ABP

Similar documents


Introduction to Hamilton-Jacobi Equations and Periodic Homogenization

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

& & ) ( +( #, # &,! # +., ) # % # # % ( #

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

&! +! # ## % & #( ) % % % () ) ( %

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5,

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02


& &((. ) ( & ) 6 0 &6,: & ) ; ; < 7 ; = = ;# > <# > 7 # 0 7#? Α <7 7 < = ; <

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

《分析化学辞典》_数据处理条目_1.DOC

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

% %! # % & ( ) % # + # # % # # & & % ( #,. %

: ; # 7 ( 8 7

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, )

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %

PowerPoint 演示文稿

koji-13.dvi

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ

1 <9= <?/:Χ 9 /% Α 9 Δ Ε Α : 9 Δ 1 8: ; Δ : ; Α Δ : Β Α Α Α 9 : Β Α Δ Α Δ : / Ε /? Δ 1 Δ ; Δ Α Δ : /6Φ 6 Δ

( ) (! +)! #! () % + + %, +,!#! # # % + +!

) & ( +,! (# ) +. + / & 6!!!.! (!,! (! & 7 6!. 8 / ! (! & 0 6! (9 & 2 7 6!! 3 : ; 5 7 6! ) % (. ()

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ

! # %! #! #! # % + &, % % ) %. /! # 0 1

Ψ! Θ! Χ Σ! Υ Χ Ω Σ Ξ Ψ Χ Ξ Ζ Κ < < Κ Ζ [Ψ Σ Ξ [ Σ Ξ Χ!! Σ > _ Κ 5 6!< < < 6!< < α Χ Σ β,! Χ! Σ ; _!! Χ! Χ Ζ Σ < Ω <!! ; _!! Χ Υ! Σ!!!! ββ /β χ <

08-01.indd

微积分 授课讲义



; < 5 6 => 6 % = 5

9 : : ; 7 % 8

% % %/ + ) &,. ) ) (!

Β Χ + Δ Ε /4 10 ) > : > 8 / 332 > 2 / 4 + Φ + Γ 0 4 Η / 8 / 332 / 2 / 4 + # + Ι + ϑ /) 5 >8 /3 2>2 / 4 + ( )( + 8 ; 8 / 8. 8 :

Ⅰ Ⅱ 1 2 Ⅲ Ⅳ

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9

ⅠⅡⅢ Ⅳ

3?! ΑΑΑΑ 7 ) 7 3

untitled

8 8 Β Β : ; Χ; ; ; 8 : && Δ Ε 3 4Φ 3 4Φ Ε Δ Ε > Β & Γ 3 Γ 3 Ε3Δ 3 3 3? Ε Δ Δ Δ Δ > Δ # Χ 3 Η Ι Ι ϑ 3 Γ 6! # # % % # ( % ( ) + ( # ( %, & ( #,.

Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3 Ε Φ Γ ΕΙΙ 3 Χ 3 Φ 4 Κ? 4 3 Χ Λ Μ 3 Γ Ε Φ ) Μ Ε Φ? 5 : < 6 5 % Λ < 6 5< > 6! 8 8 8! 9 9 9! 9 =! = 9!

# #! ) ( ( +,! %,! ( # # %& % ( ) +! +, +. /

1#

, & % # & # # & % & + # & # # # & # % #,

8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, ; > 8? : 5 4 +? Α > 6 + > 3, > 5 <? 9 5 < =, Β >5

; 9 : ; ; 4 9 : > ; : = ; ; :4 ; : ; 9: ; 9 : 9 : 54 =? = ; ; ; : ;

: ; 8 Β < : Β Δ Ο Λ Δ!! Μ Ν : ; < 8 Λ Δ Π Θ 9 : Θ = < : ; Δ < 46 < Λ Ρ 0Σ < Λ 0 Σ % Θ : ;? : : ; < < <Δ Θ Ν Τ Μ Ν? Λ Λ< Θ Ν Τ Μ Ν : ; ; 6 < Λ 0Σ 0Σ >

3 4 Ψ Ζ Ζ [, Β 7 7>, Θ0 >8 : Β0 >, 4 Ε2 Ε;, ] Ε 0, 7; :3 7;,.2.;, _ & αε Θ:. 3 8:,, ), β & Φ Η Δ?.. 0?. χ 7 9 Ε >, Δ? Β7 >7 0, Τ 0 ΚΚ 0 χ 79 Ε >, Α Ε

! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ! 7 7 Δ Δ 2! Χ Δ = Χ! Δ!! =! ; 9 7 Χ Χ Χ <? < Χ 8! Ε (9 Φ Γ 9 7! 9 Δ 99 Φ Γ Χ 9 Δ 9 9 Φ Γ = Δ 9 2

9. =?! > = 9.= 9.= > > Η 9 > = 9 > 7 = >!! 7 9 = 9 = Σ >!?? Υ./ 9! = 9 Σ 7 = Σ Σ? Ε Ψ.Γ > > 7? >??? Σ 9

Β Χ Χ Α Β Φ Φ ; < # 9 Φ ; < # < % Γ & (,,,, Η Ι + / > ϑ Κ ( < % & Λ Μ # ΝΟ 3 = Ν3 Ο Μ ΠΟ Θ Ρ Μ 0 Π ( % ; % > 3 Κ ( < % >ϑ Κ ( ; 7

ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν Α Γ Β 1 Α Ο Α : Α 3. / Π Ο 3 Π Θ

Γ Ν Ν, 1 Ο ( Π > Π Θ 5?, ΔΓ 2 ( ΜΡ > Σ 6 = Η 1 Β Δ 1 = Δ Ι Δ 1 4 Χ ΓΗ 5 # Θ Γ Τ Δ Β 4 Δ 4. > 1 Δ 4 Φ? < Ο 9! 9 :; ;! : 9!! Υ9 9 9 ; = 8; = ; =

7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ;

1. PDE u(x, y, ) PDE F (x, y,, u, u x, u y,, u xx, u xy, ) = 0 (1) F x, y,,uu (solution) u (1) u(x, y, )(1)x, y, Ω (1) x, y, u (1) u Ω x, y, Ωx, y, (P

= > : ; < ) ; < ; < ; : < ; < = = Α > : Β ; < ; 6 < > ;: < Χ ;< : ; 6 < = 14 Δ Δ = 7 ; < Ε 7 ; < ; : <, 6 Φ 0 ; < +14 ;< ; < ; 1 < ; <!7 7

Φ2,.. + Φ5Β( 31 (+ 4, 2 (+, Η, 8 ( (2 3.,7,Χ,) 3 :9, 4 (. 3 9 (+, 52, 2 (1 7 8 ΙΜ 12 (5 4 5? ), 7, Χ, ) 3 :9, 4( > (+,,3, ( 1 Η 34 3 )7 1 )? 54

. Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )? : Β Ν :) Ε Ν & Ν? ς Ε % ) Ω > % Τ 7 Υ Ν Ν? Π 7 Υ )? Ο 1 Χ Χ Β 9 Ξ Ψ 8 Ψ # #! Ξ ; Ξ > # 8! Ζ! #!! Θ Ξ #!! 8 Θ!

Stochastic Processes (XI) Hanjun Zhang School of Mathematics and Computational Science, Xiangtan University 508 YiFu Lou talk 06/

10-03.indd

9! >: Ε Φ Ε Ε Φ 6 Φ 8! & (, ( ) ( & & 4 %! # +! ; Γ / : ; : < =. ; > = >?.>? < Α. = =.> Β Α > Χ. = > / Δ = 9 5.

84 / ! / ! 9 9 9!! 9 : ; < = 1 //< & >!! ? : ; <. 1 //< &! Α

,, ( Δ! # % & % ) % & )% % +, % &. + / +% % % +,. / )% )%. + /. /. 0 / +% )0 )1 2) 20 )1 % 4 0 % % 0 5 % % )) % %6 ) % 6 ) % % % ) % 6. 4 /. 2 %, 78 9

?.! #! % 66! & () 6 98: +,. / / 0 & & < > = +5 <. ( < Α. 1

) ) ) Ο ΛΑ >. & Β 9Α Π Ν6 Γ2 Π6 Φ 2 Μ 5 ΝΒ 8 3 Β 8 Η 5 Φ6 Β 8 Η 5 ΝΒ 8 Φ 9 Α Β 3 6 ΝΒ 8 # # Ε Ο ( & & % ( % ) % & +,. &


= 6 = 9 >> = Φ > =9 > Κ Λ ΘΠΗ Ρ Λ 9 = Ρ > Ν 6 Κ = 6 > Ρ Κ = > Ρ Σ Ρ = Δ5 Τ > Τ Η 6 9 > Υ Λ Β =? Η Λ 9 > Η ς? 6 = 9 > Ρ Κ Φ 9 Κ = > Φ Φ Ψ = 9 > Ψ = Φ?

% & ( ) +, (

! # Χ Η Ι 8 ϑ 8 5 Χ ΚΗ /8 Η/. 6 / Λ. /. Η /. Α Α + Α 0. Η 56 + Α : Α Μ / Η +9 Δ /. : Α : ϑ. Η. /5 % Χ

: Π Δ 9 Δ 9 Δ 9 7 Θ Μ 9 8 Ρ Σ # = Μ 0 ; 9 < = 5 Λ 6 # = = # Μ Μ 7 Τ Μ = < Μ Μ Ο = Ρ # Ο Ο Ο! Ο 5 6 ;9 5 5Μ Ο 6

Υ 2 Δ Υ 1 = 1 : Φ Υ 1 Ω 5 ς ) Ν + Φ 5 ς ς Α+ ) Ν Φ 6 Ξ ς Α+ 4 Φ Ψ Ψ + = Ε 6 Ψ Ε Ε Π Υ Α Ε Ω 2? Ε 2 5 Ο ; Μ : 4 1 Ω % Β 3 : ( 6 Γ 4 Ρ 2 Ρ

Θ Θ Γ 2 Ρ 3 Ω Ω Ω Ξ, ;;> /;? ; ;;<<; > # ( 3 ) #2# #% 3 (#) # ( #) ) ( ) #) & ) 3 % & &89#(#( #3) ) 2 (#(# % ) ()# <= +: ;8.../;< # ; / +2.. ;//.;.82

! Χ Δ? Η Δ? Β Ι Β? ϑ Κ 1 Ε?? Λ Μ Ν Ο Π Β? Δ? Β Ι ΘΗ Κ 1 Ε? Β? ϑ Ν Η Η Δ?? Ρ? Ι Β Χ Τ Τ Ο ς Ι Δ Ω Χ Β [ Υ Ψ? [ Η Β? Β Υ? Ι Δ? Δ? Ο Ξ Ψ Ι Π Β Υ?????? Ι?

= Β Χ Δ

:::: : : : :::: :: :: :::::: :::: < ; 7 7 ; ; % < = = > = / =?? Α Β.. Β Χ (. 7 > 5 / Δ 6 Ε. Φ Δ 5 / 6 Ε. Φ 1 Γ 5 / 6 7 Η (. >5 Ι Δ 6 Φ ϑ

Ρ 2 % Ε Φ 1 Φ Δ 5 Γ Η Ε Ι ϑ 1 Κ Δ ϑ Ι 5 Δ Ε Κ Β 1 2 Ι 5 Κ Ι 78 Χ > > = > Λ= =!? Λ Λ!???!? Λ?? Χ # > Λ= = >?= =!? Λ?!?!? Λ Λ Α =? Α &<&. >!= = = = = Α

!? > 7 > 7 > 7 Ε ! Α Φ Φ Γ Η Ι Γ / 2 ; Γ / 4 Δ : 4 ϑ / 4 # Η Γ Κ 2 Η 4 Δ 4 Α 5 Α 8 Λ Ηϑ Μ Α Α 4!! Ο. /3 :/Π : Θ Γ 2 ; Γ / 4 Ρ Α

《分析化学辞典》_数据处理条目_2.DOC

ΗΗ Β Η Η Η ϑ ΗΙ ( > ( > 8 Κ Κ 9 Λ! 0 Μ 4 Ν ΟΠ 4 Ν 0 Θ Π < Β < Φ Ρ Σ Ο ΟΦ Ρ Σ ) Ο Τ 4 Μ 4 Ν Π Υ Φ Μ ς 6 7 6Ω : 8? 9 : 8 ; 7 6Ω 1 8? ; 7 : ; 8 ; 9

ΟΠΟ ΟΠ 8 ΠΠ Π8 ΡΟ Σ Β Θ 1 7 Τ 1 Υ 4? = ; > ; 1.= 3 Α14? 4Ι ϑ1 Α 3Ε3 ΕΛ?Τ %1 >: : : ; : : 9 = 7,Ι ΕΑ 8 7,Ι Τ3? 8 7 ΛΙ 3ς 8 7Μ 8 7 Ω ΙςΙ = 8 7 Τ Μ 3Ε Δ?

Transcription:

ABP 2016 319 1

ABP A. D. Aleksandrov,I. Y. Bakelman,C. Pucci 1 2 ABP 3 ABP 4 5 2

Ω R n : bounded C 0 = C 0 (n) > 0 such that u f in Ω (classical subsolution) max Ω u max u + C 0diam(Ω) 2 f + L Ω (Ω) 3

Assume diam(ω) = 1 and 0 Ω. Consider v(x) := u(x) + µ x 2. v f 2µn < 0 provided µ > f + 2n. max Ω Otherwise, v(x 0 ) = max v = max v Ω v for x 0 Ω, 0 v(x 0 ) < 0 Ω 4

v(x) = u(x) + µ x 2 Hence, max max Ω Ω u max Ω v = max Ω v v = max Ω v max u + µ max Ω Ω x 2 max u max u + diam(ω)2 f + Ω Ω 2n 5

2ABP 6

max Ω ABP C 1 = C 1 (n) > 0 such that u f in Ω u max u + C 1diam(Ω) f + L Ω n (Γ[u]) 7

Γ r [u] := {x Ω p B r s. t. u(y) u(x) + p, y x ( y Ω)} B r := {p R n p < r} Γ[u] := Γ r [u] upper contact set () r>0 8

Sketch of proof Change of variables max Ω u max u =: r 0 Ω If r = 0, then the proof is done with any C 1 > 0. Assume r > 0. Claim: B r = Du(Γ r [u]) 9

B r Du(Γ r [u]) x Γ r [u] p B r such that u(y) u(x) + p, y x ( y Ω) p = Du(x) i.e. Du(x) B r 10

B r Du(Γ r [u]) p B r fixed x Ω (Not x Ω!) such that max y Ω {u(y) p, y } = u(x) p, x i.e. u(y) u(x) + p, y x ( y Ω) 11

If x Ω, max u < max u + rdiam(ω). Ω Ω Recalldiam(Ω)=1, r = max a contradiction Hence, x Ω. p = Du(x) Ω i.e. p Du(Γ r [u]) u max Ω u 12

T (A) Change of variables formula g(ξ)#(t 1 ξ)dξ = A g(t (x)) det(dt (x)) dx #(T 1 ξ) 1, T := Du, A := Γ r [u], g 1 dξ = dξ detd 2 u dx B r Du(Γ r [u]) Γ r [u] 13

ω n r n = dξ detd 2 u dx B r Γ r [u] x Γ r [u] u(y) u(x) + Du(x), y x i.e. D 2 u(x) O λ k : eigen-value of D 2 u(x) 0 detd 2 u(x) = ( λ 1 ) ( λ n ) 14

( ) u n detd 2 u dx dx Γ r [u] Γ r [u] n Arithmetic mean-geometric mean inequality () max Ω ω n r n n 1 n Γ r [u] (f + ) n dx u max u = r 1 Ω nωn 1/n f + L n (Γ r [u]) 15

max Ω ABP C 2 = C 2 (n, b n ) > 0 such that u + b, Du f in Ω u max u + C 2diam(Ω) f + L Ω n (Γ[u]) 16

Apply Change of variables formula to g(ξ) := 1 κ+ ξ n (κ 0) B r 1 κ + ξ ndξ 2n 1 n n Γ r [u] detd 2 u κ + Du ndx 1 n n Γ r [u] Here, κ := f + n L n (Γ[u]) (a + b) n 2 n 1 (a n + b n ) ( a, b 0) ( b n Du n Γ r [u] κ + Du ndx + Γ r [u] (f + ) n κ + Du n ( u) n κ + Du ndx ) dx 2n 1 n n ( b n n + 1) 17

] ( r LHS = nω n [log(κ + s n ) = nω n log 1 + rn 0 κ ( log 1 + rn ) C( b n n κ + 1) 1 + rn κ exp { C( b n n + 1)} r n κexp { C( b n n + 1)} ) κ := f + n L n (Γ r [u]) 18

ABP Krylov (1976) Tso (1985) 19

Parabolic upper contact set() u : Q T := Ω (0, T ) R Π r [u] := (x, t) Q p B r such that T u(y, s) u(x, t) + p, y x (y, s) Ω [0, t] Π[u] := Π r [u] r>0 20

ABP C 2 = C 2 (n, b n+1, diam(ω), T ) > 0 such that u t max Q T u + b, Du f in Ω (0, T ] u max u + C 2 diam(ω) f + p Q L n+1 (Π[u]) T p Q T := ( Ω [0, T ]) (Ω {0}) 21

D := ( x 1,..., x n ), := (D, t )T Fix a R n. Define Φ : R n+1 R n+1 by Φ(x, t) = Φ := (Du, u Du, x a ). = ( D 2 u Du t D T (u Du, x a ) t (u Du, x a ) ( D 2 u D 2 u(x a) T Du t u t Du t, x a ) ) 22

Lemma det Φ = u t detd 2 u ( D Φ := 2 u D 2 u(x a) T ) Du t u t Du t, x a jth column (x j a j ) be added to n + 1th column ( D 2 ) u 0 u t 23

Assume diam(ω) = 1. m 0 := max u, r 0 := max u m 0 > 0 p Q T Q T D := {(ξ, h) R n R ξ < r 0, ξ < h m 0 < r 0 } (a, t 0 ) Ω (0, T ] such that r 0 = u(a, t 0 ) m 0 Claim : D Φ(Π r0 [u]) 24

Fix (ξ, h) D P (y) := h + ξ, y a affine function P (y) h ξ > m 0 i.e. P u on p Q T ξ + m 0 < h < r 0 + m 0 P (a) = h < r 0 + m 0 = u(a, t 0 ) (ˆx, t 1 ) Ω (0, t 0 ) such that u(ˆx, t 1 ) = P (ˆx), u(y, s) P (y) (y Ω, 0 s t 1 ) 25

26

D D := {(ξ, h) ξ r 0, ξ < h m 0 < r 0 } κ := f + n+1 L n+1 (Π[u]). 1 r0 κ + ξ n+1dhdξ = C r n 1 0 κ + r n+1 0 ( r0 +m 0 r0 r 0 r n 1 r n = C 0 0 κ + r n+1 dr (u t u) n+1 C 1 dxdt κ + Du n+1 Π r0 [u] r+m 0 ) dh dr 27

D 1 κ + ξ n+1dhdξ C 2 C 1 Π r0 [u] Π r0 [u] Π r0 [u] det Φ κ + Du n+1dxdt (u t u) n+1 dxdt κ + Du n+1 ( b Du ) n+1 + (f + ) n+1 κ + Du n+1 dxdt 28

RHS C 2 Π r0 [u] b n+1 dxdt + C 2 r0 r 0 r n 1 r n LHD = C 0 0 κ + r n+1 dr r0 r 0 r n 1 r n C 3 0 κ + r 0 n r n 1 {( = C 3 log κ + r ) 0 n r0 n n+1 1 rn+1 0 ( = C 3 log 1 + rn+1 0 n(n+1)κ n+1 rn+1dr ) } /κ 29

sup Q T ( ) log 1 + rn+1 0 n(n+1)κ C 4 u sup u = r 0 C 5 κn+1 1 = C 5 f + L n+1 (Π[u]) p Q T 30

31

4.1 Weak Harnack inequality i.e. u 0: supersolution in Ω u + b, Du f B 2 Ω in Ω ( ) u L p 0 (B 1 ) C 0 inf u + f L B n (Ω) 1 for p 0, C 0 > 0 constants. 32

Decay estimate of distribution function v := u inf u + ε 1 B 0 f, ε 0 > 0 fixed later n 1 Note inf v 1, f n ε 0 B 1 C 0 > 0 such that v L p 0 (B 1 ) C 0 ( ) u L p 0 (B 1 ) C 0 inf u + f L B n (Ω) 1 33

u L p 0 (B 1 ) C 0 α > 0 such that {x B 1 u(x) > t} Ct α M > 1 and θ (0, 1) such that {x B 1 u(x) > M m } θ m Let us show the case when m = 1 34

u f in B 2 (u B2 = 0 for simplicity!) φ(x) := A( x 2 n 2 2 n ): fundamental solution (A > 0) φ B2 = 0, φ 2 in B 1 ˆφ C 2 such that φ = ˆφ except near 0 ˆφ = 0 except near 0, i.e. supp ˆφ B 1 35

w := u ˆφ, Recall inf B 1 u 1 w f + φ in B 2 sup w sup w + C f + ˆφ L n (Γ[w;B 2 ]) B 2 B 2 LHS sup( u + 2) inf u + 2 1 B 1 B 1 RHS Cε 0 + C ( B 1 {w 0} 1dx ) 1 n 36

σ > 0 such that σ {x B 1 w(x) 0} {x B 1 u(x) M := sup( ˆφ)} B 2 θ > 0 such that {x B 1 u(x) > M} θ we had to work with a unit cube instaed of B 1 to have θ < 1 37

4.2 Local maximum principle Unbounded coefficient case is excluded by a classical argument. Use weak Harnack inequality (by Caffarelli) 38

4.3 Calderón-Zygmund estimatecaffarelli 1989 D 2 u Θ := max{θ +, Θ } { Θ ± (x) := inf M > 0 u(y) ±M y 2 + affine = holds at x uφ xi x j dx C Θ L p φ L p ( φ C 0 ) and D 2 u L p C Θ L p Decay estimate on Θ } 39

Enough to show the case of i = j δ h f(x) := 1 h 2{f(x + he i) + f(x he i ) 2f(x)} u(x)φ xi x i dx uδ h φ(x)dx = φ(x)δ h u(x)dx φ(x)θ(x)dx u(x + y) u(x) M y 2 + ξ, y ( ξ R n ) 40

Asuume diam(ω) = 1 u 0 in Ω u = 0 on Ω 41

5.1 p-laplacian cf. Imbert 2011 p u f in Ω n ( ) p u = Du p 2 u x k x k k=1 = Du p 2 u + (p 2) Du 2 n k,j=1 u xk u xj u xk x j { } is uniformly elliptic if p > 1 and Du 0 max Ω u max u + C f + Ω 1 p 1 L n (Γ[u]) 42

r 0 := max u max u > 0 Ω Ω g( ξ )dξ g( Du ) detd 2 u dx B r0 Γ r0 [u] ( ) u n C p g( Du ) Du p 2 dx C p Γ[u] Γ[u] g( Du ) (f + ) n Du n(p 2)dx 43

g(r) := r n(p 2) = nω n [ r n(p 1) max Ω ] r0 n(p 1) 0 r n(p 1) 0 C p f + n L n u max u + C f + Ω = ω n p 1 rn(p 1) 0 1 p 1 L n 44

p u = 5.2 -Laplacian n k=1 x k ( ) Du p 2 u x k n = Du p 2 u (p 2) Du p 4 u xk u xj u xk x j k,j=1 p 2 1 Du p 4 p with Du = 0 n u := u xk u xj u xk x j k,j=1 Charro-De Phillips-Di Castro-Máximo 2013 45

Consider normalized -Laplacian: p u p 2 1 Du p 2 (p ) n N u := u xk u xj Du k,j=1 2 u x k x j N u f in Ω ( 2 sup u sup u) C Ω Ω sup u Ω sup u f + 1 Γ[u] L ({u=r}) dr Ω 46

5.3 Fractional Laplacian σ (0, 2) L[u] f in Ω u(x + y) u(x) Du(x), y χ B1 (y) L[u](x) := R n y n+σ dy = 1 u(x + y) + u(x y) 2u(x) 2 R n y n+σ dy 47

max Ω L[u] f(x) in Ω u 0 in R n \ Ω 2 σ 2 u C f + L (K u ) f + σ 2L n (K u ) N. Guillen and R. W. Schwab, 2012 48

5.4 Monge-Ampère equation detd 2 u = f in Ω F (X) := detx should be elliptic; Restrict solutions to be convex. If u is convex in Ω (Ω must be convex), then max u = max u, and Ω Ω min u min u C f Ω Ω L 1 (Ω) 49

50

σ k (D 2 u) := 5.5 k-hessian 1< k <n 1 j 1 < <j k n λ jl (D 2 u) λ j (D 2 u(x)): eigen-values of D 2 u(x) Restrict solutions to be convex again! Assume r := min u min u > 0. Ω Ω 51

n i=1 i 1 < <i k N i=1 a i λ i = i 1 < <i k (λ i1 λ ik ) ( ) 1 λi1 λ n 1 C k 1 ik nc k α 1 σ k (D 2 u) n k nc k N α 1 N i=1 nc k 1 n 1 C k 1 a α i (α > 1, a i 0) 52

min Ω u: convex solution of σ k (D 2 u) f in Ω dξ 1 f n k B r nc k L n k (Ω) u min u C f Ω 1 k L n k (Ω) 53

54