Microsoft PowerPoint - Chapter 7.ppt

Similar documents
投影片 1



& & ) ( +( #, # &,! # +., ) # % # # % ( #

Microsoft PowerPoint - Chapter 0 Ray Optics


# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5,

近代物理

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

Microsoft PowerPoint - pmoon_ NYUSH_UG

幻灯片 1


!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

# ( + + # + # 6 +,! + # +! +, + # ( + ) ( + ( + ) + 7! + # + /8 + ) ( +! + #. + ( +, +! + # + # + + ( ! ( + ) ( + ) +, + ( + 9% +! +, + ( +

%! # # % % & # ( ) ( +, & +, +, & +, & +, +, &!

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

Deformation mechanism of TWIP steels at high strain rates HUANG Mingxin LIANG Zhiyuan The University of Hong Kong Collaborators: HUANG Wen Shenzhen Un

第九章 高斯光束(Gaussian beams)

untitled

untitled

VLBI2010 [2] 1 mm EOP VLBI VLBI [3 5] VLBI h [6 11] VLBI VLBI VLBI VLBI VLBI GPS GPS ( ) [12] VLBI 10 m VLBI 65 m [13,14] (referen

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

untitled

&! +! # ## % & #( ) % % % () ) ( %

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

: ; # 7 ( 8 7

! # %! #! #! # % + &, % % ) %. /! # 0 1

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

[1-3] (Smile) [4] 808 nm (CW) W 1 50% 1 W 1 W Fig.1 Thermal design of semiconductor laser vertical stack ; Ansys 20 bar ; bar 2 25 Fig

LaDefense Arch Petronas Towers 2009 CCTV MOMA Newmark Hahn Liu 8 Heredia - Zavoni Barranco 9 Heredia - Zavoni Leyva

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;


, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02

BISQ理论模型与声波测井响应研究

% %! # % & ( ) % # + # # % # # & & % ( #,. %


/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

! + +, ) % %.!&!, /! 0! 0 # ( ( # (,, # ( % 1 2 ) (, ( 4! 0 & 2 /, # # ( &

PowerPoint Presentation

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

34 22 f t = f 0 w t + f r t f w θ t = F cos p - ω 0 t - φ 1 2 f r θ t = F cos p - ω 0 t - φ 2 3 p ω 0 F F φ 1 φ 2 t A B s Fig. 1

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

%% &% %% %% %% % () (! #! %!!!!!!!%! # %& ( % & ) +, # (.. /,) %& 0

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, )

标题

Slide 1

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

Untitled-3

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

07-3.indd

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &

untitled

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

UDC

% % %/ + ) &,. ) ) (!

TestNian

Fragmentation Functions: One to Three Shu-yi Wei Advisor: Prof. Zuo-tang Liang Inclusive: Y.K. Song, Z.T. Liang, Phys.Rev.D89,(2014) Semi-inculs

11 : 1345,,. Feuillebois [6]. Richard Mochel [7]. Tabakova [8],.,..,. Hindmarsh [9],,,,,. Wang [10],, (80 µm),.,. Isao [11]. Ismail Salinas [12],. Kaw

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

Microsoft PowerPoint - Ch5 The Bipolar Junction Transistor

Polarization Changes of Pulsars due to Wave Propagation through Magnetoshperes

Microsoft Word - KSAE06-S0262.doc

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip

was used for the preparation of titanium dioxide modified polyvinylidene fluoride ultrafiltration membrane. Structure and properties of the membrane a

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2

untitled

Microsoft Word - ICF的編碼指引-new sjl.doc

.., + +, +, +, +, +, +,! # # % ( % ( / 0!% ( %! %! % # (!) %!%! # (!!# % ) # (!! # )! % +,! ) ) &.. 1. # % 1 ) 2 % 2 1 #% %! ( & # +! %, %. #( # ( 1 (

# % & ) ) & + %,!# & + #. / / & ) 0 / 1! 2

Neutrino Signals from Solar Neutralino Annihilations in AMSB model Jia Liu ITP, School of Physics, Peking University based on Jia Liu, Peng-fei Yin, S

99710b43ZW.PDF


近代物理

ii

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 5 Oct /35 TU3521 P315.

7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ;

z = 0. [8] z = 0. R.. 1 [7]. ( λ o oxyz 1 ox ( oy ( oz SN ω ω = iω cos λ + kω sin λ ω = rad/s (24. 1 m ν 0 o f = mkv k mẍ = 2mωẏ s

9 : : ; 7 % 8

Thesis for the Master degree in Engineering Research on Negative Pressure Wave Simulation and Signal Processing of Fluid-Conveying Pipeline Leak Candi

<4D F736F F D20A D32A16ABC76B9B3A6A1A5FABEC7B37AC3E8B0BEA4DFB671B4FAA874B2CE5FBDD7A4E5A5FEA4E52E646F6378>

Microsoft PowerPoint - ch2-stallings.ppt

& &((. ) ( & ) 6 0 &6,: & ) ; ; < 7 ; = = ;# > <# > 7 # 0 7#? Α <7 7 < = ; <

穨CH3.PDF

Medium induced modified Fragmentation Function for Multiple Parton Scattering

WORLD EARTHQUAKE ENGINEERING Vol. 27 No. 4 Dec TU398 A Analysis of energy dissipation and ea

北海道地方の地殻変動

1#

Introduction to Hamilton-Jacobi Equations and Periodic Homogenization

不 知 肉 味 的 用 法 相 同? (A) 長 煙 一 空, 皓 月 千 里 (B) 五 臟 六 腑 裡, 像 熨 斗 熨 過, 無 一 處 不 伏 貼 (C) 兩 片 頑 鐵, 到 他 手 裡, 便 有 了 五 音 十 二 律 似 的 (D) 吾 觀 三 代 以 下, 世 衰 道 微 12. 文

iml v C / 0W EVM - pplication Notes. IC Description The iml8683 is a Three Terminal Current Controller (TTCC) for regulating the current flowin

净, 保 持 面 部 整 洁 这 里 要 说 一 下 的 是, 很 多 男 生 注 意 了 胡 子, 却 忘 了 鼻 毛, 而 旁 人 或 者 同 学 往 往 也 不 好 意 思 提 醒 建 议 面 试 前 一 定 要 仔 细 照 一 照 镜 子, 好 好 检 查 一 下 有 些 人 讲 话 多 了

2 193 EMAT F a λ 1 a λ 1 /2 EMAT 8 9 EMAT H = J C 1 B = μh EMAT E = - B 3 t J = γe F = J B + B S 5 H J C B μ EMAT E EMAT EMAT γ J ANSYS B

untitled

Transcription:

E ˆ ˆ 0 = xexo ye yo (a) (b) (c) Polarization Linearly polarized Plane polarized Unpolarized Polarizer E = E cos( ω t kz) x xo E = E cos( ωt kz + ) y yo Add electric field components (1) () E = xe ˆ + ye ˆ = xe ˆ cos( ωt kz) ye ˆ cos( ωt kz) x y xo yo E = E cos( ω t kz) E ˆ ˆ 0 = xe ye o xo yo

E = Acos( ωt kz) x E = Asin( ωt kz) y E + E = A x y (5a) (5b) (6) (a) (b) (c) π π π π (a) (b) (c) (d) π π

I( ) = I(0)cos Liquid Crystal Liquid Crystal LCD There are many modes operation TN 90 deg twist STN 70 deg twist IPS in plane switching Patterned vertical alignment MVA multi-domain vertical alignment

Principal refractive indices n 1, n and n 3 Principal axes x, y and z Biaxial crystals -Two optic axes Uniaxialcrystals -One optic axis (n 1 =n ) Positive, n 3 >n 1 Negative, n 3 <n 1 Crystals are generally anisotropic Many properties depend on the crystal direction Electronic polarization depends on the crystal direction The refractive index, or dielectric constant, of a crystal depends on the direction of the electric field in the propagation beam. Noncrystalline materials and cubic crystals are For all classes of crystals, excluding cubic structures, the refractive index depends on the and the. Birefringence Doubly refracted Flurite Quartz Rutile Calcite Tourmaline

Two orthogonal linearly polarized waves Ordinary (o) wave Same velocity in all directions extraordinary (e) wave Velocity depends on the polarization direction Electric field phase propagation direction => not necessary Optic axis Direction: two waves with the same velocity Opticalindicatrix-- Fresnel s refractive index ellipsoid Two orthogonally polarized EM waves Minor AOA n 1 =n =n o Major BOB 1 cos sin = + n ( ) n n n 1 =n e o e n 1 =n =n o 1 cos sin = + n ( ) n n e o e (a) (b)

(a) (b) (a) (b) Cleaved form: rhombohedron: calcite rhomb Principal selection: contains optical axis and is normal toa pair of opposite crystal surfaces Optical absorption in a substance depends on the and of the light beam Dichroic crsytals E.g. tourmaline (aluminum borosilicate) o-wave is much more heavilyabsorped

α 0 < α α (a) (b) Positiveuniaxial: α π = ( ne no ) L

Optical Compensator: control the retardation S.-B. Compensator: control and analyze the polarization state Quartz Rutile Calcite Tourmaline 1 π = ( nd e + nd o ) π = ( nd o + nd e ) Phase difference = 1 π = ( ne no )( D d )

Quartz: right-handed or left handed (atomic Arrangement) Many biological substances, liquid solution (e.g. corn syrup) Specific rotatorypower (/L) Wavelength dependent E.g. quartz: 49º/mm @ 400nm, 17º/mm @ 650nm Diff. speeds for left and right circularly polarized waves, i.e., diff. n A linearly polarized wave Sum of left- and right-handed circularly polarized waves (fig. 7.18) π = ( nr nl) L Circular birefringence If the direction of the light wave is reversed, the ray simply itself. Optical activity the rotation of the plane of polarization by a substance spiraling or helical motion of electrons magnets Clockwise (dextrorotatory) or counterclockwise (levorotatory) retardation Observer receiving the wave α = β α β clockwise α β α β

Asymmetry in the structure (- n,-e) and (+ n, +E) Not in noncrystallinematerials Centrosymmetric materials, e.g. NaCl Only in noncentrosymmetric crystals, e.g. GaAs Depends on the directions of applied field, propagation and polarization. E.g. GaAs isotropic => uniaxial Uniaxial=> biaxial: e.g. KDP and LiNbO3 Propagation in z-direction (same in x, y directions) KDP Ea in z (Fig. 7.19(b)) LiNbO3 Ea in y (Fig. 7.19(c)) Induce birefringence Changes in refractive index of a material induced by application of an, which modulates the optical properties. External field Changes in electron motions or in crystal structure Changes in optical properties EO effects n = n+ ae+ ae + ' 1 ' 1 3 n1 n1+ nre 1 o ' 1 3 n n nre o r : Pockels coeffcient Pockels effect (linear effect) (a) (b) (c) n= ae 1 Kerr effect (second effect) n= ae = ( ke )

' 1 3 ' 1 3 n1 n1+ nr 1 Eo and n n nr E πn πl 1 V ( ) d ' = 1 3 1 L = n + 0 nr 0 o π 3 L = 1 = nr 0 V d = π <=> V = V / half-wave voltage Polarization modulator 45 Total e-field at the analyzer r Eo Eo E = x? cos( ωt) + y cos( ωt + ) Detected I = Io sin 1 Field pass through A 1 1 E = Eosin sin ωt+ I π V = Io sin V / Applied field distorts the electron motions n o => n e n=ke a I (a) (b) 45 /

π 3 L = x y =Γ nr 0 V LV d Spatial overlap efficiency: Γ=0.5~0.7 P P out out ( ) = cos (0) Integrated optics:

(a) (b) Photoelasticeffect Induced strain => refractive index change 1 = ps n Depends on the directions (Cf. Elements of Photonics) Piezoelectric effect Generation of strain by applying an external field (Fig. 7.8) Surface acoustic wave (SAW) by modulating voltage at RF Periodic n due to periodic S due to photoelasticeffect β. (π β PB( Lo) P (0) A = f( β)

Λ sin = /n : Bragg angle A A' B Λ P Λsin v O O' Q Λsin ω' = ω±ω due to Doppler effect Ω : acoustic wave freq. B' Faraday effect Optically inactive material, e.g. glass, is placed in a strong magnetic field (e.g. solenoid) Light polarization propagating in the direction of magnetic field is rotated = ϑbl ϑ : Verdet constant E.g. glass L=0 mm in B ~ 0.1T, =1º Comparison Optical activity Faraday effect = ϑbl ϑ : Verdet constant

P = εχ E+ εχ E and E = E sin( ωt) P o 1 o 0 1 1 P = εχ E sin( ωt) εχ E cos( ωt) + εχe o 1 o 0 o ο o P + P - P + P ω ω P - (a) (b) (c) ± ω ω Linear P=εχE χ: electric susceptibility o Constructive interference => same velocity => n( ω) = n( ω) 3 Nonlinear P = εχ o 1E+ εχ o E + εχ o 3E χ 1 : linear susceptibility χ : second order susceptibility, non-centrosymmetric e.g. quartz (also piezoelectric) χ 3 : third order susceptibility

5. 眼睛在不同的亮度下, 其對不同波長的 sensitivity 也不同, 在正常 亮度下, 對黃 - 綠光最敏感 (0.55 um) 在昏暗下, 對綠光 (0.51 um ) 較敏感 Index matching n ( ω) = n ( ω) e o at phase matching angle ω ω The relative sensitivity of the eye to different wavelengths for normal levels of illumination (photopic vision )and under conditions of dark adaption (scotopic vision) CFLIN Fundamental photon, k 1 Conservation of momentum v Conservation of energy ω ω ω = = = = v 1 1 1 k k1 k1 Second harmonic photon, k hk + hk = hk 1 1 hω1+ hω1 = hω SHG is only effective over a coherence length π lc = k = k k1 k The relative sensitivity of rods and cones as a function of wavelength. hω 1 Photonic interpretation of second hω harmonic generation (SHG) 1 hω Fundamental photon, k 1 Dipole moment-photon interaction region CFLIN

Photopic and Scotopic Spectral Luminous Efficiency Functions V() Wavelength 380 385 390 395 Photopic 0.00004 0.00006 0.0001 0.000 Scotopic --- 0.00059 0.00111 0.001 0.00453 Wavelength 455 460 465 470 Photopic 0.04800 0.06000 0.07390 0.09098 Scotopic 0.513 0.567 0.60 0.676 405 410 415 40 0.00064 0.0011 0.0018 0.00400 0.0185 0.03484 0.0604 0.0966 480 485 490 495 0.1390 0.16930 0.080 0.5860 0.793 0.851 0.904 0.949 430 435 440 445 0.01160 0.01680 0.0300 0.0980 0.1998 0.65 0.381 0.3931 505 510 515 50 0.40730 0.50300 0.6080 0.71000 0.997 0.975 0.935 Photopic and Scotopic Spectral Luminous Efficiency Functions V() Wavelength 530 535 540 545 Photopic 0.8600 0.91485 0.95400 0.98030 Scopotic 0.811 0.733 0.650 0.564 Wavelength 605 610 615 60 Photopic 0.56680 0.50300 0.4410 0.38100 Scopotic 0.031 0.01593 0.01088 0.00737 555 560 565 570 0.99500 0.97860 0.9500 0.40 0.388 0.639 0.076 630 635 640 645 0.6500 0.1700 0.17500 0.1380 0.00334 0.004 0.00150 0.00101 580 585 590 595 0.87000 0.81630 0.75700 0.69490 0.11 0.0899 0.0655 0.0469 655 660 665 670 0.08160 0.06100 0.04458 0.0300 0.00046 0.00031 0.0001 0.00015