从零构建支持向量机(SVM)

Similar documents

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π




# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α

& &((. ) ( & ) 6 0 &6,: & ) ; ; < 7 ; = = ;# > <# > 7 # 0 7#? Α <7 7 < = ; <

&! +! # ## % & #( ) % % % () ) ( %

& & ) ( +( #, # &,! # +., ) # % # # % ( #

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

: ; # 7 ( 8 7

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5,

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

! # %! #! #! # % + &, % % ) %. /! # 0 1

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (

! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ! 7 7 Δ Δ 2! Χ Δ = Χ! Δ!! =! ; 9 7 Χ Χ Χ <? < Χ 8! Ε (9 Φ Γ 9 7! 9 Δ 99 Φ Γ Χ 9 Δ 9 9 Φ Γ = Δ 9 2

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, )

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ

08-01.indd

; < 5 6 => 6 % = 5

7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ;

% %! # % & ( ) % # + # # % # # & & % ( #,. %

Ⅰ Ⅱ 1 2 Ⅲ Ⅳ

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9

: 29 : n ( ),,. T, T +,. y ij i =, 2,, n, j =, 2,, T, y ij y ij = β + jβ 2 + α i + ɛ ij i =, 2,, n, j =, 2,, T, (.) β, β 2,. jβ 2,. β, β 2, α i i, ɛ i

PowerPoint 演示文稿

SVM OA 1 SVM MLP Tab 1 1 Drug feature data quantization table

( ) (! +)! #! () % + + %, +,!#! # # % + +!

國立中山大學學位論文典藏.PDF

10-03.indd

3 4 Ψ Ζ Ζ [, Β 7 7>, Θ0 >8 : Β0 >, 4 Ε2 Ε;, ] Ε 0, 7; :3 7;,.2.;, _ & αε Θ:. 3 8:,, ), β & Φ Η Δ?.. 0?. χ 7 9 Ε >, Δ? Β7 >7 0, Τ 0 ΚΚ 0 χ 79 Ε >, Α Ε

[9] R Ã : (1) x 0 R A(x 0 ) = 1; (2) α [0 1] Ã α = {x A(x) α} = [A α A α ]. A(x) Ã. R R. Ã 1 m x m α x m α > 0; α A(x) = 1 x m m x m +

= > : ; < ) ; < ; < ; : < ; < = = Α > : Β ; < ; 6 < > ;: < Χ ;< : ; 6 < = 14 Δ Δ = 7 ; < Ε 7 ; < ; : <, 6 Φ 0 ; < +14 ;< ; < ; 1 < ; <!7 7

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α

# #! ) ( ( +,! %,! ( # # %& % ( ) +! +, +. /

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ

untitled

Γ Ν Ν, 1 Ο ( Π > Π Θ 5?, ΔΓ 2 ( ΜΡ > Σ 6 = Η 1 Β Δ 1 = Δ Ι Δ 1 4 Χ ΓΗ 5 # Θ Γ Τ Δ Β 4 Δ 4. > 1 Δ 4 Φ? < Ο 9! 9 :; ;! : 9!! Υ9 9 9 ; = 8; = ; =

Ψ! Θ! Χ Σ! Υ Χ Ω Σ Ξ Ψ Χ Ξ Ζ Κ < < Κ Ζ [Ψ Σ Ξ [ Σ Ξ Χ!! Σ > _ Κ 5 6!< < < 6!< < α Χ Σ β,! Χ! Σ ; _!! Χ! Χ Ζ Σ < Ω <!! ; _!! Χ Υ! Σ!!!! ββ /β χ <

. Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )? : Β Ν :) Ε Ν & Ν? ς Ε % ) Ω > % Τ 7 Υ Ν Ν? Π 7 Υ )? Ο 1 Χ Χ Β 9 Ξ Ψ 8 Ψ # #! Ξ ; Ξ > # 8! Ζ! #!! Θ Ξ #!! 8 Θ!

Vol. 15 No. 1 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb O21 A

9 : : ; 7 % 8

R d X = {x i, i = 1,, n} Y = {y j, j = 1,, }.. n P = [p i,j p i,j X x i Y y j. C P. p i,j = 1, i = 1,, n j=1 C P = p i,j : n (1) p i,j 1,

% % %/ + ) &,. ) ) (!

,, ( Δ! # % & % ) % & )% % +, % &. + / +% % % +,. / )% )%. + /. /. 0 / +% )0 )1 2) 20 )1 % 4 0 % % 0 5 % % )) % %6 ) % 6 ) % % % ) % 6. 4 /. 2 %, 78 9

) & ( +,! (# ) +. + / & 6!!!.! (!,! (! & 7 6!. 8 / ! (! & 0 6! (9 & 2 7 6!! 3 : ; 5 7 6! ) % (. ()

! # Χ Η Ι 8 ϑ 8 5 Χ ΚΗ /8 Η/. 6 / Λ. /. Η /. Α Α + Α 0. Η 56 + Α : Α Μ / Η +9 Δ /. : Α : ϑ. Η. /5 % Χ

Β Χ + Δ Ε /4 10 ) > : > 8 / 332 > 2 / 4 + Φ + Γ 0 4 Η / 8 / 332 / 2 / 4 + # + Ι + ϑ /) 5 >8 /3 2>2 / 4 + ( )( + 8 ; 8 / 8. 8 :


7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ

untitled

8 8 Β Β : ; Χ; ; ; 8 : && Δ Ε 3 4Φ 3 4Φ Ε Δ Ε > Β & Γ 3 Γ 3 Ε3Δ 3 3 3? Ε Δ Δ Δ Δ > Δ # Χ 3 Η Ι Ι ϑ 3 Γ 6! # # % % # ( % ( ) + ( # ( %, & ( #,.

) ) ) Ο ΛΑ >. & Β 9Α Π Ν6 Γ2 Π6 Φ 2 Μ 5 ΝΒ 8 3 Β 8 Η 5 Φ6 Β 8 Η 5 ΝΒ 8 Φ 9 Α Β 3 6 ΝΒ 8 # # Ε Ο ( & & % ( % ) % & +,. &

3?! ΑΑΑΑ 7 ) 7 3

Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3 Ε Φ Γ ΕΙΙ 3 Χ 3 Φ 4 Κ? 4 3 Χ Λ Μ 3 Γ Ε Φ ) Μ Ε Φ? 5 : < 6 5 % Λ < 6 5< > 6! 8 8 8! 9 9 9! 9 =! = 9!

%? = Β 2Β 2 2 <Χ Φ Α Γ 7Δ 8 3 Ε & % # %& Η! % & &, &), 1 & % & +&,,. & / 0, & 2 %. % 3 % / % 4 %

1 <9= <?/:Χ 9 /% Α 9 Δ Ε Α : 9 Δ 1 8: ; Δ : ; Α Δ : Β Α Α Α 9 : Β Α Δ Α Δ : / Ε /? Δ 1 Δ ; Δ Α Δ : /6Φ 6 Δ

Υ 2 Δ Υ 1 = 1 : Φ Υ 1 Ω 5 ς ) Ν + Φ 5 ς ς Α+ ) Ν Φ 6 Ξ ς Α+ 4 Φ Ψ Ψ + = Ε 6 Ψ Ε Ε Π Υ Α Ε Ω 2? Ε 2 5 Ο ; Μ : 4 1 Ω % Β 3 : ( 6 Γ 4 Ρ 2 Ρ

= 6 = 9 >> = Φ > =9 > Κ Λ ΘΠΗ Ρ Λ 9 = Ρ > Ν 6 Κ = 6 > Ρ Κ = > Ρ Σ Ρ = Δ5 Τ > Τ Η 6 9 > Υ Λ Β =? Η Λ 9 > Η ς? 6 = 9 > Ρ Κ Φ 9 Κ = > Φ Φ Ψ = 9 > Ψ = Φ?

08_toukei03.dvi

1#

R α Cortes Vapnik 90 R emp α 1 - η 2 - VC 3 support vector machine SVM 1 h R α R emp ( ln 2l + 1 h ) - ln η 4 α + 1 槡 l α f x α α Λ 2 SVM α Λ

; 9 : ; ; 4 9 : > ; : = ; ; :4 ; : ; 9: ; 9 : 9 : 54 =? = ; ; ; : ;

untitled

8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, ; > 8? : 5 4 +? Α > 6 + > 3, > 5 <? 9 5 < =, Β >5

3 = 4 8 = > 8? = 6 + Α Β Χ Δ Ε Φ Γ Φ 6 Η 0 Ι ϑ ϑ 1 Χ Δ Χ ΦΚ Δ 6 Ε Χ 1 6 Φ 0 Γ Φ Γ 6 Δ Χ Γ 0 Ε 6 Δ 0 Ι Λ Χ ΦΔ Χ & Φ Μ Χ Ε ΝΓ 0 Γ Κ 6 Δ Χ 1 0

: ; 8 Β < : Β Δ Ο Λ Δ!! Μ Ν : ; < 8 Λ Δ Π Θ 9 : Θ = < : ; Δ < 46 < Λ Ρ 0Σ < Λ 0 Σ % Θ : ;? : : ; < < <Δ Θ Ν Τ Μ Ν? Λ Λ< Θ Ν Τ Μ Ν : ; ; 6 < Λ 0Σ 0Σ >

, & % # & # # & % & + # & # # # & # % #,

ΗΗ Β Η Η Η ϑ ΗΙ ( > ( > 8 Κ Κ 9 Λ! 0 Μ 4 Ν ΟΠ 4 Ν 0 Θ Π < Β < Φ Ρ Σ Ο ΟΦ Ρ Σ ) Ο Τ 4 Μ 4 Ν Π Υ Φ Μ ς 6 7 6Ω : 8? 9 : 8 ; 7 6Ω 1 8? ; 7 : ; 8 ; 9

9 < 9 Α Α < < < Β= =9 Χ 9Β 78! = = 9 ΦΑ Γ Η8 :Ι < < ϑ<; Β Β! 9 Χ! Β Χ Δ Ε <Β Α Α = Α Α Ι Α Α %8 Β < 8 7 8! 8 =

: Π Δ 9 Δ 9 Δ 9 7 Θ Μ 9 8 Ρ Σ # = Μ 0 ; 9 < = 5 Λ 6 # = = # Μ Μ 7 Τ Μ = < Μ Μ Ο = Ρ # Ο Ο Ο! Ο 5 6 ;9 5 5Μ Ο 6

Θ Θ Γ 2 Ρ 3 Ω Ω Ω Ξ, ;;> /;? ; ;;<<; > # ( 3 ) #2# #% 3 (#) # ( #) ) ( ) #) & ) 3 % & &89#(#( #3) ) 2 (#(# % ) ()# <= +: ;8.../;< # ; / +2.. ;//.;.82

微积分 授课讲义

Β Χ Χ Α Β Φ Φ ; < # 9 Φ ; < # < % Γ & (,,,, Η Ι + / > ϑ Κ ( < % & Λ Μ # ΝΟ 3 = Ν3 Ο Μ ΠΟ Θ Ρ Μ 0 Π ( % ; % > 3 Κ ( < % >ϑ Κ ( ; 7

9. =?! > = 9.= 9.= > > Η 9 > = 9 > 7 = >!! 7 9 = 9 = Σ >!?? Υ./ 9! = 9 Σ 7 = Σ Σ? Ε Ψ.Γ > > 7? >??? Σ 9

ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν Α Γ Β 1 Α Ο Α : Α 3. / Π Ο 3 Π Θ

!? > 7 > 7 > 7 Ε ! Α Φ Φ Γ Η Ι Γ / 2 ; Γ / 4 Δ : 4 ϑ / 4 # Η Γ Κ 2 Η 4 Δ 4 Α 5 Α 8 Λ Ηϑ Μ Α Α 4!! Ο. /3 :/Π : Θ Γ 2 ; Γ / 4 Ρ Α

Δ 6 Ε Φ Φ 9 > : : Γ Γ Η : 8 Κ 9 : > % Α%Β Β 8 6 Β 8 6 Κ Ι > ϑ, ϑ Λ, 1ϑ (, Β ϑ 9 9 Μ = >+? Β = ; ΕΝ Ν1Ο Κ Λ 69 Α% 0 8

Φ2,.. + Φ5Β( 31 (+ 4, 2 (+, Η, 8 ( (2 3.,7,Χ,) 3 :9, 4 (. 3 9 (+, 52, 2 (1 7 8 ΙΜ 12 (5 4 5? ), 7, Χ, ) 3 :9, 4( > (+,,3, ( 1 Η 34 3 )7 1 )? 54

9! >: Ε Φ Ε Ε Φ 6 Φ 8! & (, ( ) ( & & 4 %! # +! ; Γ / : ; : < =. ; > = >?.>? < Α. = =.> Β Α > Χ. = > / Δ = 9 5.

84 / ! / ! 9 9 9!! 9 : ; < = 1 //< & >!! ? : ; <. 1 //< &! Α

?.! #! % 66! & () 6 98: +,. / / 0 & & < > = +5 <. ( < Α. 1

Transcription:

(SVM) zhangh04@gail.co (SVM),,,,,,,,,,,,,,,,,,,,.,, {(x, y ), (x, y ),..., (x, y )}, x i R d, y {, }, h: R {, }, h(x i ) = y i, y i = ; h(x i ) = () y i =. i. y i h(x i ) =. (), x i, h(x i ) := sign(w x i + b), (3) w i R d, b R.. (w, b), i. y i (w x i + b) > 0. (4),, y i h(x i ) = y i sign(w x i +b) = y i (w x i +b) > 0. (5) (SVM) [4],, (w, b)., SVM,,,,,

,,,., (argin),. R d p R d w x + b = 0 w w p + b. (6) x, x, w (x x ) = w x w x = ( b) ( b) = 0, (7) w (x x ). x x, w p p x (, w) : proj w (p x) = p x cos w, p x = p x w (p x) w p x = w w p w x = w w p + b. (8) ( γ)., γ := i w w x i + b., 3. (w, b), ax i w w x i + b (9) s. t. y i (w x i + b) > 0, i =,,...,.,,,. 3,,,, (QP) ( )., u u Qu + t u (0) s. t. c i u d i, i =,,...,. 4. (w, b ) 3, r > 0, (rw, rb ) rw (rw ) x i + rb = w w x i + b, () y i ((rw ) x i + rb ) > 0 y i (w x i + b ) > 0. () (w, b),, (w, b) i w x i + b =. (3) 5 ( ). 3 (w, b), w w (4) s. t. y i (w x i + b), i =,,...,., (w, b ), i y i (w x i + b ) >. (rw, rb), 0 < r <, i y i ((rw) x i + rb) =, rw < w. (w, r ),, 4 arg w w (5) s. t. i y i (w x i + b) =. w w = arg = arg ax w w

( = arg ax ( = arg ax ) w y i(w x i + b) ) i i w w x i + b.(6) 6., d +, 0 3 [ ] [ ] w I 0 u :=, Q :=, t := 0, (7) b 0 0 [ ] xi c i := y i, d i :=, (8), 5, (Lagrange) (dual), 3. 3 ( ). u f(u) (9) s. t. g i (u) 0, i =,,...,, L(u, α, β) := f(u) + α i 0. h j (u) = 0, j =,,..., n, α i g i (u) + n β j h j (u), (0) j= 7. 9 ax u α,β L(u, α, β) () s. t. α i 0, i =,,...,. ax L(u, α, β) u α,β = f(u) + ax α i g i (u) + u α,β n β j h j (u) j= 0 u ; = f(u) + u = u f(u), u, (), g i, g i (u) > 0, α i =, α i g i (u) = ; h j, h j (u) 0, β j = sign(h j (u)), β j h j (u) =. u, α i 0, g i (u) 0, α i g i (u) 0. α i g i (u) 0. 8 (KKT ). : g i (u) 0, h i (u) = 0; : α i 0; (copleentary slackness): α i g i (u) = 0. 7, u,. α i g i (u) = 0 4 ( ). 9 ax α,β u L(u, α, β) (3) s. t. α i 0, i =,,...,. 9. (prial), ax α,β u L(u, α, β) u ax L(u, α, β). (4) α,β. (α, β ), u L(u, α, β ) u ax α,β L(u, α, β). (α, β ) = ax α,β u L(u, α, β ),, ax α,β u L(u, α, β ) u ax α,β L(u, α, β). 0 (Slater )., f g i, h j,, 3

, [].. Slater w w y i (w x i + b) 3. L(w, b, α) := w w + ax α w w + α i ( y i (w x i + b)). (5) α i ( y i (w x i + b)) (6) s. t. α i 0, i =,,...,. ( ). α, α s. t. α i α j y i y j x i x j α i (7) j= α i y i = 0, α i 0, i =,,...,. 6 (w, b), (w, b) L w = 0 w = α i y i x i, (8) L b = 0 α i y i = 0. (9) 6, (w, b), 3.,, + u := α, Q := [y i y j x i x j ], t :=, (30) c i := e i, d i := 0, i =,,...,, (3) c + := [y y y ], d + := 0, (3) c + := [y y y ], d + := 0, (33) 0, e i i, 0 c +u d + c +u d + 3.3 4 ( KKT ). KKT : y i (w x i + b) 0; : α i 0; : α i ( y i (w x i + b)) = 0. [ ] [ ] w xi u :=, g i (u) := y i u, (34) b 8 5 ( ). α i > 0 5.,, KKT, α i ( y i (w x i + b)) = 0. α i > 0, y i (w x i + b) = 0. y i (w x i + b) =. 6. (w, b), α i > 0, w = α i y i x i = i : α i=0 0 y i x i + α i y i x i i : α i>0 = α i y i x i, (35) i SV SV b x s y s, y s (w x s + b) =, b = y s w x s = y s α i y i x i x s. (36) i SV, b, b 4

7. ( ) h(x) = sign α i y i x i x + b. (37) 35 4 i SV,,, (kernel trick) []. 4. R d, ϕ: R d R d, R d 8. d, d, R d, (shatter) [6]. ϕ(x) x R d, w d. : α s. t. w w (38) s. t. y i (w ϕ(x i ) + b), i =,,..., ; α i α j y i y j ϕ(x i ) ϕ(x j ) α i (39) j= α i y i = 0, α i 0, i =,,...,., d +, ;, + 4.,,, ϕ(x i ) ϕ(x j ). R d,, O( d).,,, O( d) O(d)., κ(x i, x j ), κ(x i, x j ) = ϕ(x i ) ϕ(x j ), (40) κ(x i, x j ) O(d). 9. ϕ: x exp( x ) x! x. (4) κ(x i, x j ) := exp( (x i x j ) ). (4) κ(x i, x j ) = exp( (x i x j ) ) = exp( x i ) exp( x j) exp(x i x j ) = exp( x i ) exp( x (x i x j ) k j) k k=0 ( )( = exp( x k i ) exp( x k j) k=0 k! xk i k! xk j = ϕ(x i ) ϕ(x j ). (43) 4.3,,,,, d ( ), ) 5

; d, RBF ; d,,, Mercer [5]. 0 (Mercer ). κ(x i, x j ) K := [κ(x i, x j )] (44),. : K ij = κ(x i, x j ) = ϕ(x i ) ϕ(x j ), Φ := [ϕ(x ) ϕ(x ) ϕ(x )] R d, (45) K = Φ Φ. a, a Ka = a Φ Φa = (Φa) (Φa) = Φa 0. (46) [9]. κ(x i, x j ), c κ (x i, x j ) + c κ (x i, x j ), c, c > 0, (47) κ (x i, x j )κ (x i, x j ), (48) f(x )κ (x i, x j )f(x ). (49) : κ(x i, x j ) = ϕ(x i ) ϕ(x j ), c κ (x i, x j )+c κ (x i, x j ) = κ (x i, x j )κ (x i, x j ) [ c ] [ c ] ϕ (x i ) ϕ (x i ), c ϕ (x i ) c ϕ (x i ) (50) = vec(ϕ (x i )ϕ (x i ) ) vec(ϕ (x j )ϕ (x j ) ), (5) f(x )κ (x i, x j )f(x ) = (f(x i )ϕ(x i )) (f(x j )ϕ(x j )). (5) 4.4, ( ). l(w ϕ(x i ), y i ) + λ w w (53) w w = α i ϕ(x i ). (54) Φ := [ϕ(x ) ϕ(x ) ϕ(x )]. (55) w, α, e 0. w = Φα + e, (56), e, ϕ(x i ), ϕ(x i ) e = 0. l(w ϕ(x i ), y i ) = l((φα + e) ϕ(x i ), y i ) = l((φα) ϕ(x i ), y i ) ; (57) w = Φα + e + (Φα) e > Φα, (58) Φα w, w,, Ω(w). [3].,,,,, w ϕ(x) w ϕ(x) = α i κ(x i, x). (59),, [8]. 5,,,,,,,, 6

Table :,, (chi squared kernel), (histogra intersection kernel). x i x j, (βx i x j + θ) n, n, n RBF exp ( x i x j,, σ ) 5.,, : w w + C I(y i sign(w ϕ(x i ) + b)) (60) s. t. y i (w ϕ(x i ) + b), y i = sign(w ϕ(x i ) + b)., I( ), C,,, 60 0/, /,, (slack variable) ξ i,,, 0 y i (w ϕ(x i ) + b) ; ξ i = y i (w ϕ(x i ) + b). (6) 3 ( ). (w, b),,ξ w w + C ξ i (6) s. t. y i (w ϕ(x i ) + b) ξ i, i =,,...,, ξ i 0, i =,,...,., C C, ; C,. y i (w ϕ(x i ) + b), y i (w ϕ(x i ) + b) ξ i ξ i 0, ξ i, ξ i = 0., ξ i y i (w ϕ(x i ) + b), ξ i, ξ i = y i (w ϕ(x i ) + b). 4., + d +, w [ ] [ ] u := b I 0 0, Q :=, t := C, (63) 0 0 ξ y i ϕ(x i ) c i := y i, d i :=, i =,,...,, (64) e i [ ] 0 c i :=, d i := 0, i = +,...,, (65) e i 0 5. 5 ( ). α, α s. t. α i α j y i y j ϕ(x i ) ϕ(x j ) α i (66) j= α i y i = 0, 7

0 α i ξ i, i =,,...,. L(w, b, ξ, α, β) := w w + C ax α,β,ξ + + ξ i α i ( ξ i y i (w ϕ(x i ) + b)) β i ( ξ i ). (67) L(w, b, ξ, α, β) (68) s. t. α i 0, i =,,...,, (69) β i 0, i =,,...,. (w, b, ξ), (w, b, ξ) L w = 0 w = α i y i ϕ(x i ), (70) L b = 0 α i y i = 0, (7) L ξ = 0 α i + β i = C. (7) β i = C α i 0,, 0 α i C, β i. 68, (w, b, ξ, β), 6.,, +. u := α, Q := [y i y j ϕ(x i ) ϕ(x j )], t :=, (73) c i := e i, d i := 0, i =,,...,, (74) c i := e i, d i := ξ i, i = +,...,, (75) c + := [y y y ], d + := 0, (76) c + := [y y y ], d + := 0, (77) 0 5.3 7 ( KKT ). KKT : ξ i y i (w ϕ(x i )+b) 0, ξ i 0; : α i 0, β i 0; : α i ( ξ i y i (w ϕ(x i )+b)) = 0, β i ξ i = 0. w u := b, (78) ξ y i w g i (u) := y i u, i =,,...,, (79) e i [ ] 0 g i (u) := u, i = +,...,. (80) e i 8 8.,,, KKT, α i ( ξ i y i (w ϕ(x i ) + b)) = 0 β i ξ i = 0. α i > 0, ξ i y i (w ϕ(x i ) + b) = 0. 0 < α i < C. β i = C α i > 0. ξ i = 0, ; α i = C. β i = C α i = 0. ξ i, ; ξ i >, 9. (w, b), 5.4 30. 6 ξ i = ax(0, y i (w ϕ(x i ) + b)). (8), y i (w ϕ(x i ) + b) 0, ξ i = 0;, y i (w ϕ(x i ) + b) > 0, ξ i = y i (w ϕ(x i ) + b). 8

3. ax(0, y i (w ϕ(x i ) + b) + λ w. (8),, ;,,, λ,., ξ i = ax(0, y i (w ϕ(x i ) + b)) 0, λ = C. 6 ( (hinge loss)). l(s) = ax(0, s). (83), [9],. s := y i w ϕ(x),, s > 0, l(s) ;, s < 0, l(s) 6 6. SMO, Q := [y i y j ϕ(x i ) ϕ(x j )] O( ),, (SMO) [0] SMO 7 ( ).,,,,., α i, α i y iα i = 0,, α i., α i., SMO α i α j,, Algorith Input: f. Output: u, f(u) : while do : for i to n do 3: u i arg ui f(u) 4: end for 5: end while 6: return u 3 (SMO ). SMO α i,α j (α i yi ϕ(x i ) ϕ(x i ) + αi yi ϕ(x j ) ϕ(x j ) + α i α j y i y j ϕ(x j ) ϕ(x j )) (α i + α j ) (84) s. t. α i y i + α j y j = c, 0 α i ξ i, 0 α j ξ j,, c := k i,j α ky k. 68 α i, α j 33. SMO α i α j = y j (c α i y i ), SMO, α j., α i, L α i H. [L, H], α i, α i α j, α i KKT, α j α i SMO KKT 6. Pegasos,,, Pegasos [4]. Pegasos ax(0, y i (w x i + b)) + λ w. (85) 9

Table : s := y i w ϕ(x). 0/ I(s < 0) ;,, NP ax(0, s), 0/ ;,, log( + exp( s)), 0/ ;,, exp( s), 0/ ;, AdaBoost,,. Algorith Pegasos. Input: {(x, y ), (x, y ),..., (x, y )}. Output: (w, b) : while do J : w I(y i(w x i + b) ) y i x i + λw J 3: w I(y i(w x i + b) ) y i 4: w w η J w 5: b b η J b 6: end while 7: return (w, b) 6.3, K := [κ(x i, x j )], Ω( ).,, CVM [5], Nyströ [8] K K, [],, LibLinear [7] LibSVM [3], 7 ProbSVM.,, ProbSVM [], (w, b). s i := y i w ϕ(x i ) + b, {(s, y ), (s, y ),..., (s, y )}, (θ, θ 0 )., Prob- SVM h(x) := sig(θ (w ϕ(x) + b) + θ 0 ). (86), ( θ ) ( θ 0 ). θ > 0, θ 0 0. K, [7] K {(w, b ), (w, b ),..., (w K, b K )},, W,b k= K ax(0, (w y i ϕ(x i ) + b yi ) (w k ϕ(x i ) + b k ) + ) + λ K w k w k. (87) k= (SVR). h(x i ) y i, [6] h(x i ) y i ε s := y (w ϕ(x) + b, ε- 0 y (w ϕ(x) + b) ε ; s ε. 34 ( ). (88) ax(0, y i (w ϕ(x i )+b) ε)+ λ w w. (89) y (w ϕ(x)+b) ε, y (w ϕ(x)+b) ε 0, ax(0, ) 0; y (w ϕ(x) + b) > ε, ax(0, ) y (w ϕ(x) + b) ε. 0

References [] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorith for optial argin classifiers. In Proceedings of the Annual Workshop on Coputational Learning Theory, pages 44 5, 99. 5 [] S. Boyd and L. Vandenberghe. Convex optiization. Cabridge university press, 004. 4 [3] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector achines. ACM Transactions on Intelligent Systes and Technology, (3):7, 0. 0 [4] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 0(3):73 97, 995. [5] N. Cristianini and J. Shawe-Taylor. An introduction to support vector achines and other kernel-based learning ethods. Cabridge University Press, 000. 6 [6] H. Drucker, C. J. Burges, L. Kaufan, A. J. Sola, and V. Vapnik. Support vector regression achines. In Advances in Neural Inforation Processing Systes, pages 55 6, 997. 0 [7] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large linear classification. Journal of Machine Learning Research, 9(8):87 874, 008. 0 [8] T. Hofann, B. Schölkopf, and A. J. Sola. Kernel ethods in achine learning. The Annals of Statistics, pages 7 0, 008. 6 [9] G. R. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan. Learning the kernel atrix with seidefinite prograg. Journal of Machine Learning Research, 5():7 7, 004. 6 [0] J. Platt. Sequential ial optiization: A fast algorith for training support vector achines. Micriosoft Research, 998. 9 [] J. Platt et al. Probabilistic outputs for support vector achines and coparisons to regularized likelihood ethods. Advances in Large Margin Classifiers, 0(3):6 74, 999. 0 [] A. Rahii and B. Recht. Rando features for largescale kernel achines. In Advances in Neural Inforation Processing Systes, pages 77 84, 008. 0 [3] B. Scholkopf and A. J. Sola. Learning with kernels: support vector achines, regularization, optiization, and beyond. MIT press, 00. 6 [4] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: Prial estiated sub-gradient solver for SVM. Matheatical Prograg, 7():3 30, 0. 9 [5] I. W. Tsang, J. T. Kwok, and P.-M. Cheung. Core vector achines: Fast SVM training on very large data sets. Journal of Machine Learning Research, 6(4):363 39, 005. 0 [6] V. Vapnik. The nature of statistical learning theory. Springer Science & Business Media, 03. 5 [7] J. Weston, C. Watkins, et al. Support vector achines for ulti-class pattern recognition. In Proceedings of the European Syposiu on Artificial Neural Networks, volue 99, pages 9 4, 999. 0 [8] C. K. Willias and M. Seeger. Using the nyströ ethod to speed up kernel achines. In Advances in Neural Inforation Processing Systes, pages 68 688, 00. 0 [9], 06. 9