21 6 Ò Ä Vol. 21 No. 6 2013 ý 12 TORPEDO TECHNOLOGY Dec. 2013 一种针对机动目标的反潜鱼雷移出点射击法 É 1, î 2 (1. ø Ñã ¼ø,, 430033; 2. Àh 92664, ï ñ, 266023) : éœ Õq, eœ ê, œê {, é e å Æ Æ Æ, e,  n, j Áœ q s tœ ºÀ : œ ; ; ê f É ú: TJ631 h u: A ú: 1673-1948(2013)06-0464-05 A Shift Point Shooting Method of Anti-subarine Torpedo Against Maneuverable Target JIANG Tao 1, RUI Li 2 (1. Departent of Weapon Engineering, Naval Engineering University, Wuhan 430033, China; 2. 92664 th Unit, The People s Liberation Ary of China, Qingdao 266023, China) Abstract: A shift point shooting ethod of an anti-subarine torpedo is proposed to effectively attack a aneuverable subarine, i.e., when an anti-subarine torpedo is launched to iaginary point, the point has shifted certain range and angle relative to the expected hit point. Accordingly, atheatical odels of lead angle, torpedo oveent, and subarine aneuver are established, and the solutions to the shift range and shift angle are offered. Further, the optiized shift ranges and shift angles for different warfare states are calculated. Keywords: anti-subarine torpedo; aneuverable target; shift point shooting ethod 0 ÑÁ Œ ê ¼ [1-2] k œ œ Ñ, œ q œ q Ð, é q s ƒ æ e œ ê l, ê l å, œ ì, Á å ê l, s œ ž [3-5], ϕ n ê é, æ Á Œœ, Á å ênœ ý ÿ Ïé k, Á ê,, œ, e l œ ê, k Œé 1 zç Ç ê Œ œê {, j e å D 0 Q 0 ká ê ê, { 2013-04-15; 2013-07-11. ~v (1971-),, Ï, ø, Ðq s. 464 Torpedo Technology www.yljszz.cn
2013 ý 12, : é œ ê 6 éÿ, kæ éê [6]ž, ê Êf ê ø, ÕÀ 1 Œ, ž ù,, Œ ž, åý ÿ, k æ é x, å øϕ dev ϕ n, { ù, ê ná M1 { Ÿ ù, ý M 2 Õ Œ, ž å, æ é x, j œê ê Á M 2 Fig. 1 1 zç Ç x Scheatic of a shift point shooting ethod æ x Á ç ÿ Æ æ, p ƒq  o kæ é œ éÿ, å ê l œ, ž å ϕ a, œ œ 2 r Ùœ Á ý, êg wÿ, éÿ k ÿ œÿ v Ø Ïé Q t êf θ 0 [7],, ê fθ 1 ~ θ 2, k ê p½ Ñfθ 0,, ê fθ 1 ~ θ 2, k ê p½, ÕÀ 2 Fig. 2 2 ÒÄx Scheatic of subarine evading torpedo 3 zç Ç q Ì Ð ~ À 3 À 4, À 3, À 4 ä, 3.1 éfà 3, kœê Œ p à š, œ p à ( y ), Æ Ã Á Q, kϕ a ê,, Á t 1 Œ, Á t 1 t 2 Œ Œ M 2 p, ŒT 21 T 22, Õ ê B, ϕ a ì êf M0M1M2T0M 0 ŒÃ, Œ Á Ã, à {, [ V t t S R β ] t( 1 2) T cos( 2) cos( π 2 ϕa) ST cosacos( π 2 ϕa) Vt1 cos(3π 2 Q) Lcos(3π 2 Q θ 2) [ Vt( t1 t2) ST Rcos( β 2) ] sin( π2 ϕa) ST cos asin( π 2 ϕa) Ds Vt1 sin(3π 2 Q) Lsin(3π 2 Q θ 2) θ t2ω Q > θ0 θ t2ω Q < θ0 L 2R sin( θ 2) [ Vt( t1 t2) ST Rcos( β 2) ] sinϕa ST sinϕa Vt1 sin Q Lsin( Q θ 2) [ Vt( t1 t2) ST Rcos( β 2) ] cosϕa ST cosϕ D V t cosq Lcos( Q θ 2) a s 1 (1) (2) (3) www.yljszz.cn 465
2013 ý 12 21 3 r r³ Ð ~x Fig. 3 Scheatic of lead angle calculation for encountering a target in turning Vt1 sin Q Lsin( Q θ 2) ϕa arcsin Vt( t1 t2) ST Rcos( β 2) ST cos a Ds Vt1 cosq Lcos( Q θ 2) ST cos acosϕa t2 cosϕa Rcos( β 2) ST t1 Vt (4) (4)ž t 1 ê f Ø t 1, {å t 1 Á 0 t z ( t z ê ) ÀƒœÃ, œ f, ϕ a, œ ýã{q, 3.2 éfà 4, kϕ a ê, t 1, Á t 1 t 2 Œ, t1 t2 Œ Œ t3 M 3 p, ŒT 21 T 22, Õ ê B ϕ a ì êf M 0 M 1 M 2 M 3 T 0 M 0 4 r ýr Ð ~x Fig. 4 Scheatic of lead angle calculation for target straight running after turning ŒÃ, Œ Á Ã, à {, [ ST cos acos( π 2 ϕa) Vt( t1 t2 t3) ST Rcos( β 2) ] cos( π2 ϕa) Vt1 cos(3π 2 Q) Lcos(3π 2 Q θ 2) Vt3 cos( γ) ST sin( π 2 ϕa) [ Vt( t1 t2 t3) ST Rcos( β 2) sin( π 2 ϕa) Ds Vt1 sin(3π 2 Q) Lsin(3π 2 Q θ 2) V t sin( γ) 3 (5) { γ 140 ~130, Á œ Á 140 ~130 à Šù θ π 2 γ Q Q> θ0 θ 3 π 2 Q γ Q < θ0 θ / ω 2R sin( θ 2) t 2 L [ β ] 3 (6) ST cos asin ϕa Vt( t1 t2 t3) ST Rcos( 2) sinϕa Vt 1 sin( Q) Lsin( Q θ 2) Vt 3cos( γ) ST cos acos ϕa [ Vt t( 1 t2 t3) (7) ST Rcos( β 2) ] cosϕa Ds Vt1 cos( Q) Lcos( Q θ 2) V t sin( γ) ϕa t3 Vt1sin( Q) Lsin( Q θ 2) Vt3cos( γ) arc sin S cos a V ( t t t ) S Rcos( β 2) T t 1 2 3 T [ ] D V t cos( Q ) Lcos( Q θ 2) V ( t t ) Rcos( β 2) S S cos a cosϕ s 1 t 1 2 T T a V cosϕ V sin( γ) t a (8) 466 Torpedo Technology www.yljszz.cn
2013 ý 12, : é œ ê 6 4 zç y zç q ~ ê ej œê Ø T t, œêœ{ T 21 T 22, œê B j Ð e D 0, B Q 0 k p y, Æ Ã, ÕÀ 5 5 zç y zç qv É { V 45 kn, Á Í êq 1 000, Í êq 1 500, Á l, Ø Ø, Š À 6 q ê ÿ 30, ÿ 60, ÿ 90, ÿ 120, ÿ 150 5 zç y D 0 zç Q 0 Ð ϕ α Fig. 5 Relation odel of shift range, shift angle and lead angle ê Ñ TMM1BT1T Œ p Æ, Õ 0 ( ϕ α) Ds ST cos Δ etcos( ϕ) ST sinαsin( ϕ) Rpcos( β 2)cos( ϕ) D0cos( Q Q0) VTt cosq (9) 0 ST sin( ϕ α ) Δ etsin( ϕ) ST sinα cos( ϕ) Rp cos( β 2) sin( ϕ) D0 sin( Q Q0 ) VTtsinQ k et VTt ST, ý [ VT S S Rp ] t t T T cosα cos( β 2) cos( ϕ) Ds VTt cosq D0cos( Q Q0) [ VT t t ST ST cosα Rpcos( β 2) ] sin( ϕ) VT tsin Q D0sin( Q Q0) VT tsin Q D0sin( Q Q0) ϕ arcsin VT t ST STcos a Rpcos β 2 D D cos( Q Q ) ( S cos a s 0 0 T Tt Vt cosϕ Rp cos β 2 ST )cosϕ VcosQ (10) (11) (11)ž, ù ϕ α, žœ D 0 Q 6 Òij g 20 kn D 0 D s Fig. 6 Relationship of shift range, shift angle and shooting range when torpedo speed is 20 kn, Á å, Á, à ÎÑ ÎÑ, Á Ñ Î Ñ, p Ñf 120 k Á Q 90, ê Ñf 4 000, Ñf 1 000 Á, ê Ñ, Ê Á êf 70d, Á Ñf 70 Ÿ À 7 q l ÿ ê 2 000, ÿ ê 3 000, ÿ ê 4 000, ÿ ê 5 000, Áê å, Á, à ÎÑ ÎÑ ê, êî, Á êf 70 ÎÑ Î, Á 1 000 k Á êf 130 ÎÑ www.yljszz.cn 467
2013 ý 12 21 Î, Ñf 130 k Ã Î Ñ ê Á ê Ñ d Ñ l ê ê ê 7 Òij g 20 kn D 0 Q Fig. 7 Relationship of shift range, shift angle and eney board angle when torpedo speed is 20 kn Á, ê Ñ, Ê Á êf 70 ÎÑ ÎÑ, Á Ñf 70 Ÿ, d ÎÑ ÎÑ À 8 l ÿ 30, ÿ 90, ÿ 150, Áê å, Á, à ÎÑ ÎÑ, Á 90, Ñf 18 kn, Á 1 000 k Á ê ÎÑ Î, Á Ñ ÎÑ Î, l Ñ ê Ñ, ê ê ê Á, Ñ, ê Ê Á êf 70, Á Ñf 70 Ÿ 6 é Œœ 8 D s4 000 D 0 V Fig. 8 Relationship of shift range, shift angle and speed when shooting range is 4 000, s, ê Æ, e f, å, Š e, j æ, ¼æ, ƒ å z õ h: [1] äw. ø š [M]. «ë : «ë ø Ñã, 2010: 15-16. [2], Û. ¼ ( Š )[M]. ä: ø Ñã, 2005: 1-2. [3] âþ,, äw. q Š [M]. h: À ø, 2003: 99-109. [4] â, n,. Ï ê ê n Æ[J]. áø, 2011, 31(8): 40-43. Sun Chun-hua, Zhang Hui, Li Chang-wen. Optiization of Lead Angle for Acoustic Hoing Torpedo[J]. Ship Electronic Engineering, 2011, 31(8): 40-43. [5] ˆ, íd. o Æ [J]. á, 2007, 38(3): 31-34. Mei Feng-hua, Qu Ye-pin. Study on Lead Angle Matheatics Model of Snake Search of Aerial Torpedo[J]. Avionics Technology, 2007, 38(3): 31-34. [6] [M]. çv,. h: À ø, 1962: 4-35. [7] ä. Ïé š ÿ [M]. h: À ø, 2002: 130-140. («{ ±: ) 468 Torpedo Technology www.yljszz.cn