1 //< & >!! ? : ; <. 1 //< &! Α 5 6! # % # & () +,. /,. + 1 2 3 4 5 6! 7 7! 8 84 5 6 9 5 6 8 84 / 5 6 5 6 56 56 5 6 56 5 6! / 49 8 9 9! 9 9 9!! 9 : ; < = 1 //< & >!! 9 5 8 4 6? 4 9 99 8 8 99 9 7 4 4 7 : ;

More information

= > : ; < ) ; < ; < ; : < ; < = = Α > : Β ; < ; 6 < > ;: < Χ ;< : ; 6 < = 14 Δ Δ = 7 ; < Ε 7 ; < ; : <, 6 Φ 0 ; < +14 ;< ; < ; 1 < ; <!7 7

= > : ; < ) ; < ; < ; : < ; < = = Α > : Β ; < ; 6 < > ;: < Χ ;< : ; 6 < = 14 Δ Δ = 7 ; < Ε 7 ; < ; : <, 6 Φ 0 ; < +14 ;< ; < ; 1 < ; <!7 7 ! # % # & ( & ) # +,,., # / 0 1 3. 0. 0/! 14 5! 5 6 6 7 7 7 7 7! 7 7 7 7 7 7 8 9 : 6! ; < ; < ; : 7 7 : 7 < ;1< = = : = >? ) : ; < = > 6 0 0 : ; < ) ; < ; < ; : < ; < = = 7 7 7 Α > : Β ; < ; 6 < > ;:

More information

第 卷 第 期 计算机工程 年 月 移动互联与通信技术 文章编号 文献标志码 中图分类号 2 大规模 4 4 系统中基于迫零预编码的能效优化算法 李民政 李艳峰 桂林电子科技大学计算机与信息安全学院 广西桂林 广西信息科学实验中心 广西桂林 广西可信软件重点实验室 广西桂林 摘 要 在大规模多输入多

第 卷 第 期 计算机工程 年 月 移动互联与通信技术 文章编号 文献标志码 中图分类号 2 大规模 4 4 系统中基于迫零预编码的能效优化算法 李民政 李艳峰 桂林电子科技大学计算机与信息安全学院 广西桂林 广西信息科学实验中心 广西桂林 广西可信软件重点实验室 广西桂林 摘 要 在大规模多输入多 第 卷 第 期 计算机工程 年 月 移动互联与通信技术 文章编号 文献标志码 中图分类号 2 大规模 44 系统中基于迫零预编码的能效优化算法 李民政 李艳峰 桂林电子科技大学计算机与信息安全学院 广西桂林 广西信息科学实验中心 广西桂林 广西可信软件重点实验室 广西桂林 摘 要 在大规模多输入多输出无线通信系统中 为提高能效的利用率 提出一种用于优化下行链路能效的功率分配算法 基于迫零预编码思想推导出速率与用户总功率的解析式

More information

Τ Δ Δ ΝΔ Ο Π 1 # % #! 3 Η Μ.! 1 / 5 6 Ρ 3 Γ Η 1 Κ 6 ; Σ 5 8! Μ? Μ! # % Δ Μ 1 # %! = 47 > 47 ; 1 # %! 4Υ #! # Η# # %! 4 =7 =? Ν

Τ Δ Δ ΝΔ Ο Π 1 # % #! 3 Η Μ.! 1 / 5 6 Ρ 3 Γ Η 1 Κ 6 ; Σ 5 8! Μ? Μ! # % Δ Μ 1 # %! = 47 > 47 ; 1 # %! 4Υ #! # Η# # %! 4 =7 =? Ν ! # % &!! ( ) # +. # / 0! 1 + 2! # % 1 3 %! 41 / 5 6 7! # 8 &! ) # 49 : ; :< = >7 7? = > :? 4 = 7Α Β4 7 4:7Χ 4=7! # % 1 # % 1 # %! 1# %! Δ 6 5 Φ6! 4Γ Δ! Η% 5 7 Ι # ϑ Κ Λ = Μ > = =? Μ ϑ Ε < Ε Τ Δ Δ ΝΔ Ο

More information

PowerPoint 演示文稿

PowerPoint 演示文稿 . ttp://www.reej.com 4-9-9 4-9-9 . a b { } a b { }. Φ ϕ ϕ ϕ { } Φ a b { }. ttp://www.reej.com 4-9-9 . ~ ma{ } ~ m m{ } ~ m~ ~ a b but m ~ 4-9-9 4 . P : ; Φ { } { ϕ ϕ a a a a a R } P pa ttp://www.reej.com

More information