T 1) 2) ( ) T. T 4 T. R T. T U A doi / THE ANALYSIS ON STATIC CHARACTERISTICS OF CURVED T-BEAMS IN CONS

Similar documents

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /


: p Previous Next First Last Back Forward 1

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, )

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

&! +! # ## % & #( ) % % % () ) ( %

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

) & ( +,! (# ) +. + / & 6!!!.! (!,! (! & 7 6!. 8 / ! (! & 0 6! (9 & 2 7 6!! 3 : ; 5 7 6! ) % (. ()

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5,

5 551 [3-].. [5]. [6]. [7].. API API. 1 [8-9]. [1]. W = W 1) y). x [11-12] D 2 2πR = 2z E + 2R arcsin D δ R z E = πr 1 + πr ) 2 arcsin

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %

, & % # & # # & % & + # & # # # & # % #,

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

untitled

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 6 Dec

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &

# #! ) ( ( +,! %,! ( # # %& % ( ) +! +, +. /

untitled

3 355 (5) (6) 1/5 1/3 [1]. [2] ( 1) [3] cm 330 cm 12 m, 1 1 [5]., 3 G F F = G 2 cos α α F α = 30, F = 0.577G, α

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

% %! # % & ( ) % # + # # % # # & & % ( #,. %

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ

%% &% %% %% %% % () (! #! %!!!!!!!%! # %& ( % & ) +, # (.. /,) %& 0

! + +, ) % %.!&!, /! 0! 0 # ( ( # (,, # ( % 1 2 ) (, ( 4! 0 & 2 /, # # ( &

( ) (! +)! #! () % + + %, +,!#! # # % + +!

: p Previous Next First Last Back Forward 1

& & ) ( +( #, # &,! # +., ) # % # # % ( #

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ


! # %! #! #! # % + &, % % ) %. /! # 0 1

.., + +, +, +, +, +, +,! # # % ( % ( / 0!% ( %! %! % # (!) %!%! # (!!# % ) # (!! # )! % +,! ) ) &.. 1. # % 1 ) 2 % 2 1 #% %! ( & # +! %, %. #( # ( 1 (

# % & ) ) & + %,!# & + #. / / & ) 0 / 1! 2

: 29 : n ( ),,. T, T +,. y ij i =, 2,, n, j =, 2,, T, y ij y ij = β + jβ 2 + α i + ɛ ij i =, 2,, n, j =, 2,, T, (.) β, β 2,. jβ 2,. β, β 2, α i i, ɛ i

: ; # 7 ( 8 7

Fig. 1 Frame calculation model 1 mm Table 1 Joints displacement mm

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P.

& &((. ) ( & ) 6 0 &6,: & ) ; ; < 7 ; = = ;# > <# > 7 # 0 7#? Α <7 7 < = ; <

8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, ; > 8? : 5 4 +? Α > 6 + > 3, > 5 <? 9 5 < =, Β >5

Ⅰ Ⅱ 1 2 Ⅲ Ⅳ

Ansys /4 Ansys % 9 60% MU10 M m 1 Fig. Actual situation of measured building 1 Fig. 1 First floor plan of typical r

2 199 Navier-Stokes { u t - v 2 u + u u + 1 p = f 1 ρ u = 0 ux y Case25CTA z= { u LC6 60% T n = 0 2 CAS Case25pre ux y z= 0 Case25post u = u x u

! # Χ Η Ι 8 ϑ 8 5 Χ ΚΗ /8 Η/. 6 / Λ. /. Η /. Α Α + Α 0. Η 56 + Α : Α Μ / Η +9 Δ /. : Α : ϑ. Η. /5 % Χ

PowerPoint 演示文稿

鋼構造論文集第 20 巻第 79 号 (2013 年 9 月 ) AN EVALUATION METHOD FOR ULTIMATE COMPRESSIVE STRENGTH OF STAINLESS STEEL PLATES BASED ON STRESS-STRAIN DIAGRAM * **

3?! ΑΑΑΑ 7 ) 7 3

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α

(r s) {φ r1, φ r2,, φ rn } {φ s1, φ s2,, φ sn } u r (t) u s (t). F st ι u st u st k 1 ι φ i q st i (6) r β u r β u r u r(t) max u st r φ

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ

08-01.indd

; < 5 6 => 6 % = 5

/MPa / kg m - 3 /MPa /MPa 2. 1E ~ 56 ANSYS 6 Hz (a) 一阶垂向弯曲 (b) 一阶侧向弯曲 (c) 一阶扭转 (d) 二阶侧向弯曲 (e) 二阶垂向弯曲 (f) 弯扭组合 2 6 Hz

9 : : ; 7 % 8

[1] Nielsen [2]. Richardson [3] Baldock [4] 0.22 mm 0.32 mm Richardson Zaki. [5-6] mm [7] 1 mm. [8] [9] 5 mm 50 mm [10] [11] [12] -- 40% 50%

% % %/ + ) &,. ) ) (!

8 8 Β Β : ; Χ; ; ; 8 : && Δ Ε 3 4Φ 3 4Φ Ε Δ Ε > Β & Γ 3 Γ 3 Ε3Δ 3 3 3? Ε Δ Δ Δ Δ > Δ # Χ 3 Η Ι Ι ϑ 3 Γ 6! # # % % # ( % ( ) + ( # ( %, & ( #,.

[2001]1 SL SL

: Π Δ 9 Δ 9 Δ 9 7 Θ Μ 9 8 Ρ Σ # = Μ 0 ; 9 < = 5 Λ 6 # = = # Μ Μ 7 Τ Μ = < Μ Μ Ο = Ρ # Ο Ο Ο! Ο 5 6 ;9 5 5Μ Ο 6

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9

Fig. 1 1 a-a b-b a-a σ ma = MPa σ a = MPa σ 0a = MPa 0. 9 σ t =135 MPa b-b σ mb = MPa τ b = MPa σ 0b =

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ

《分析化学辞典》_数据处理条目_1.DOC

Β Χ + Δ Ε /4 10 ) > : > 8 / 332 > 2 / 4 + Φ + Γ 0 4 Η / 8 / 332 / 2 / 4 + # + Ι + ϑ /) 5 >8 /3 2>2 / 4 + ( )( + 8 ; 8 / 8. 8 :

1#

Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3 Ε Φ Γ ΕΙΙ 3 Χ 3 Φ 4 Κ? 4 3 Χ Λ Μ 3 Γ Ε Φ ) Μ Ε Φ? 5 : < 6 5 % Λ < 6 5< > 6! 8 8 8! 9 9 9! 9 =! = 9!

; 9 : ; ; 4 9 : > ; : = ; ; :4 ; : ; 9: ; 9 : 9 : 54 =? = ; ; ; : ;

#4 ~ #5 12 m m m 1. 5 m # m mm m Z4 Z5

1 <9= <?/:Χ 9 /% Α 9 Δ Ε Α : 9 Δ 1 8: ; Δ : ; Α Δ : Β Α Α Α 9 : Β Α Δ Α Δ : / Ε /? Δ 1 Δ ; Δ Α Δ : /6Φ 6 Δ

WORLD EARTHQUAKE ENGINEERING Vol. 27 No. 4 Dec TU398 A Analysis of energy dissipation and ea

第12章_下_-随机微分方程与扩散.doc

:::: : : : :::: :: :: :::::: :::: < ; 7 7 ; ; % < = = > = / =?? Α Β.. Β Χ (. 7 > 5 / Δ 6 Ε. Φ Δ 5 / 6 Ε. Φ 1 Γ 5 / 6 7 Η (. >5 Ι Δ 6 Φ ϑ

m m m ~ mm

微积分 授课讲义

10-03.indd

: ; 8 Β < : Β Δ Ο Λ Δ!! Μ Ν : ; < 8 Λ Δ Π Θ 9 : Θ = < : ; Δ < 46 < Λ Ρ 0Σ < Λ 0 Σ % Θ : ;? : : ; < < <Δ Θ Ν Τ Μ Ν? Λ Λ< Θ Ν Τ Μ Ν : ; ; 6 < Λ 0Σ 0Σ >

3 = 4 8 = > 8? = 6 + Α Β Χ Δ Ε Φ Γ Φ 6 Η 0 Ι ϑ ϑ 1 Χ Δ Χ ΦΚ Δ 6 Ε Χ 1 6 Φ 0 Γ Φ Γ 6 Δ Χ Γ 0 Ε 6 Δ 0 Ι Λ Χ ΦΔ Χ & Φ Μ Χ Ε ΝΓ 0 Γ Κ 6 Δ Χ 1 0

3 4 Ψ Ζ Ζ [, Β 7 7>, Θ0 >8 : Β0 >, 4 Ε2 Ε;, ] Ε 0, 7; :3 7;,.2.;, _ & αε Θ:. 3 8:,, ), β & Φ Η Δ?.. 0?. χ 7 9 Ε >, Δ? Β7 >7 0, Τ 0 ΚΚ 0 χ 79 Ε >, Α Ε

Β Χ Χ Α Β Φ Φ ; < # 9 Φ ; < # < % Γ & (,,,, Η Ι + / > ϑ Κ ( < % & Λ Μ # ΝΟ 3 = Ν3 Ο Μ ΠΟ Θ Ρ Μ 0 Π ( % ; % > 3 Κ ( < % >ϑ Κ ( ; 7

! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ! 7 7 Δ Δ 2! Χ Δ = Χ! Δ!! =! ; 9 7 Χ Χ Χ <? < Χ 8! Ε (9 Φ Γ 9 7! 9 Δ 99 Φ Γ Χ 9 Δ 9 9 Φ Γ = Δ 9 2

3 PC not suitable for this kind of bridge. 3 Considering the shear deformation of the CSWs the correction formulas are obtained for the PC box girder

5 (Green) δ

9. =?! > = 9.= 9.= > > Η 9 > = 9 > 7 = >!! 7 9 = 9 = Σ >!?? Υ./ 9! = 9 Σ 7 = Σ Σ? Ε Ψ.Γ > > 7? >??? Σ 9

7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ;

ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν Α Γ Β 1 Α Ο Α : Α 3. / Π Ο 3 Π Θ

Transcription:

37 1 215 2 T 1 2 22451 T. T 4 T. T. T U448.22 doi 1.652/1-879-14-31 THE NLYSIS ON STTIC CHCTEISTICS OF CUVED T-BEMS IN CONSIDETION OF SELF-EQUILIBIUM 1 GN Yanan 2 SHI Feiting School of Civil Engineering and rchitecture, Yancheng Institute of Technology, Yancheng 22451, Jiangsu, China bstract In consideration of the shear lag effects and the shear deformation, a new warping displacement mode of curved T-beams is chosen to satisfy the axial self-equilibrium condition for the shear lag warping stress, and an accurate approach is proposed to analyze the static characteristics of curved T-beams widely used in engineering. The energy-variational principle is applied to establish the governing differential equations and the corresponding natural boundary conditions, and thus the closed-form solutions of the generalized displacements are obtained. The variations of the shear lag coefficients and the stress in the curved T-beams against the span-width ratio and the type of loading are discussed, and the role played by the self-equilibrium condition is analyzed. Key words curved T-beams, self-equilibrium condition, static characteristics, energy-variational principle T [1-2] T [3-4]. T T. [5-8] [9-12]. 214 4 24 1 214 1 3. 1 13KJB56145 557854. 2. E-mail: gyn-12@163.com,. T., 215, 371: 79-85 Gan Yanan, Shi Feiting. The analysis on static characteristics of curved T-beams in consideration of self-equilibrium. Mechanics in Engineering, 215, 371: 79-85

8 215 37 T T. T. 1 1.1 1 2 3 T, L wx θx, φx, Ux, T ux [1,11,13] ux = ρ T y, zux = ρ M s zφ s yux φ s y = 1 b y2 b 2, y b 1 1 2 T, x, z, y T T y, z M s b T ρ b ρ. σ sx = E ux x τ sy = G ux y, M s = E ρ = G ρ Ms zφ s y U x 2 dφ s y zux 3 dy σ sx d = M s = 4h 1 tb/3 h 1 T y t T T E, G. M sy, I sy = M sy = σ sy zd = EI sy U 4 /ρzm s zφ s yd. M y = EI y φ θ EI sy U 5 [ σ za = Ez φ θ + E M s zφy U ]6 ρ, I y = [/ρz] 2 d. V y = 1 σ 2 za 2 E + τ sy 2 G { 1 l E 2 ddx = [I s U 2 + 2I sy φ θ U + I y φ θ 2 ] + Gk sy U }dx 2 7 I s = k sy = ρ [/ρm s zφ s y] 2 d dφ s y 2d z dy T V 1 3 T V 1 = V y + 1 2 l M 2 k1 dx + 1 2 l kg φ w 2dx x

1 T 81 M k1 = θ + φ/ 8, k, J k. V 2 V 2 = l q z w + m x θdx Q z w + M y φ + M y U + T x θ l 9 M y φx, M y, q z, m x, Q z. V = V 1 + V 2 1 1.2 δv = T [14] EI y φ 2 φ EI y + θ + EI sy U kgφ w = 11 EI y + φ + θ EI y 2 θ+ EI sy U + m x = 12 EI sy φ EI sy θ + EI s U Gk sy U = 13 kgφ w q z = 14 [EI y φ θ ] + EI sy U l M y δφ = 15 [EI s U + EI sy φ θ ] l M y δ U = 16 [ θ + φ ] l T x δθ = 17 [ kgφ w Q z ] l δw = 18 x. 1.3 12 Ux 11 φ + 1/ 2 φ + θ 3 + 1/θ + [1/ ]kgφ w = 19 Ux 13 φ 3 + B 1 φ + B 2 θ 4 + B 3 θ + B 4 θ + B 5 m x = 2 B 1 = m 1 = EI y, m 2 = / 2 m 3 = + EI y /, m 5 = EI y / 2, m 7 = EI s, m 8 = Gk sy m 4 = EI sy m 6 = EI sy / m 3 m 8 m 2 4 + m, B 2 = m 2m 7 3 3m 7 m 2 4 + m 3m 7 B 3 = m 7m 1 m 2 4 + m 2 m 8 4 m 2 4 m 1m 7 + m 2 m 7 2 B 4 = m 1 m 8 m 2 4 + m 3m 7, B m 8 5 = m 2 4 + m 3m 7 19 2 φx θ 6 3 B 1 B 2 B 3 1 2 θ 4 B 2 B 1 B 3 2 B 4 2 θ + B 2 B 4 2 B 2 θ + B 5 2 B 2 m x B 1 2 B 2 q z = 21 21 r 1,2 = ±α 1 + β 1 i, r 3,4 = ±α 2 + β 2 i r 5,6 = ±α 2 + β 2 i η 1 = α 1 + β 1 i, η 2 = α 2 + β 2 i, θx = c 1 chη 1 x + c 2 shη 1 x + c 3 chη 2 x + c 4 xchη 2 x+ c 5 shη 2 x + c 6 xshη 2 x + c 7 x 2 + c 8 x + c 9 22 θx φx, wx θx. T Ux Ux : 13 11 θ3 3 θ + EI2 sy I y I s I sy U 4 + Gk sy I y 2 + J k I s 2 I sy U G2 J k k sy 2 EI sy U = 23

82 215 37 13 12 θ3 + 3 θ + EI2 sy + EI y I s 2 I sy U + Gk sy + EI y 2 EI sy U = 24 23 24 U 4 + Gk syi y 2 + EI 2 sy I y I s EI 2 sy I y I s 2 U + Gk sy I y EI 2 sy I y I s 2 U = 25 25 r 1,2 = ±α 1 + β 1 i, r 3,4 = ±α 2 + β 2 i Ux Ux = F 1 shη 1 x + F 2 chη 1 x+ F 3 shη 2 x + F 4 chη 2 x + F 5 26 θx, φx, wx, Ux 11 14, θx, φx, wx Ux. θx = c 1 chη 1 x + c 2 shη 1 x + c 3 chη 2 x + c 4 xchη 2 x+ c 5 shη 2 x + c 6 xshη 2 x + 2 EI y m x EI y + EI y 3 q z 27 φx = c 1 D 1 shη 1 x + c 2 D 1 chη 1 x + c 3 D 32 shη 2 x+ c 4 D 4 xshη 2 x + D 31 chη 2 x + c 5 D 32 chη 2 x+ c 6 D 4 xchη 2 x + D 31 shη 2 x+ k 2 J k + k 2 E 7 2 q z x 28 F 1 = 2 η 3 1m 2 m 4 + m 6 m 3 m 5 m 4 η 1 η 2 1 m 6m 4 + m 7 m 3 + m 8 m 3 D 1 = m 6η 1 F 1 + m 5 2 m 2 η 2 1 m 3 η 1 D 4 = m 5 2 m 2 η 2 2 m 3 η 2 F 31 = m 3m 6 + 2 2 η 2 2m 2 m 4 D 4 m 3 m 4 η 2 m 8 m 3 + η 2 2 m 6m 4 + m 7 m 3 F 32 = 2 η 3 2m 2 m 4 + η 2 m 6 m 3 m 5 m 4 m 8 m 3 + η 2 2 m 6m 4 + m 7 m 3 D 32 = F 32m 6 η 2 + m 5 2 m 2 η 2 2 m 3 η 2 D 31 = F 31m 6 η 2 2 2 m 2 η 2 D 4 m 3 m 3 η 2 Ux = c 1 F 1 shη 1 x + c 2 F 1 chη 1 x + c 3 F 32 shη 2 x+ c 4 F 31 chη 2 x + c 5 F 32 chη 2 x + c 6 F 31 shη 2 x 29 D 1 D 1 D 32 wx = c 1 chη 1 x + c 2 shη 1 x + c 3 chη 2 x+ η 1 η 1 η 2 D4 c 4 xchη 2 x + D 31η 2 D 4 shη 2 x + η 2 η 2 2 D 32 D4 c 5 shη 2 x + c 6 xshη 2 x+ η 2 η 2 D 31 η 2 D 4 chη 2 x + E 7 x + E 8 η 2 2 1 1 2 kg + 2 q z x 2 3 2 T 1 T wx l =, θx l = U x l =, φ x l = 31 T p k l k1 l k2 k U k1 l k1 = U k2, U k1 l k1 = U k2 φ k11 l k1 = φ k21, θ k1l k1 = θ k2 θ k1 l k1 = θ k2, U k1l k1 = U k2 U k1 l k1 = U k2 φ k1 l k1 φ k2 = p k /kg 2 T φ =, U =, θ = w =, U l =, φl = w l θ l + φl =, φ l θl = 3 32 33 T,

1 T 83 E = 35 GPa, G = 15 GPa, t w =.15 m, t =.11 m, b = 2.85 m, h = 1 m, = 5 m. p z = 1.57 MN q z = 3.43 1 5 N/m. T. NSYS 2 T T NSYS Extrude T x, y, z z, y. 1 2 3 4 1 T. 4 T L = 8 m 1 T x = L/2, L = 12 m, L/2b = 2.1 T /m.75 2.925 1.925.925.75.925 1.925 2.925 /MPa 14.38 7 14.38 7 14.38 7 14.38 7 14.38 7 14.38 7 14.38 7 /MPa 14.38 7 14.38 7 14.38 7 14.38 7 14.38 7 14.38 7 14.38 7 /MPa 8.332 3 9.154 7 11.621 7 15.11 9 11.621 7 9.154 7 8.332 3.579.637.88 1.44.88.637.579 /MPa 11.567 7 12.481 7 15.223 7 18.991 7 15.223 7 12.481 7 11.567 7.84.868 1.59 1.321 1.59.868.84 /% 27.97 26.66 23.66 2.96 23.66 26.66 27.97 /MPa 11.61 2 11.994 9 14.562 9 18.37 8 14.562 9 11.994 9 11.61 2.769.834 1.13 1.273 1.13.834.769. 2 T x = L/2, L = 12 m, L/2b = 2.1 T /m.75 2.925 1.925.925.75.925 1.925 2.925 /MPa 1.957 6 1.957 6 1.957 6 1.957 6 1.957 6 1.957 6 1.957 6 /MPa 1.957 6 1.957 6 1.957 6 1.957 6 1.957 6 1.957 6 1.957 6 /MPa 4.666 8 5.522 1 8.88 11.614 8.88 5.522 1 4.666 8.426.54.738 1.6.738.54.426 /MPa 5.934 9 7.566 8 12.462 7 19.19 3 12.462 7 7.566 8 5.934 9.542.691 1.137 1.751 1.137.691.542 /% 21.37 27.2 35.1 39.48 35.1 27.2 21.37 /MPa 5.25 4 6.898 1 11.234 9 17.796 11.234 9 6.898 1 5.25 4.475.63 1.25 1.624 1.25.63.475

84 215 37. 2 T T 3 T T. 4 5 5 6 T. T. 3 T x = L/2, L = 8 m, L/2b = 1.4 T /m.75 2.925 1.925.925.75.925 1.925 2.925 /MPa 6.37 1 6.37 1 6.37 1 6.37 1 6.37 1 6.37 1 6.37 1 /MPa 6.37 1 6.37 1 6.37 1 6.37 1 6.37 1 6.37 1 6.37 1 /MPa 2.53 8 2.64 7 4.41 2 6.82 5 4.41 2 2.64 7 2.53 8.322.415.691 1.71.691.415.322 /MPa 3.775 2 4.618 3 7.147 7 1.623 5 7.147 7 4.618 3 3.775 2.593.725 1.122 1.668 1.122.725.593 /% 45.6 42.82 38.42 35.8 38.42 42.82 45.6 /MPa 3.313 5 4.143 1 6.742 6 1.141 2 6.742 6 4.143 1 3.313 5.52.65 1.58 1.592 1.58.65.52 4 T x = L/2, L = 12 m, b = 2.35 m, L/2b = 2.6 T /m.75 2.425 1.625.825.75.825 1.625 2.425 /MPa 17.231 5 17.231 5 17.231 5 17.231 5 17.231 5 17.231 5 17.231 5 /MPa 17.231 5 17.231 5 17.231 5 17.231 5 17.231 5 17.231 5 17.231 5 /MPa 12.39 4 12.94 3 14.832 9 17.753 14.832 9 12.94 3 12.39 4.714.751.861 1.3.861.751.714 /MPa 14.859 1 15.568 4 17.696 1 2.979 1 17.696 1 15.568 4 14.859 1.862.93 1.27 1.217 1.27.93.862 /% 17.16 16.88 16.18 15.38 16.18 16.88 17.16 /MPa 14.144 5 14.847 6 17.116 9 19.946 7 17.116 9 14.847 6 14.144 5.821.862.993 1.158.993.862.821 5 T x = L/2, L = 12 m, t w =.25 m, L/2b = 2.1 T /m.125 2.975 1.975.975.125.975 1.975 2.975 /MPa 13.873 4 13.873 4 13.873 4 13.873 4 13.873 4 13.873 4 13.873 4 /MPa 13.873 4 13.873 4 13.873 4 13.873 4 13.873 4 13.873 4 13.873 4 /MPa 8.638 9.369 3 11.563 1 14.577 7 11.563 1 9.369 3 8.638.623.675.833 1.51.833.675.623 /MPa 1.994 7 11.87 2 14.496 7 18.16 1 14.496 7 11.87 2 1.994 7.793.856 1.45 1.35 1.45.856.793 /% 21.43 21.7 2.24 19.49 2.24 21.7 21.43 /MPa 1.453 4 11.169 6 13.86 1 16.982 7 13.86 1 11.169 6 1.453 4.753.85.995 1.224.995.85.753

1 T 85 6%, 14%. T T. 4 5 T L = 12 m T. T T. 6 T L = 12 m 7 T 8% 7 T L = 8 m 1,. T., 24, 233: 94-97 2,.., 212, 343: 29-35 3,,.., 213, 356: 7-74 4 Song QG, Sordelis C. Shear lag analysis of T, I and box beams. Structural Engineering, 199, 1165: 136-1318 5,.., 29, 261: 123-129 6,,.., 29, 586: 42-41 7 Sanguanmanasak J, Chaisomphob T, Yamaguchi E. Stress concentration due to shear lag in continuous box girders. Engineering Structures, 27, 297: 1414-1421 8,,.., 21, 2712: 1-7 9 Kang YJ, Yoo CH. Thin-walled curved beams. I: formulation of nonlinear equations. J Engrg Mech, SCE, 1994, 121: 272-211 1,.., 22, 231: 34-37 11,.., 22, 194: 85-89 12,.., 24, 215: 157-16 13,.., 28, 256: 1-16 14..,1981 :