1. 104DA 104DA 2. R R3004 R3004 R3004 II

Similar documents

12-1b T Q235B ML15 Ca OH Table 1 Chemical composition of specimens % C Si Mn S P Cr Ni Fe









, : III


















<4D F736F F D20312D3120D5D0B9C9CBB5C3F7CAE9A3A8C9EAB1A8B8E5A3A92E646F63>








[1-3] (Smile) [4] 808 nm (CW) W 1 50% 1 W 1 W Fig.1 Thermal design of semiconductor laser vertical stack ; Ansys 20 bar ; bar 2 25 Fig




mm 5 1 Tab 1 Chemical composition of PSB830 finishing rolled rebars % C Si Mn P S V 0 38 ~ 1 50 ~ 0 80 ~ ~



AL O 2SiO 2H O AL O 2SiO + 2H O CaCO3 + CaO CO2 CaSO4 + CaO SO3 CaSO3 + CaO SO2 2AL O + 6SiO 3AL O 2SiO + 4SiO

















18-陈亚莉.FIT)




I





LH_Series_Rev2014.pdf


建 设 项 目 环 境 影 响 报 告 表 编 制 说 明 建 设 项 目 环 境 影 响 报 告 表 由 具 有 从 事 环 境 影 响 评 价 工 作 资 质 的 单 位 编 制 1. 项 目 名 称 指 项 目 立 项 批 复 时 的 名 称, 应 不 超 过 30 个 字 ( 两 个 英 文















T K mm mm Q345B 600 mm 200 mm 50 mm 600 mm 300 mm 50 mm 2 K ~ 0. 3 mm 13 ~ 15 mm Q345B 25





untitled

1.0 % 0.25 % 85μm % U416 Sulfate expansion deformation law and mechanism of cement stabilized macadam base of saline areas in Xinjiang Song

<4D F736F F D20BBB7C6C0B1A8B8E6CAE9D7CAD6CA312E646F63>







Transcription:

湖南大学硕士学位论文高中温变换炉及加氢反应器的腐蚀与防护研究姓名 : 陈鹏申请学位级别 : 硕士专业 :@ 指导教师 : 旷亚非 ; 李海根 20070626

1. 104DA 104DA 2. R3002 3. R3004 R3004 R3004 II

Abstract Metal corrosion does harm for many fields of civil economy, including metallurgy, transportation, petroleum chemical engineering aerospace, power source, communication etc. Corrosion and protection of materials are very important and elaborate work in chemistry industry because of the complicated working environment and strict production conditions. Ammonia synthesis is an important process in caprolactam production of Baling petrochemical company. In this paper, corrosion and protection measurements of several key devices in ammonia synthesis were discussed in detail. The results are as follows: 1. The corrosion invalidation reasons of 104DA high temperature shift furnace were analyzed and discussed in detail. Macroscopical check, metallography analyses, magnetic power and ultrasonic wave detection, material components analyses and mechanical performance measurement were used to study the corrosion of 104DA device. The results show that the hydrogen corrosion cracking of 104DA device is caused by wrong selection of materials. Restoring and running administration methods were proposed according to the corrosion and running state of the device. After 4 years production running, abnormal running of super-temperature and super-pressure of the device didn t occur. It brings good social and economic benefit. 2. The corrosion cracking reasons of the gland of R3002 caprolactam-cyclohexanone hydrogenation reactor were researched. The appearance, wall thickness, micro-hardness and mechanical performance of the corrosion sites were measured. And chemical elements analyses metallogrsphy microscope rupture scanning electron microscope were also used to study the corrosion of the device The results indicate that the corrosion cracking is caused by the following reasons Firstly the mechanical performance of the device didn t meet the design demand because of the wrong selection of lower head material Secondly the phenomenon of super-temperature during the device running is the direct and main reason In order to avoid the similar accident effective inspection measures and corresponding running monitor methods of the device were proposed 3. Metallogrsphy analyses, magnetic power and ultrasonic wave detection methods were used to investigate the reason of hydrogen corrosion of R3004 medium temperature shift furnace The results present that the hydrogen corrosion of R3004 is III

caused by the high running temperature, which is higher than the designed wall temperature The corrosion of the devise is not serious at present Through adopting strict safe running measures and corresponding process conditions the R3004 device can run a production period Key words: high temperature shift furnace; medium temperature shift furnace; hydrogenation reactor; corrosion; protection IV

1 2 I

1 1.1 2.5 4 30% 10% 1000 1750 SO 2 30 / 100 [1] 20 [2] 20 40-1 -

[3] 1.2 1.2.1 (1) (2) (3) [4,5,6] 1.2.2 (1) (2) (3) (4) 1.2.3 (1) ph (2) lo 1 3 (3) (4) 1.3 30% - 2 -

1.3.1 1.3.1.1 [7-9] 304 316 20 No8020 No5024 No8206 20 24% 30 35% 1.3.1.2 1.3.2 87% 1.3.2.1-3 -

[10,11] 1.3.2.2 1.3.2.3 (1) [12,13] (2) (3) (4) (5) 20 20 80-4 -

1.3.3 [14,15] 1.3.3.1 Cl - 30 50 - - - 1.3.3.2 1.3.4 1.3.4.1-5 -

[16,17] 1.3.4.2 [18,19] 1.4 1.4.1 (1) (2) (3) (4) (5) T U (6) 1.4.2-6 -

(1) (2) (3) 1.4.3 (1) (2) (3) (4) 1.4.4 (1) (2) (3) (4) (5) - 7 -

1.5 1.5.1,,,,, 20, :, (CO 2 ) 1, 90% [20],, 1.5.2 N 2 +3H 2 = 2 NH 3 + Q 1100-8 -

1.5.3 1.5.3.1 ( ) 2 2 1 2 [21] Cr Ti Mo V W 200 300 300MPa, 1.5.3.2 350 NH 3 3[H] + [N] 800-9 -

350 400 Al V Ti Mo 1.5.3.3 [22-24] 1 H + H 2 S CO 2 H 2 O 1Cr18Ni9Ti 15 CrMo TH-847 2 3 4-10 -

1.5.3.4 H 2 S CO 2 H 2 O SO 2 Cl - SO 2-4 1.5.3.5 Fe Fe + 2e O 2 + 2H 2 O + 4e 4OH - Fe 2+,Fe 3+ FeO Fe 3 O 4 nh 2 O, Fe 2 O 3 ( ) 1.5.3.6 A.D.A. Na 2 CO 3 10H 2 O 2.48 1.6-11 -

- 12-20 7 / 14 / Shell 2007 2 2, 104DA E3008 1992 4 R3002 [39] 3

2 104DA 104DA 1979 7 2001 11 2 2 2.1 2.1.1 104DA M.K.W 1975 5 1979 7 20 SA204B 3886mm 20951mm 81mm 2001 3.41MPa 2.865MPa 483 436 1.2MPa 2.1.2 H 2 CO N 2 CO CO 2 371 436 2.865MPa 2.805MPa CO 2 H 2 2.1-13 -

2.1 2.2 1 500 500mm 0 55mm 2 25 55mm 3 5-14 -

2.3 2.3.1 C-0.5Mo ASME SA204B 2.1 2.1 104DA C Si Mn P S Mo Cr 0.18 0.20 0.76 0.010 0.020 0.52 M.K.W 1975 1979 3.41Mpa 483 2.865Mpa 436 1969 Nelson C-0.5Mo C-0.5Mo 1997 API RP941 Nelson 27 C-0.5Mo SA204B 2.3.2 1mm 2 82.0mm 85.0mm 2.3.3 100% 3 1~2mm 2.3.4 1 2.5P13 13K1 2.5P13 13LK1 50% 2 2Z20 500mm 500mm 0~55mm 3 25~55mm - 15 -

2.3.5 2.2 2.2 104DA HB 1 137~152 2 141~156 3 187~194 4 152~178 5 184~191 2.3.6 1 2 2.2 2.3 2.4 2.5 2.2 10 2.3 200-16 -

2.4 200 2.5 2 10 1 2 500mm 500mm 2 3 2.4 [25] - 17 -

- 104DA 2.4.1 CH 4 CH 4 CH 4 C-0.5Mo - 18 -

2.4.2 1 2.4 2 2 2.1 2.2 3 104DA [26] 2.4.3 Nelson 104DA SA204B C-0.5Mo 2.865MPa 436 Nelson 1983 1.5MPa 430 SA204B 0.5Mo Nelson 90 Nelson 0.5Mo SA204B 2.5 2.5.1 250 Nelson 3.6MPa 3.6MPa - 19 -

2.9MPa 250 2.5.2 104-DA SA-204B C-0.5Mo 2.5.2.1 2.9MPa 250 250 2.5.2.2 1 2 3mm 2 2 8-10mm CH 4 3 600 600mm 250-300 2 4 420 250 80mm 0.5mm 2.5.2.3 2.5.2.4 104DA 2002 2005 4 2006 2007 2-20 -

2.6 1 104DA C-0.5Mo SA204B 0.5Mo Neison 2 3-21 -

3 R3002 R3002 15CrMoR 2003 6 600 8 3.1 R3002 3.7MPa 425 15CrMoR 1800 34mm 36~38mm 1999 2 JB4730-94 100% 400 10 90 2003 6 30 6 30 20 600 7 1 4 3.2 3.2.1 3.1 1# 760mm 20mm 3.2-22 -

- 23-100mm 700mm 6010mm 30mm 3.3 3.1 #2 #1 #2 #1 3mm 3.1 2# 750mm 40mm 3.4 1#

3.2 R3002 3.3 R3002 3.4 R3002 1# 2# 3.1 3.2.2 3.5 3.1-24 -

S10 S2 S1 S3 S5 S4 S6 S8 S7 S9 3.5 3.1 R3002 mm mm mm S1 35.4 S6 37.17 S2 33.64 S7 37.93 S3 32.17 S8 38.02 S4 35.9 S9 9.67 S5 37.23 S10 38.06 32.17mm 3.2.3 15CrMoR 3.2-25 -

3.2 R3002 % C Si Mn S P Cr Mo GB6654-1996 15CrMoR 0.12-0.18 0.15-0.40 0.40-0.70 0.030 0.030 0.8-1.2 0.45-0.60 GB6654-1996 20R 0.22 0.15-0.30 0.35-0.80 0.035 0.035 / / 0.19 0.19 0.43 0.012 0.029 0.06 0.01 15CrMoR 0.17 0.20 0.41 0.36 0.18 0.23 0.50 0.009 0.021 0.80 0.47 15CrMoR 0.87 0.51 0.17 0.26 0.54 0.016 0.023 0.98 0.46 15CrMoR 0.17 0.27 0.51 0.038 0.98 0.42 3.2 R3002 15CrMoR Cr Mo 15CrMoR 20R 3.2.4 3.6, 3.3 Y1 Y2 Y3 Y4 Y5 Y6 3.6-26 -

3.3 R3002 HB Y1 135 128 139 Y2 135 143 134 Y3 141 151 130 Y4 120 128 135 Y5 213 215 225 Y6 147 128 138 3.2.5 2# 3.4 3.4 #2 1 2 1 2 3 1 2 3 8.50 8.54 8.50 8.50 8.52 8.54 8.52 8.54 mm mm 36.60 36.20 34.48 34.60 37.56 37.48 37.50 34.00 mm 100 100 100 100 100 100 100 100 134 129 132 131.8 132.2 130 130 131 mm MPa 231.4 / 276.8 283.2 284.9 311.8 306.9 309.1 MPa 411.4 412.4 439.4 434 430.1 492.6 497.4 498 5 % 34 29 32 31.8 32.2 30 30 31 411.9 434.5 496 MPa % 31.5 32 30.3-27 -

GB6654-199615 6-60mm 15CrMoR 450-590MPa 295MPa 5 19% 15CrMoR 15CrMoR 3.2.6 1# 2# 1 + 3.7 1 2 + 3.7 2 3.7 3 2.5mm 3.7 4 3 + 3.7 5 3.7 6 4 + 3.7 7 5 + 3.7 8 1 500 2 500-28 -

3 500 4 5 1000 6 100 7 500 8 500 3.7 R3002 3.2.7 1 2 4 5 3.5-29 -

3.5 R3002 Hv0.2 1 2 3 1 156.1 145.7 151.0 150.9 2 132.5 148.9 131.3 137.5 4 140.9 148.6 146.9 145.5 5 165.1 157.7 158.6 160.5, 3.2.8 3.8 3.9 3.10 Cr Mo 3.8 3.9-30 -

3.10 3.3 1 Cr Mo 15CrMoR Cr Mo 411.9MPa 231.4 MPa 15CrMoR 450~590MPa 295 MPa [27,28,29] 2 CH 4 [30 31] 3 4-31 -

3.4 1 2 3-32 -

4 R3004 R3004 4.1 4.1.1 R3004 1992 6 2.8MPa 2.51~2.54MPa 450 260 370~395 CO CO 2 H 2 CH 4 H 2 0 2600 36 40 8904 24.5m 3 4.1.2 370 ~395 4.2 1992 9 1993 6 1994 80mm 1994 11 120 1995 1 150mm 1 1995 1 =150mm JZ-1000-33 -

1995 4 149 212 1996 3 330 156 1996 6 339 240 1996 7 341 236 1997 1 14 348 343 1997 1 18 348 242 1993 3 1997 1 20 100mm 1 24 351 340 1997 2 4 352 342 350 0.76MPa 2 17 339 1997 2 24 1996 3 ~1997 3 330 ~348 260 4.3 4.3.1 1mm 42.3mm 43.0mm 38.3mm 40.3mm 1995 1 1997 3 R3004 4.1 4.2 4.1 1995 1 mm 1 38.9 39 39.2 40 2 38.8 39.2 40 3 42.8 43.1 43.4 43.9 4 42.5 42.7 43.5 43.7-34 -

4.2 1997 3 mm 1 39.4 38.2 2 44.3 44.8 43.6 43.4 3 43.8 43.8 43.9 4.3.2 100% JB4730-95 500mm 150mm 4.3.3 HB107-156 HB132-174 25 4.3.4 16MnR R3004 4.1 4.2 4.3 4.4, 1 2~3 500 4.3.5 1 2 3-35 -

4.1 4.2 4.3 4.4 4.4 4.4.1 R3004 1 330 ~354 360 301 ~338 280 2 0.76MPa 3 Nelson 16MnR 310-36 -

0.76MPa 4.4.2 CVDA-1984 COD 16M R SPV36 m 1 Di=2600mm t=42mm 16MnR Pw 2.4MPa Tw 250 cr=0.06mm y=285mpa =119mPa 300 E=2.1 105MPa 2 1= m=pwpi/2t= 2.4 2600 / 2 42 =74.29MPa 2=0 3=0.6 y=0.6 285=171MPa = 1+ 2+ 3=245.29MPa 3 m= cr/ e+ey =E cr/ + y = 2.1 105 0.06 / 215.29+285 =7.56mm m=7.56 2/3 =5.04mm=5.0mm 4mm Pw 2.4MPa Tw 250 4.4.3 = / 1 tf-ts/ts-ta mm kcal/m.h. 1 kcal/m.h. tf ts ta R3004 80mm 260 ts-ta 15~20-37 -

/ = tf-ts / tf-ts = tf-ts / tf-ts = tf-40 / 260-40 80mm tf 320 330 340 100~110mm 4.5 4.5.1 F C Nelson 1 0.68MPa 330 0.66MPa 340 2 340 3 2 4.5.2 R3004 1997 7 16MnR 15CrMoR R3004 2.4MPa 210~250 2001 4 2003 6 R3004 4.6 R3004 Pw 2.4MPa Tm 250-38 -

[32 33] - 39 -

2 4 1 104DA Nelson 1983 1.5MPa 430 SA204B 0.5Mo Nelson SA204B 250 Nelson 2.9MPa 1 3mm 2 2 8-10mm CH 4 2 600X600mm 250-300 2 3 420 250 80mm 0.5mm 2 R3002 Cr Mo 15CrMoR Cr Mo 411.9MPa 231.4 MPa 15CrMoR 450~590MPa 295 MPa - 40 -

CH 4 3 R3004 Pw 2.4MPa Tm 250-41 -

[1]. 104 DA 2002:5-6 [2]. [M]. 2001 1-4 [3]. [J]., 2001,(8):34-40 [4]. [J]., 2006, (1): 80-82 [5]. [J]. 2005, 42(10):7-10 [6]. [J]., 2003, 5(5) 68-71 [7]. [J]. 2006, (8):18-19 [8]. [J]., 2002, (6):270-272 [9]. [J]., 2002,(2):41-42 [10]. [J].,1999,20(12) 566-568 [11]. [J].,2001,22(2):72-77 [12] Panadda N., Hathaipat K. Improved corrosion resistance of thermally sprayed coating via surface grinding and electroplating techniques[j]. Surface and Coatings Technology, 2006, 201(3): 737-743 [13] Maria L., Niki K. Mauro G. et al., Corrosion and wear resistant electrodeposited composite coatings[j]. Electrochimica Acta, 2005, 50(2):4551-4556 [14]. [J].,2006,26(6):399-402 [15],,. [J]., 2006, 39(11):17-20 [16]. [J].,2006,23(6):58-61 [17]. [J] 2002 19(6):49 53 [18] Laura C., Didier D., Pierre P. On the mechanism of the anodic protection of - 42 -

aluminium alloy AA5182 by emeraldine base coatings Evidences of a galvanic coupling[j]. Electrochimica Acta, 2007, 52(11):3485-3492 [19] [M] 1987 122-124 [20]. [J]. 2002,19(4):24-28 [21]. [J]. 2003 26(4):227-230 [22],,. [J]., 2005, 26(9):402-406 [23] Ma H. Cheng X.L. Li G.Q. et al. The influence of hydrogen sulfide on corrosion of iron under differet conditions [J] Corrosion, 2000, (42):16691-683 [24] W u Y. M., Applying process modeling to screen refining equipment for wethydrogen sulfide service [J].Corrosion, 1998, 54(2):169-173 [25]. [M]. 1984:141-158 [26]. 104-DA. 2002: 2-4 [27]. [M]. 1988:10-20 [28]. [M]. 1995:119-131 [29]. [J]. 2002,19(4)24-28 [30] Sukumaran Nair M. P. [J].Hydrocarbon Processing, 2001, 80(1):85-88 [31]. [M]. 1991:56-60 [32],. [J]. 2004, 33(4):259-260 [33]. [J]., 1997,9(2):115-119 - 43 -

- 44 -

A [1]., 2004 23(4): 442-446 - 45 -